Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = hexamer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5957 KiB  
Article
Genome-Wide Screening Reveals the Oncolytic Mechanism of Newcastle Disease Virus in a Human Colonic Carcinoma Cell Line
by Yu Zhang, Shufeng Feng, Gaohang Yi, Shujun Jin, Yongxin Zhu, Xiaoxiao Liu, Jinsong Zhou and Hai Li
Viruses 2025, 17(8), 1043; https://doi.org/10.3390/v17081043 - 25 Jul 2025
Viewed by 295
Abstract
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, [...] Read more.
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, making it safer compared with DNA viruses and retroviruses; NDV can induce syncytium formation, allowing the virus to spread among cells without exposure to host neutralizing antibodies; and its genome adheres to the hexamer genetic code rule (genome length as a multiple of six nucleotides), ensuring accurate replication, low recombination rates, and high genetic stability. Although wild-type NDV has a killing effect on various tumor cells, its oncolytic effect and working mechanism are diverse, increasing the complexity of generating engineered oncolytic viruses with NDV. This study aims to employ whole-genome CRISPR-Cas9 knockout screening and RNA sequencing to identify putative key regulatory factors involved in the interaction between NDV and human colon cancer HCT116 cells and map their global interaction networks. The results suggests that NDV infection disrupts cellular homeostasis, thereby exerting oncolytic effects by inhibiting cell metabolism and proliferation. Meanwhile, the antiviral immune response triggered by NDV infection, along with the activation of anti-apoptotic signaling pathways, may be responsible for the limited oncolytic efficacy of NDV against HCT116 cells. These findings not only enhance our understanding of the oncolytic mechanism of NDV against colonic carcinoma but also provide potential strategies and targets for the development of NDV-based engineered oncolytic viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 2852 KiB  
Article
Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6
by Ankit Joshi, Zhousheng Xiao, Shreya Suman, Connor Cooper, Khanh Ha, James A. Carson, Leigh Darryl Quarles, Jeremy C. Smith and Madhulika Gupta
Molecules 2025, 30(14), 2919; https://doi.org/10.3390/molecules30142919 - 10 Jul 2025
Viewed by 496
Abstract
Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. As a critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and [...] Read more.
Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. As a critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high-throughput structure-based computational screening using ensemble docking for small-molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein. Prior knowledge of the contact sites from binary complex studies and experimental work was incorporated into the docking studies. The top 20 scoring ligands from the in silico studies after post analysis were subjected to in vitro functional assays. Among these compounds, the ligand with the second-highest calculated binding affinity experimentally showed an ~84% inhibitory effect on IL6-induced STAT3 reporter activity at 10 μM concentration. This finding may pave the way for designing small-molecule inhibitors of hIL-6 of therapeutic significance. Full article
Show Figures

Graphical abstract

9 pages, 639 KiB  
Brief Report
Recombinant IgG1 Fc-μTP-L309C Ameliorates Endogenous Rheumatoid Arthritis in the K/BxN Mouse Model by Decreasing Th1 and Th17 Cells in the Spleen, Lymph Nodes and Joint and Increasing T Regulatory Cells and IL-10 in the Joint
by Bonnie J. B. Lewis, Selena Cen, Ruqayyah J. Almizraq, Beth Binnington, Rolf Spirig, Fabian Käsermann and Donald R. Branch
J. Clin. Med. 2025, 14(13), 4509; https://doi.org/10.3390/jcm14134509 - 25 Jun 2025
Viewed by 390
Abstract
Background/Objectives: Recombinant Fc proteins have been produced that have a protective effect in mouse models of arthritis, such as the K/BxN rheumatoid arthritis model. We have previously shown that a recombinant human IgG1 Fc with a point mutation at position 309, replacing a [...] Read more.
Background/Objectives: Recombinant Fc proteins have been produced that have a protective effect in mouse models of arthritis, such as the K/BxN rheumatoid arthritis model. We have previously shown that a recombinant human IgG1 Fc with a point mutation at position 309, replacing a leucine with a cysteine, fused to the human IgM tailpiece to form a human IgG1 Fc hexamer, rFc-µTP-L309C, effectively prevents neutrophil infiltration into the joints and ameliorates arthritis in the K/BxN serum transfer model and in the endogenous chronic arthritis K/BxN model. We have now investigated the effect of rFc-µTP-L309C on T-cells in the K/BxN chronic arthritis mouse model. Methods: PBMCs were isolated from the spleen, lymph nodes and joint synovial fluid from K/BxN mice having severe chronic arthritis that had been treated with 200 mg/kg rFc-µTP-L309C or human serum albumin (HSA). Flow cytometry was used to isolate the activated CD4+CD44+ T-cells and T-regulatory cells (Tregs). Intracellular staining was used to identify Th1 and Th17 T-cell subsets, and CD4+CD25+FoxP3+ Tregs. ELISA was used to measure levels of IL-10 and TGF-β in synovial fluid. Results: We find that amelioration of the arthritis occurs after treatment with rFc-µTP-L309C and results in a decrease in Th1 cells’ production of IFNγ and Th17 cells’ production of IL-17. Amelioration also results in decreased production of GM-CSF. Moreover, amelioration results in increased Tregs and IL-10 production in the synovial fluid. Conclusions: rFc-µTP-L309C reduces the inflammatory T-cells and increases the regulatory anti-inflammatory T-cells in the chronic arthritis K/BxN mouse model. This effect explains, in part, the ability of rFc-µTP-L309C to ameliorate the arthritis and reduce damage on the articular cartilage of K/BxN mice. Full article
(This article belongs to the Special Issue Updates on Rheumatoid Arthritis: From Diagnosis to Treatment)
Show Figures

Figure 1

13 pages, 1717 KiB  
Article
An Alternative Mechanism of Glutamate Dehydrogenase Inhibition by EGCG: Promotion of Protein Degradation
by Ziying Zeng, Chenshui Lin, Chuqiao Pan, Zhao Chen and Benfang Helen Ruan
Pharmaceuticals 2025, 18(6), 877; https://doi.org/10.3390/ph18060877 - 12 Jun 2025
Viewed by 509
Abstract
Backgroud: Glutamate dehydrogenase (GDH) is involved in the metabolism of glutamate and ammonia. It is regulated by multiple ligand variants, and hyper-active GDH mutants have been reported for hyperinsulinism hyperammonemia syndrome (HHS). Methods: Here, we constructed the wild-type human GDH and three human [...] Read more.
Backgroud: Glutamate dehydrogenase (GDH) is involved in the metabolism of glutamate and ammonia. It is regulated by multiple ligand variants, and hyper-active GDH mutants have been reported for hyperinsulinism hyperammonemia syndrome (HHS). Methods: Here, we constructed the wild-type human GDH and three human GDH454 mutants and investigated their degradation activity and performance under different GDH inhibitors. Results: Protein activity test and SDS-PAGE analysis of the purified proteins showed that the GDH454 mutant from HHS has weaker GDH enzymatic activity but greater resistance to trypsin hydrolysis than the wild type. Interestingly, using the biomolecular interactions technique, it showed that the GDH454 mutant has 109 times weaker affinity for trypsin and 10-fold weaker for epigallocatechin gallate (EGCG) than the wild-type GDH. Subsequently, native-PAGE gel analysis demonstrated that EGCG could break down the GDH hexamer into monomers and form a complex with trypsin to enhance the degradation of both types of GDH. Conclusions: EGCG showed good affinity to both the wild-type and the mutant GDH proteins, promoting protein degradation; this provides a new strategy for the treatment of HHS and other hyper-active GDH-related diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

11 pages, 2084 KiB  
Review
How HIV-1 Uses the Metabolite Inositol Hexakisphosphate to Build Its Capsid
by Leo C. James
Viruses 2025, 17(5), 689; https://doi.org/10.3390/v17050689 - 9 May 2025
Viewed by 581
Abstract
The HIV-1 capsid is one of virology’s most iconic structures, yet how it assembles has long remained elusive. Remarkably, the capsid is made from just a single protein, CA, which forms a lattice of ~250 hexamers and exactly 12 pentamers. Conical capsids form [...] Read more.
The HIV-1 capsid is one of virology’s most iconic structures, yet how it assembles has long remained elusive. Remarkably, the capsid is made from just a single protein, CA, which forms a lattice of ~250 hexamers and exactly 12 pentamers. Conical capsids form inside budded virions during maturation, but early efforts to reproduce this in vitro resulted instead in open-ended tubes with a purely hexameric lattice. The missing component in capsid assembly was finally identified as the metabolite inositol hexakisphosphate (IP6). Simply mixing soluble CA protein with IP6 is sufficient to drive the spontaneous assembly of conical capsids with a similar size and shape to those inside of infectious virions. Equally important, IP6 stabilises capsids once formed, increasing their stability from minutes to hours. Indeed, such is the dependence of HIV-1 on IP6 that the virus actively packages it into virions during production. These discoveries have stimulated work from multiple labs into the role and importance of IP6 in HIV-1 replication, and is the subject of this review. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

22 pages, 2977 KiB  
Article
The Common Concept of Anticooperativity Among Molecules Is Fundamentally Flawed, Based on Novel and Unified Molecular-Wide and Electron Density (MOWeD) Concept of Chemical Bonding
by Ignacy Cukrowski, Stéfan Zaaiman and Shahnawaz Hussain
Molecules 2025, 30(9), 1944; https://doi.org/10.3390/molecules30091944 - 27 Apr 2025
Viewed by 969
Abstract
A non-linear (non-additive) increase in stability of hexamers follows an increase in the total number of (i) aad (a double proton acceptor) plus add (a double proton donor) waters commonly linked with anticooperativity and (ii) the total number of intermolecularly delocalized electrons ( [...] Read more.
A non-linear (non-additive) increase in stability of hexamers follows an increase in the total number of (i) aad (a double proton acceptor) plus add (a double proton donor) waters commonly linked with anticooperativity and (ii) the total number of intermolecularly delocalized electrons (intermolNdeloc) in the 3D space occupied by a hexamer. Subsequently, we obtained nearly a perfect linear correlation between increase in the cluster stability and intermolNdeloc. Individual water molecules that act as either aad or add (i) delocalize the largest number of electrons throughout a cluster; (ii) are involved in the strongest attractive, hence energy-stabilizing intermolecular interaction with the remaining five waters; (iii) have the most significant quantum component of the intermolecular interaction energy and (iv) relative to six non-interacting water molecules, stabilize a hexamer the most, as quantified by a purposely derived mol-FAMSEC energy term. Clearly, the all-body approach used in the unified, molecular-wide and electron density (MOWeD)-based concept of chemical bonding contradicts the commonly accepted view that aad and add water molecules are involved in anticooperativity in 3D water hexamers. Consequently, we propose here a general definition of cooperativity that should be applicable to any n-membered molecular cluster, namely the quantifiable, classical physics- and quantum-based cooperativity phenomenon is synonymous with the intermolecular all-body delocalization of electrons, leading to the increase in stability of individual molecules on an n-membered cluster formation. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding—2nd Edition)
Show Figures

Graphical abstract

17 pages, 2470 KiB  
Article
Interfacial Behavior of Janus Nanorods: A Dissipative Particle Dynamics (DPD) Study on Water–Oil Systems and Nanoconfinement
by Alexsandra Pereira dos Santos, Carolina Ferreira de Matos Jauris and José Rafael Bordin
Water 2025, 17(8), 1128; https://doi.org/10.3390/w17081128 - 10 Apr 2025
Viewed by 433
Abstract
Janus nanorods are a special class of nanorods composed of two distinct surface regions, one hydrophilic and one hydrophobic. This amphiphilic characteristic makes them promising candidates for stabilizing water–oil interfaces. Oily wastewater (OWW) contamination, resulting from industrial activities such as petroleum extraction and [...] Read more.
Janus nanorods are a special class of nanorods composed of two distinct surface regions, one hydrophilic and one hydrophobic. This amphiphilic characteristic makes them promising candidates for stabilizing water–oil interfaces. Oily wastewater (OWW) contamination, resulting from industrial activities such as petroleum extraction and refining and vegetable oil processing, poses significant risks to ecosystems, water resources, and public health. Traditional surfactants used in enhanced oil recovery (EOR) and wastewater treatment often introduce secondary pollution due to their persistence and toxicity. In this work, we investigate the interfacial behavior of Janus NRs under two different conditions: a thin oil film surrounded by water and a nanoconfined system with purely repulsive walls. Using dissipative particle dynamics (DPD) simulations, we analyze how nanorod length and confinement influence interfacial tension and self-assembly. In bulk systems, shorter NRs (dimers and quadrimers) effectively reduce interfacial tension by adsorbing at the oil–water interface, while longer NRs (hexamers) exhibit bulk aggregation, limiting their surfactant efficiency. In contrast, under nanoconfinement, all NR sizes increase interfacial tension due to steric constraints, with longer NRs preferentially adsorbing onto the solid–liquid interface. These results pave the way for the rational design of nanostructured materials for applications in enhanced oil recovery, wastewater treatment, and membrane filtration. Full article
Show Figures

Figure 1

15 pages, 3052 KiB  
Article
Hexameric-Based Hierarchy in the Sizes of a Cytolysin Pore-Forming Complex
by Meijun Liu, Xintao Qin, Menglin Luo, Yi Shen, Jiabin Wang, Jielin Sun, Daniel M. Czajkowsky and Zhifeng Shao
Biomolecules 2025, 15(3), 424; https://doi.org/10.3390/biom15030424 - 17 Mar 2025
Viewed by 595
Abstract
Perfringolysin O (PFO) is a prototypical member of a large family of pore-forming toxins (PFTs) that are potent virulence factors for many pathogenic bacteria. One of the most enigmatic properties of these PFTs is how structural changes are coordinated between different subunits within [...] Read more.
Perfringolysin O (PFO) is a prototypical member of a large family of pore-forming toxins (PFTs) that are potent virulence factors for many pathogenic bacteria. One of the most enigmatic properties of these PFTs is how structural changes are coordinated between different subunits within a single complex. Moreover, there are conflicting data in the literature, with gel electrophoresis results apparently showing that pores are only complete rings, whereas microscopy images clearly also show incomplete-ring pores. Here, we developed a novel multi-stack gel electrophoretic assay to finely separate PFO pore complexes and found that this assay indeed resolves both complete- and incomplete-ring pores. However, unexpectedly, we found that the stoichiometries of these complexes are predominantly integral multiples of six subunits. High-resolution atomic force microscopy images of PFO pore complexes also reveal a predominant hexameric-based stoichiometry. We also observed this hexameric-based stoichiometry at the prepore stage and identified a mutant that is kinetically trapped at a hexameric state. Thus, overall, these results reveal a previously unknown hexameric-based structural hierarchy in the PFO complexes. We suggest that the structural coordination within the hexamers is different than between the hexamers and is thus a critical feature of the structural coordination of the complex as a whole. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics Section)
Show Figures

Figure 1

16 pages, 5313 KiB  
Article
The In Situ Structure of T-Series T1 Reveals a Conserved Lambda-Like Tail Tip
by Yuan Chen, Hao Xiao, Junquan Zhou, Zeng Peng, Yuning Peng, Jingdong Song, Jing Zheng and Hongrong Liu
Viruses 2025, 17(3), 351; https://doi.org/10.3390/v17030351 - 28 Feb 2025
Viewed by 1050
Abstract
It is estimated that over 60% of known tailed phages are siphophages, which are characterized by a long, flexible, and non-contractile tail. Nevertheless, entire high-resolution structures of siphophages remain scarce. Using cryo-EM, we resolved the structures of T-series siphophage T1, encompassing its head, [...] Read more.
It is estimated that over 60% of known tailed phages are siphophages, which are characterized by a long, flexible, and non-contractile tail. Nevertheless, entire high-resolution structures of siphophages remain scarce. Using cryo-EM, we resolved the structures of T-series siphophage T1, encompassing its head, connector complex, tail tube, and tail tip, at near-atomic resolution. The density maps enabled us to build the atomic models for the majority of T1 proteins. The T1 head comprises 415 copies of the major capsid protein gp47, arranged into an icosahedron with a triangulation number of seven, decorated with 80 homologous trimers and 60 heterotrimers along the threefold and quasi-threefold axes of the icosahedron. The T1 connector complex is composed of two dodecamers (a portal and an adaptor) and two hexamers (a stopper and a tail terminator). The flexible tail tube comprises approximately 34 hexameric rings of tail tube. The extensive disulfide bond network along the successive tail rings may mediate the flexible bending. The distal tip of T1, which is cone-shaped and assembled by proteins gp33, gp34, gp36, gp37, and gp38, displays structural similarity to that of phage lambda. In conjunction with previous studies of lambda-like siphophages, our structure will facilitate further exploration of the structural and mechanistic aspects of lambda-like siphophages. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

18 pages, 6102 KiB  
Article
Computational Approaches to Predict Hepatitis B Virus Capsid Protein Mutations That Confer Resistance to Capsid Assembly Modulators
by Gideon Tolufashe, Usha Viswanathan, John Kulp and Ju-Tao Guo
Viruses 2025, 17(3), 332; https://doi.org/10.3390/v17030332 - 27 Feb 2025
Viewed by 656
Abstract
Capsid assembly modulators (CAMs) are a novel class of antiviral agents in clinical development for the treatment of chronic hepatitis B. CAMs inhibit hepatitis B virus (HBV) replication by binding to a hydrophobic pocket, i.e., HAP pocket, between HBV capsid protein (Cp) dimer–dimer [...] Read more.
Capsid assembly modulators (CAMs) are a novel class of antiviral agents in clinical development for the treatment of chronic hepatitis B. CAMs inhibit hepatitis B virus (HBV) replication by binding to a hydrophobic pocket, i.e., HAP pocket, between HBV capsid protein (Cp) dimer–dimer interfaces to misdirect its assembly into empty capsids or aberrant structures and designated as CAM-E and CAM-A, respectively. Because the emergence of CAM-resistant variants results in the failure of antiviral therapy, it is important to rationally design CAMs with a high barrier of resistance for development. To establish computational approaches for the prediction of Cp mutations that confer resistance to CAMs, we investigated the interaction of representative CAM-A and CAM-E compounds, BAY 41-4109 and JNJ-56136379, with wild-type and 35 naturally occurring mutations of Cp residues at the HAP pocket using molecular docking, prime molecular mechanics with generalized Born and surface area solvation (MM/GBSA) and molecular dynamics (MD) simulation methods. Out of nine publicly available HBV capsid or CpY132A hexamer structures in the protein database, molecular docking correctly predicted the resistance and sensitivity of more than 50% Cp mutations to JNJ-56136379 with structures 5D7Y and 5T2P-FA. MM/GBSA correctly predicted the resistance and sensitivity of more than 50% Cp mutations to BAY41-4109 with the structures 5E0I-BC and 5WRE-FA, and to JNJ-56136379 with the 5E0I-FA structure. Our work indicates that only the capsid or CpY132A hexamer structure bound with a CAM with similar chemical scaffold can be used for more accurately predicting the resistance and sensitivity of Cp mutations to a CAM molecule under investigation by molecular docking and/or MM/GBSA methods. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

23 pages, 4874 KiB  
Article
DNA-Binding Activities of KSHV DNA Polymerase Processivity Factor (PF-8) Complexes
by Jennifer Kneas Travis, Megan Martin and Lindsey M. Costantini
Viruses 2025, 17(2), 190; https://doi.org/10.3390/v17020190 - 29 Jan 2025
Viewed by 874
Abstract
Kaposi’s Sarcoma Herpesvirus (KSHV) is the causative agent of several human diseases. There are few effective treatments available to treat infection and KSHV oncogenesis. Disrupting the KSHV infectious cycle would diminish the viral spread. The KSHV lytic phase and production of new virions [...] Read more.
Kaposi’s Sarcoma Herpesvirus (KSHV) is the causative agent of several human diseases. There are few effective treatments available to treat infection and KSHV oncogenesis. Disrupting the KSHV infectious cycle would diminish the viral spread. The KSHV lytic phase and production of new virions require efficient copying and packaging of the KSHV genome. KSHV encodes its own lytic DNA replication machinery, including the processivity factor (PF-8), which presents itself as an attractive target for antiviral development. We characterized PF-8 at the single molecule level using transmission electron microscopy to identify key molecular interactions that mediate viral DNA replication initiation. Our results indicate that PF-8 forms oligomeric ring structures (tetramer, hexamer, and/or dodecamer) similar to the related Epstein–Barr virus processivity factor (BMRF1). Our DNA positional mapping revealed high-frequency binding locations of PF-8 within the lytic origin of replication (OriLyt). A multi-variable analysis of PF-8 DNA-binding activity with three mutant OriLyts provides new insights into the mechanisms that PF-8 associates with viral DNA and complexes to form multi-ring-like structures. Collectively, these data enhance the mechanistic understanding of the molecular interactions (protein–protein and protein-DNA) of an essential KSHV DNA replication protein. Full article
(This article belongs to the Special Issue Molecular and Cellular Biology of Human Oncogenic Viruses)
Show Figures

Graphical abstract

19 pages, 6287 KiB  
Article
Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)—A Theoretical Study
by Jun Wang, Yuting Huang, Yajing Wang, Bo Durbeej and Lluís Blancafort
Molecules 2024, 29(22), 5348; https://doi.org/10.3390/molecules29225348 - 14 Nov 2024
Viewed by 1629
Abstract
Poly-CPDTBT, as typical low-band gap copolymers, have potential applications in organic bulk heterojunction solar cells. To have a clear picture of its excited-state processes, the first task is to understand their excited states, in particular, electronic character and relevant optical absorption. Herein, the [...] Read more.
Poly-CPDTBT, as typical low-band gap copolymers, have potential applications in organic bulk heterojunction solar cells. To have a clear picture of its excited-state processes, the first task is to understand their excited states, in particular, electronic character and relevant optical absorption. Herein, the low-lying singlet excited states of Poly-CPDTBT oligomers were investigated via Algebraic Diagrammatic Construction Second Order (ADC(2)) and time-dependent density functional theory (TDDFT) method with several functionals. Six CPDTBTN (N = 1–6) oligomers were taken as prototypes to study their excited states in detail. The results provide interesting clues to extrapolate the photophysical properties of such polymers with potential applications in photovoltaic materials. The result provided by ωB97XD functional gives good agreement with the experiment result. The vertical excitation energies of the four lowest excited states decrease almost linearly with increasing polymerization degree (N) for CPDTBTN (N = 1–6). The transition density analysis indicates that the local excitations (LE) and the short-distance charge transfer (CT) excitations between two adjacent CPDT and BT units are dominant for low-lying excited states for short oligomers. For the long-chain oligomers (trimer to hexamer), the transition density shows a ladder (or zigzag) pattern along the diagonal blocks at the planar geometry. For long oligomers, the whole chain is involved in the transitions, and the CT excitations only exist between two adjacent CPDT and BT units. The present work provides a valuable basis for understanding the excited-state processes of Poly-CPDTBT and other conjugated polymers that conduct solar energy conversions, which has great significance for the development of new solar cells. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

12 pages, 9997 KiB  
Article
Molecular Characterization of the MoxR AAA+ ATPase of Synechococcus sp. Strain NKBG15041c
by Kota Mano, Kentaro Noi, Kumiko Oe, Takahiro Mochizuki, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama, Keiichi Noguchi, Kyosuke Shinohara, Masafumi Yohda and Akiyo Yamada
Int. J. Mol. Sci. 2024, 25(18), 9955; https://doi.org/10.3390/ijms25189955 - 15 Sep 2024
Cited by 2 | Viewed by 1532
Abstract
We isolated a stress-tolerance-related gene from a genome library of Synechococcus sp. NKBG15041c. The expression of the gene in E. coli confers resistance against various stresses. The gene encodes a MoxR AAA+ ATPase, which was designated SyMRP since it belongs to the MRP [...] Read more.
We isolated a stress-tolerance-related gene from a genome library of Synechococcus sp. NKBG15041c. The expression of the gene in E. coli confers resistance against various stresses. The gene encodes a MoxR AAA+ ATPase, which was designated SyMRP since it belongs to the MRP subfamily. The recombinant SyMRP showed weak ATPase activity and protected citrate synthase from thermal aggregation. Interestingly, the chaperone activity of SyMRP is ATP-dependent. SyMRP exists as a stable hexamer, and ATP-dependent conformation changes were not detected via analytical ultracentrifugation (AUC) or small-angle X-ray scattering (SAXS). Although the hexameric structure predicted by AlphaFold 3 was the canonical flat-ring structure, the structures observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM) were not the canonical ring structure. In addition, the experimental SAXS profiles did not show a peak that should exist in the symmetric-ring structure. Therefore, SyMRP seems to form a hexameric structure different from the canonical hexameric structure of AAA+ ATPase. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

45 pages, 3449 KiB  
Review
Non-Muscle Myosin II A: Friend or Foe in Cancer?
by Wasim Feroz, Briley SoYoung Park, Meghna Siripurapu, Nicole Ntim, Mary Kate Kilroy, Arwah Mohammad Ali Sheikh, Rosalin Mishra and Joan T. Garrett
Int. J. Mol. Sci. 2024, 25(17), 9435; https://doi.org/10.3390/ijms25179435 - 30 Aug 2024
Cited by 6 | Viewed by 2986
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, [...] Read more.
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

11 pages, 4126 KiB  
Article
Mechanism of Carrier Formation in P3HT-C60-PCBM Solar Cells
by Hiroto Tachikawa, Hiroshi Kawabata, Shigeaki Abe and Ikuya Watanabe
Nanomaterials 2024, 14(17), 1400; https://doi.org/10.3390/nano14171400 - 28 Aug 2024
Cited by 2 | Viewed by 1101
Abstract
Solar cells convert light energy directly into electricity using semiconductor materials. The ternary system, composed of poly(3-hexylthiophene) (P3HT), fullerene (C60), and phenyl-C61-butyric-acid-methyl-ester (PCBM), expressed as P3HT-C60-PCBM, is one of the most efficient organic solar cells. In the [...] Read more.
Solar cells convert light energy directly into electricity using semiconductor materials. The ternary system, composed of poly(3-hexylthiophene) (P3HT), fullerene (C60), and phenyl-C61-butyric-acid-methyl-ester (PCBM), expressed as P3HT-C60-PCBM, is one of the most efficient organic solar cells. In the present study, the structures and electronic states of P3HT-C60-PCBM have been investigated by means of the density functional theory (DFT) method to shed light on the mechanism of charge separation in semiconductor materials. The thiophene hexamer was used as a model of P3HT. Five geometrical conformers were obtained as the C60-PCBM binary complexes. In the ternary system, P3HT wrapped around C60 in the stable structure of P3HT-C60-PCBM. The intermolecular distances for P3HT-(C60-PCBM) and (P3HT-C60)-PCBM were 3.255 and 2.885 Å, respectively. The binding energies of P3HT + (C60-PCBM) and (P3HT-C60) + PCBM were 27.2 and 19.1 kcal/mol, respectively. The charge transfer bands were found at the low-lying excited states of P3HT-C60-PCBM. These bands strongly correlated with the carrier separation and electron transfer in solar cells. The electronic states at the ground and excited states of P3HT-C60-PCBM were discussed on the basis of the calculated results. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

Back to TopTop