Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = heteroacene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11953 KiB  
Article
Protic Processes in an Extended Pyrazinacene: The Case of Dihydrotetradecaazaheptacene
by Aël Cador, Samia Kahlal, Gary J. Richards, Jean-François Halet and Jonathan P. Hill
Molecules 2024, 29(10), 2407; https://doi.org/10.3390/molecules29102407 - 20 May 2024
Viewed by 1422
Abstract
Pyrazinacenes are linearly fused heteroaromatic rings, with N atoms replacing all apical CH moieties. Component rings may exist in a reduced state, having NH groups instead of N, causing cross-conjugation. These compounds have interesting optical and electronic properties, including strong fluorescence in the [...] Read more.
Pyrazinacenes are linearly fused heteroaromatic rings, with N atoms replacing all apical CH moieties. Component rings may exist in a reduced state, having NH groups instead of N, causing cross-conjugation. These compounds have interesting optical and electronic properties, including strong fluorescence in the near-infrared region and photocatalytic properties, leading to diverse possible applications in bio-imaging and organic synthesis, as well as obvious molecular electronic uses. In this study, we investigated the behavior of seven-ring pyrazinacene 2,3,11,12-tetraphenyl-7,16-dihydro-1,4,5,6,7,8,9,12,13,14,15,16,17,18-tetradecaazaheptacene (Ph4H2N14HEPT), with an emphasis on protic processes, including oxidation, tautomerism, deprotonation, and protonation, and the species resulting from those processes. We used computational methods to optimize the structures of the different species and generate/compare molecular orbital structures. The aromaticity of the species generated by the different processes was assessed using the nucleus-independent chemical shifts, and trends in the values were associated with the different transformations of the pyrazinacene core. The computational data were compared with experimental data obtained from synthetic samples of the molecule tBu8Ph4H2N14HEPT. Full article
(This article belongs to the Special Issue Fused-Nitrogen-Containing Heterocycles (Second Edition))
Show Figures

Figure 1

8 pages, 3124 KiB  
Communication
Strong Acceptors Based on Derivatives of Benzothiadiazoloimidazole
by Hanyun Du, Bin Chen and Fengyuan Zhang
Molecules 2024, 29(10), 2262; https://doi.org/10.3390/molecules29102262 - 11 May 2024
Viewed by 1136
Abstract
Despite the rapid progression of organic semiconductors, developing high-air-stability n-type organic semiconductors are still challenging. Herein, novel strong acceptors based on benzothiadiazoloimidazole units are reported. The results reveal that the strong acceptor BTI-NDI-BTI-a has good solubility and high electron affinity (3.94 eV), accompanied [...] Read more.
Despite the rapid progression of organic semiconductors, developing high-air-stability n-type organic semiconductors are still challenging. Herein, novel strong acceptors based on benzothiadiazoloimidazole units are reported. The results reveal that the strong acceptor BTI-NDI-BTI-a has good solubility and high electron affinity (3.94 eV), accompanied by 1D slipped-stacking crystals. Notably, the material presents promising potential for developing into air-stable n-type organic semiconductor materials. Full article
Show Figures

Figure 1

16 pages, 3916 KiB  
Article
Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films
by Bernard Marciniak, Sylwester Kania, Piotr Bałczewski, Ewa Różycka-Sokołowska, Joanna Wilk, Marek Koprowski, Jacek Stańdo and Janusz Kuliński
Molecules 2023, 28(17), 6422; https://doi.org/10.3390/molecules28176422 - 3 Sep 2023
Viewed by 1734
Abstract
The functionalization of the aromatic backbone allows the improvement of the electrical properties of acene molecules in the amorphous layered structures of organic thin films. In the present work, we discuss the electric properties of the stable, amorphous, vacuum-deposited films prepared from five [...] Read more.
The functionalization of the aromatic backbone allows the improvement of the electrical properties of acene molecules in the amorphous layered structures of organic thin films. In the present work, we discuss the electric properties of the stable, amorphous, vacuum-deposited films prepared from five highly substituted 10-RO-acenes of various electronic properties, i.e., two extreme electron-donor (1,3-dioxa-cyclopenta[b]) anthracenes with all RO substituents, two anthracene carbaldehydes and one benzo[b]carbazole carbaldehyde possessing both electron-donor and acceptor substituents. The hole mobility data were obtained using subsequent steady state space charge limited currents (SCLC) and Time of Flight (TOF) measurements, performed on the same sample and these were then compared with the results of theoretical hole mobility calculations obtained using the Density Functional Theory (DFT) quantum—chemical calculations using the Marcus–Hush theory. The study shows a good agreement between the theoretical and experimental values which allows for the quick and quantitative estimation of Einstein’s mobility values for highly substituted 10-RO anthracene and benzo[b]carbazole based on chemical calculations. This agreement also proves that the transport of holes follows the hopping mechanism. The theoretical calculations indicate that the reorganization energy plays a decisive role in the transport of holes in the amorphous layers of highly substituted hetero(acenes). Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials)
Show Figures

Figure 1

22 pages, 11279 KiB  
Article
O,S-Acetals in a New Modification of oxo-Friedel–Crafts–Bradsher Cyclization—Synthesis of Fluorescent (Hetero)acenes and Mechanistic Considerations
by Krzysztof Owsianik, Ewa Różycka-Sokołowska and Piotr Bałczewski
Molecules 2023, 28(6), 2474; https://doi.org/10.3390/molecules28062474 - 8 Mar 2023
Cited by 1 | Viewed by 1971
Abstract
This paper presents the use of O,S-acetals in a new modification of the oxo-Friedel–Crafts–Bradsher cyclization. In this reaction, under mild reaction conditions (25 °C), three- and four-ring fused RO-acenes (major) and/or HO(CH2)2S-acenes (minor) are formed, [...] Read more.
This paper presents the use of O,S-acetals in a new modification of the oxo-Friedel–Crafts–Bradsher cyclization. In this reaction, under mild reaction conditions (25 °C), three- and four-ring fused RO-acenes (major) and/or HO(CH2)2S-acenes (minor) are formed, the latter products having never been observed before in this type of cyclization. In this way, two electronically different fluorophores could be obtained in a single cyclization reaction, one of them having strong electron donor properties (+M effect of alkoxy groups) and the other having donor-acceptor properties (+M and −I effects of the HO(CH2)2S-group, Hammett’s constants). Further increasing the reaction temperature, HCl concentration or prolonging reaction time, surprisingly, yielded a 2:1 mixture of cis and trans dimeric isomers, as the only products of this cyclization. The DFT calculations confirmed a greater stability of the cis isomer compared to the trans isomer. The formation of unexpected dimeric products and HO(CH2)2S-acenes sheds light on the mechanism of oxo-Friedel–Crafts–Bradsher cyclization, involving competitive O/S atom protonation in strained O,S-acetals and in strain-free side groups of intermediate species. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry)
Show Figures

Figure 1

11 pages, 1762 KiB  
Communication
Synthesis, Structural Characterization, and Optical Properties of Benzene-Fused Tetracyclic and Pentacyclic Stiboles
by Mio Matsumura, Yuki Matsuhashi, Masato Kawakubo, Tadashi Hyodo, Yuki Murata, Masatoshi Kawahata, Kentaro Yamaguchi and Shuji Yasuike
Molecules 2021, 26(1), 222; https://doi.org/10.3390/molecules26010222 - 4 Jan 2021
Cited by 12 | Viewed by 4310
Abstract
The expectation that antimony (Sb) compounds should display phosphorescence emissions based on the “heavy element effect” prompted our interest in the introduction of antimony to a biaryl as the bridging atom in a fused heterole system. Herein, the synthesis, molecular structures, and optical [...] Read more.
The expectation that antimony (Sb) compounds should display phosphorescence emissions based on the “heavy element effect” prompted our interest in the introduction of antimony to a biaryl as the bridging atom in a fused heterole system. Herein, the synthesis, molecular structures, and optical properties of novel benzene-fused heteroacenes containing antimony or arsenic atoms are described. The stiboles and arsole were prepared by the condensation of dibromo(phenyl)stibane or dichloro(phenyl)arsine with dilithium intermediates derived from the corresponding dibromo compounds. Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystal analysis revealed that the linear pentacyclic stibole was highly symmetric in both the solution and crystal states. In contrast, the curved pentacyclic stibole adopted a helical structure in solution, and surprisingly, only M helical molecules were crystallized from the racemate. All synthesized compounds produced very weak or no emissions at room temperature or in the solid state. In contrast, the linear penta- and tetracyclic stiboles exhibited clear phosphorescence emissions in the CHCl3 frozen matrix at 77 K under aerobic conditions. Full article
(This article belongs to the Special Issue Modern Trends in Heterocyclic Chemistry)
Show Figures

Graphical abstract

22 pages, 37780 KiB  
Review
The hetero-Friedel-Crafts-Bradsher Cyclizations with Formation of Ring Carbon-Heteroatom (P, S) Bonds, Leading to Organic Functional Materials
by Joanna Skalik, Marek Koprowski, Ewa Różycka-Sokołowska and Piotr Bałczewski
Materials 2020, 13(21), 4751; https://doi.org/10.3390/ma13214751 - 23 Oct 2020
Cited by 2 | Viewed by 3518
Abstract
The interest in functional materials possessing improved properties led to development of new methods of their synthesis, which allowed to obtain new molecular arrangements with carbon and heteroatom motifs. Two of the classical reactions of versatile use are the Friedel-Crafts and the Bradsher [...] Read more.
The interest in functional materials possessing improved properties led to development of new methods of their synthesis, which allowed to obtain new molecular arrangements with carbon and heteroatom motifs. Two of the classical reactions of versatile use are the Friedel-Crafts and the Bradsher reactions, which in the new heteroatomic versions allow to replace ring carbon atoms by heteroatoms. In the present work, we review methods of synthesis of C–S and C–P bonds utilizing thia- and phospha-Friedel-Crafts-Bradsher cyclizations. Single examples of C–As and lack of C–Se bond formation, involving two of the closest neighbors of P and S in the periodic table, have also been noted. Applications of the obtained π-conjugated molecules, mainly as semiconducting materials, flame retardants, and resins hardeners, designed on the basis of five- and six-membered cyclic molecules containing ring phosphorus and sulfur atoms, are also included. This comprehensive review covers literature up to August 2020. Full article
(This article belongs to the Special Issue Current Problems of the Organic Chemistry of Sulfur and Selenium)
Show Figures

Graphical abstract

8 pages, 2851 KiB  
Article
Synthesis of Furan-Substituted N-Heteroacene-Based Liquid Material and Its Acid-Recognizing Behavior
by Kyosuke Isoda and Ayumi Ikenaga
Crystals 2019, 9(1), 51; https://doi.org/10.3390/cryst9010051 - 17 Jan 2019
Cited by 10 | Viewed by 3961
Abstract
In this study, we synthesized a novel N-heteroacene-based liquid material 6,7-bis(3,7,11-trimethyl-1-dodecyloxy)-2,3-difurylquinoxaline (RPNL 1), containing two furan rings. We revealed that RPNL 1 adopted a disordered liquid at 25 °C, determined by polarized optical microscopic observation, differential scanning calorimetry, [...] Read more.
In this study, we synthesized a novel N-heteroacene-based liquid material 6,7-bis(3,7,11-trimethyl-1-dodecyloxy)-2,3-difurylquinoxaline (RPNL 1), containing two furan rings. We revealed that RPNL 1 adopted a disordered liquid at 25 °C, determined by polarized optical microscopic observation, differential scanning calorimetry, and X-ray diffraction measurements. The fluorescent spectrum measurement revealed that RPNL 1 showed a blue emission at 25 °C. Dissolving benzene sulfonic acid (BSA) in RPNL 1 brought about dramatic changes in its physical properties, such as emission colors, as well as sample states. Upon recognizing BSA, photoluminescent color was changed into orange, as well as phase transition occurred from liquid to a liquid-crystalline phase. RPNL 1 can function as an acid-recognizing material, accompanied with the color changes in emission. Full article
(This article belongs to the Special Issue Synthesis and Properties of Light-emitting Liquid Crystals)
Show Figures

Graphical abstract

14 pages, 3172 KiB  
Article
Synthesis and Characterization of Bis[1]benzothieno[3,2-b:2′,3′-d]pyrroles: Quantitative Effects of Benzannulation on Dithieno[3,2-b:2′,3′-d]pyrroles
by Rylan M. W. Wolfe, Evan W. Culver and Seth C. Rasmussen
Molecules 2018, 23(9), 2279; https://doi.org/10.3390/molecules23092279 - 6 Sep 2018
Cited by 6 | Viewed by 4942
Abstract
The synthesis of four N-functionalized bis[1]benzothieno[3,2-b:2′,3′-d]pyrroles (BBTPs) is reported in order to provide a more detailed characterization of these fused-ring units, as well as increase the scope of known BBTP units available for application to conjugated materials. The [...] Read more.
The synthesis of four N-functionalized bis[1]benzothieno[3,2-b:2′,3′-d]pyrroles (BBTPs) is reported in order to provide a more detailed characterization of these fused-ring units, as well as increase the scope of known BBTP units available for application to conjugated materials. The optical, electronic, and structural properties of the resulting BBTP units have been compared to the parent N-alkyl- and N-aryl-dithieno[3,2-b:2′,3′-d]pyrroles (DTPs), as well as their corresponding 2,6-diphenyl derivatives, in order to fully quantify the relative electronic effects resulting from benzannulation of the parent DTP building block. Such comparative analysis reveals that benzannulation results in a red-shifted absorbance, but to a lesser extent than simple phenyl-capping of the DTP. More surprising is that benzannulation results in stabilization of the BBTP HOMO, compared to the destabilization normally observed with extending the conjugation length of the backbone. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

11 pages, 693 KiB  
Review
Anomalous Response in Heteroacene-Based Organic Field Effect Transistors under High Pressure
by Ken-ichi Sakai and Jun Takeya
Electronics 2014, 3(2), 255-265; https://doi.org/10.3390/electronics3020255 - 10 Apr 2014
Cited by 4 | Viewed by 7355
Abstract
Carrier transport properties of organic field effect transistors in dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene single crystals have been investigated under high pressure. In contrast to the typical pressure effect of monotonic increase in charge transfer rates according to the application of [...] Read more.
Carrier transport properties of organic field effect transistors in dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene single crystals have been investigated under high pressure. In contrast to the typical pressure effect of monotonic increase in charge transfer rates according to the application of external hydrostatic pressure, it is clarified that the present organic semiconductor devices exhibit nonmonotonic pressure response, such as negative pressure effect. X-ray diffraction analysis under high pressure reveals that on-site molecular orientation and displacement in the heteroacene molecule is assumed to be the origin for the anomalous pressure effects. Full article
(This article belongs to the Special Issue Organic Semiconductors)
Show Figures

Figure 1

Back to TopTop