Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (944)

Search Parameters:
Keywords = healthful aquaculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1224 KB  
Review
The Role of the Biologist in Sustainable Aquaculture: Review of Contributions, Technologies and Emerging Challenges
by Jordan I. Huanacuni, Renzo Pepe-Victoriano, Juan Zenon Resurrección-Huertas, Olger Acosta-Angulo and Luis Antonio Espinoza Ramos
Sustainability 2026, 18(3), 1165; https://doi.org/10.3390/su18031165 - 23 Jan 2026
Viewed by 188
Abstract
Aquaculture has grown rapidly worldwide and has become a key source of food and employment opportunities. However, its expansion faces environmental, health, reproductive, and technological challenges that threaten its long-term sustainability. In this context, biologists play a crucial role in promoting sustainable practices [...] Read more.
Aquaculture has grown rapidly worldwide and has become a key source of food and employment opportunities. However, its expansion faces environmental, health, reproductive, and technological challenges that threaten its long-term sustainability. In this context, biologists play a crucial role in promoting sustainable practices and integrated management of aquaculture systems. This article reviews their main contributions to animal health, genetic improvement, assisted reproduction, and resource conservation. They also highlight their leadership in applying advanced technologies, including biotechnology, nanotechnology, and genetic engineering. Moreover, this study explores emerging research trends and emphasizes the importance of interdisciplinary training to address the evolving demands of the sector. This underscores the need to strengthen collaboration between science, technology, and public policy to ensure sustainable aquaculture. Enhancing the role of biologists is essential for overcoming current challenges and advancing efficient, ethical, and environmentally responsible aquaculture systems that meet global demand. Full article
Show Figures

Figure 1

19 pages, 1099 KB  
Article
Growth, Health and Physiological Responses of Freshwater-Reared Atlantic Salmon (Salmo salar) Fed Graded Dietary Lipid Levels
by Byoungyoon Lee, Junoh Lee, Saeyeon Lim, Gwanghyeok Kim, Minjae Seong, Dahyun Jeong, Sijun Han, Byung-Hwa Min, Kang-Woong Kim, Seong-Mok Jeong, Mun Chang Park, Woo Seok Hong, Se Ryun Kwon and Youngjin Park
Animals 2026, 16(3), 356; https://doi.org/10.3390/ani16030356 - 23 Jan 2026
Viewed by 85
Abstract
This study evaluated the optimal dietary lipid level for Atlantic salmon (Salmo salar) reared in freshwater, aiming to provide foundational knowledge for the development of cost-effective and nutritionally balanced aquafeeds. Four experimental diets were formulated to contain comparable crude protein levels [...] Read more.
This study evaluated the optimal dietary lipid level for Atlantic salmon (Salmo salar) reared in freshwater, aiming to provide foundational knowledge for the development of cost-effective and nutritionally balanced aquafeeds. Four experimental diets were formulated to contain comparable crude protein levels (47%) but graded lipid levels of 14% (L14), 16% (L16), 18% (L18), and 20% (L20), and were fed to salmon with an initial mean body weight of 241.5 ± 9.7 g during a 12-week feeding trial. Fish in the L16 group exhibited the highest weight gain (WG) and feed efficiency (FE), whereas those in the L14 group showed significantly reduced growth performance. Antioxidant analysis revealed that glutathione peroxidase (GPx) activity was lowest in the L14 group (p < 0.05), while plasma glucose concentration was minimized in the L16 group (p < 0.05). Transcriptomic profiling of liver tissue from the L14 and L16 groups identified 2117 differentially expressed genes (DEGs). Genes associated with lipid metabolism were more highly expressed in the L16 group, whereas immune- and inflammation-related genes were upregulated in the L14 group. These findings suggest that a dietary lipid level of approximately 16% is most favorable for promoting growth, metabolic stability, and overall health in freshwater-reared Atlantic salmon, thereby providing practical guidance for optimizing feed formulation and improving the economic efficiency of freshwater salmon aquaculture. Full article
(This article belongs to the Special Issue Advances in Nutrition, Sustainability and Ecology of Salmonids)
Show Figures

Figure 1

25 pages, 295 KB  
Article
TSRS-Aligned Sustainability Reporting in Turkey’s Agri-Food Sector: A Qualitative Content Analysis Based on GRI 13 and the SDGs
by Efsun Dindar
Sustainability 2026, 18(2), 1085; https://doi.org/10.3390/su18021085 - 21 Jan 2026
Viewed by 96
Abstract
Sustainability in the agri-food sector has become a cornerstone of global efforts to combat climate change, ensure food security through climate-smart agriculture, and strengthen economic resilience. Sustainability reporting within agri-food systems has gained increasing regulatory significance with the introduction of mandatory frameworks such [...] Read more.
Sustainability in the agri-food sector has become a cornerstone of global efforts to combat climate change, ensure food security through climate-smart agriculture, and strengthen economic resilience. Sustainability reporting within agri-food systems has gained increasing regulatory significance with the introduction of mandatory frameworks such as the Turkish Sustainability Reporting Standards (TSRSs). This article searches for the sustainability reports of agri-business firms listed in BIST in Turkey. Although TSRS reporting is not yet mandatory for the agribusiness sector, this study examines the first TSRS-aligned sustainability reports published by eight agri-food companies, excluding the retail sector. The analysis assesses how effectively these reports address sector-specific environmental and social challenges defined in the GRI 13 Agriculture, Aquaculture and Fishing Sector Standard and their alignment with the United Nations Sustainable Development Goals (SDGs). Using a structured content analysis approach, disclosure patterns were examined at both thematic and company levels. The findings indicate that TSRS-aligned reports place strong emphasis on environmental and climate-related disclosures, particularly emissions, climate adaptation and resilience, water management, and waste. In contrast, agro-ecological and land-based impacts—such as soil health, pesticide use, and ecosystem conversion—are weakly addressed. Economic disclosures are predominantly framed around climate-related financial risks and supply chain traceability, while social reporting focuses mainly on occupational health and safety, employment practices, and food safety, with limited attention to labor and equity issues across the broader value chain. Company-level results reveal marked heterogeneity, with internationally active firms demonstrating deeper alignment with GRI 13 requirements. From an SDG alignment perspective, high levels of coverage are observed across all companies for SDG 13 (Climate Action), SDG 12 (Responsible Consumption and Production), and SDG 6 (Clean Water and Sanitation). By contrast, SDGs critical to agro-ecological integrity and social equity—namely SDG 1 (No Poverty), SDG 2 (Zero Hunger), SDG 10 (Reduced Inequalities), and SDG 15 (Life on Land)—are weakly represented or entirely absent. Overall, the results suggest that while TSRS-aligned reporting enhances transparency in climate-related domains, it achieves only selective alignment with the SDG agenda. This underscores the need for a stronger integration of sector-specific sustainability priorities into mandatory sustainability reporting frameworks. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
21 pages, 3126 KB  
Article
Effect of Coated Inorganic Micro-Minerals on Growth, Mineral Retention, and Intestinal Health in Juvenile American Eels Under a Commercial RAS
by Xiaozhao Han, Deying Ma, Yichuang Xu and Shaowei Zhai
Animals 2026, 16(2), 324; https://doi.org/10.3390/ani16020324 - 21 Jan 2026
Viewed by 82
Abstract
Micro-minerals are essential for fish, but traditional inorganic micro-minerals (IMM) have low bioavailability. This study evaluated coated inorganic micro-minerals (CIMM) in juvenile American eels under commercial recirculating aquaculture system (RAS) conditions. Three experimental groups (n = 3 tanks per group, stocking density: [...] Read more.
Micro-minerals are essential for fish, but traditional inorganic micro-minerals (IMM) have low bioavailability. This study evaluated coated inorganic micro-minerals (CIMM) in juvenile American eels under commercial recirculating aquaculture system (RAS) conditions. Three experimental groups (n = 3 tanks per group, stocking density: 138 fish/m3) were fed basal diets supplemented for 56 days with: 1000 mg/kg IMM (IMM group, providing Cu 7, Fe 200, Mn 30, Zn 70, I 1.6, Se 0.4, and Co 1.2 mg/kg diet), 1000 mg/kg CIMM (CIMM group I), or 500 mg/kg CIMM (CIMM group II). Compared to the IMM group, the CIMM group I demonstrated significantly enhanced growth performance, with the specific growth rate increasing by approximately 31.14%, higher whole-body content and retention of minerals (Ca, P, Cu, Fe, Mn, Zn), and superior intestinal health, as reflected by significantly increased activities of digestive enzymes (amylase and lipase), enhanced antioxidant capacity (elevated SOD and CAT, reduced MDA), and improved morphology (villi length and muscular thickness), an altered intestinal microbiota (increased relative abundance of Firmicutes and reduced relative abundance of Proteobacteria), and significant metabolomic alterations in purine metabolism and linoleic acid metabolism. The CIMM group II maintained growth performance, with no significant difference in WGR and SGR compared to the IMM group, while still showing significant improvements in feed intake and mineral retention (P, Cu, Fe, Zn), and antioxidant capacity. Collectively, this study not only confirms the efficacy of CIMM in commercial RAS but also reveals that the supplementation level previously shown to be effective in the laboratory (50% CIMM) is insufficient under commercial farming conditions, implying that the dietary micro-mineral requirements for juvenile American eels in commercial RAS may be higher than those established in laboratory settings. Full article
(This article belongs to the Special Issue Nutrition and Health of Aquatic Animals)
Show Figures

Figure 1

28 pages, 385 KB  
Review
Bacteriocins, a New Generation of Sustainable Alternatives to Antibacterial Agents in Primary Food Production Systems
by Besarion Meskhi, Svetoslav Dimitrov Todorov, Dmitry Rudoy, Anastasiya Olshevskaya, Victoria Shevchenko, Tatiana Maltseva, Arkady Mirzoyan, Denis Kozyrev, Mary Odabashyan, Svetlana Teplyakova and Maria Mazanko
Molecules 2026, 31(2), 356; https://doi.org/10.3390/molecules31020356 - 19 Jan 2026
Viewed by 216
Abstract
Modern agriculture faces the critical need to develop sustainable, safe, and effective strategies for enhancing productivity, protecting plants and animals, and ensuring food security. Challenges posed by antibiotic resistance and the adverse environmental and consumer health impacts of chemical agents are driving the [...] Read more.
Modern agriculture faces the critical need to develop sustainable, safe, and effective strategies for enhancing productivity, protecting plants and animals, and ensuring food security. Challenges posed by antibiotic resistance and the adverse environmental and consumer health impacts of chemical agents are driving the search for eco-friendly alternatives. In this context, bacteriocins—naturally occurring antimicrobial peptides synthesized by diverse bacteria—represent a promising alternative to traditional chemical compounds. This article reviews the potential and current advances in bacteriocin applications across agricultural sectors, with particular focus on their targeted antagonistic activity, structural diversity, commercial bacteriocin-based products, and their utilization in livestock farming, crop production, poultry farming, and aquaculture. Key findings demonstrate that bacteriocins, particularly nisin and pediocin PA-1, exhibit potent activity against major agricultural pathogens including Listeria monocytogenes, Staphylococcus aureus, Clostridium perfringens, and Escherichia coli, with efficacy rates reaching 90% in mastitis treatment and significantly reducing pathogen loads in poultry and aquaculture systems. Commercial products such as Nisaplin, Wipe Out, and ALTA 2431 have been successfully implemented in veterinary medicine and food production. In aquaculture, bacteriocins effectively control Lactococcus garvieae, Aeromonas spp., Vibrio spp., and Pseudomonas aeruginosa, contributing to sustainable disease management with minimal environmental impact. It can be suggested that bacteriocins may play an essential role in combating pathogens and offer viable alternatives to conventional antibiotics across primary food production systems, though optimization of production methods and regulatory frameworks remains essential for broader commercial adoption. Full article
(This article belongs to the Special Issue Green Chemistry and Molecular Tools in Agriculture)
21 pages, 2633 KB  
Article
Viral Encephalopathy and Retinopathy in Dusky Groupers (Epinephelus marginatus, Lowe 1834) from Two Marine Protected Areas of the Northern Mediterranean Sea
by Enrico Volpe, Luciana Mandrioli, Riccardo Napolitano, Manuel Garcia Hartmann, Lorenzo Merotto, Albert Girons, Francesca Errani, Barbara Brunetti, Fabrizio Capoccioni and Sara Ciulli
Vet. Sci. 2026, 13(1), 95; https://doi.org/10.3390/vetsci13010095 - 18 Jan 2026
Viewed by 322
Abstract
Betanodavirus infection poses a significant threat to marine fish species in the Mediterranean, affecting both aquaculture and wild populations. Despite increasing evidence of viral circulation in farmed and wild fish, data on natural outbreaks in wild groupers remain limited. This study investigated mortality [...] Read more.
Betanodavirus infection poses a significant threat to marine fish species in the Mediterranean, affecting both aquaculture and wild populations. Despite increasing evidence of viral circulation in farmed and wild fish, data on natural outbreaks in wild groupers remain limited. This study investigated mortality episodes in wild dusky groupers (Epinephelus marginatus) within two marine protected areas (MPAs): Portofino MPA (Liguria, Italy) and Larvotto MPA (Principality of Monaco) during 2018–2019. Pathological examinations and virological diagnostics confirmed that the causative agents were betanodavirus strains belonging to the RGNNV genotype. Phylogenetic analyses revealed high genetic similarity among viral strains detected at geographically distant sites and across host species, suggesting potential regional connectivity mediated by mobile vectors or environmental transport. Seawater temperature analysis indicated that extreme and prolonged high-water temperatures were prodromal and coincided with observed outbreaks, supporting a role for thermal stress in triggering outbreak onsets. These findings highlight the susceptibility of wild dusky grouper populations to betanodavirus and underscore the interplay between host behavior, environmental conditions, and pathogen dynamics. The study emphasizes the importance of integrated health surveillance strategies within and around MPAs to monitor fish health and environmental parameters, thereby conserving wild fish populations and biodiversity. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

31 pages, 2995 KB  
Review
Joining Forces Against Antibiotic Resistance in Aquaculture: The Synergism Between Natural Compounds and Antibiotics
by María Melissa Gutiérrez-Pacheco, Martina Hilda Gracia-Valenzuela, Luis Alberto Ortega-Ramirez, Francisco Javier Vázquez-Armenta, Juan Manuel Leyva, Jesús Fernando Ayala-Zavala and Andrés Francisco Chávez-Almanza
Antibiotics 2026, 15(1), 95; https://doi.org/10.3390/antibiotics15010095 - 16 Jan 2026
Viewed by 186
Abstract
The intensification of aquaculture practices has been accompanied by an increased incidence of bacterial diseases, leading to a greater reliance on antibiotics for disease control. Consequently, the widespread and often indiscriminate use of these compounds has contributed to the emergence and dissemination of [...] Read more.
The intensification of aquaculture practices has been accompanied by an increased incidence of bacterial diseases, leading to a greater reliance on antibiotics for disease control. Consequently, the widespread and often indiscriminate use of these compounds has contributed to the emergence and dissemination of antibiotic-resistant bacteria within aquaculture systems, posing a serious threat to animal health, environmental sustainability, and public health. In this regard, research efforts have focused on developing alternative strategies to reduce antibiotic use. Natural compounds have gained particular attention due to their well-documented antimicrobial and antibiofilm activities. In this context, the combined application of antibiotics and natural compounds has emerged as a promising approach to enhance antimicrobial efficacy while potentially mitigating the development of resistance. This review synthesizes the current knowledge on antibiotic resistance in aquaculture, highlights the role of biofilm formation as a key resistance mechanism, and critically examines the potential of antibiotic–natural compound combinations against major aquaculture pathogens, with particular emphasis on bacterial growth inhibition, biofilm disruption, and virulence attenuation. Collectively, the evidence discussed underscores the potential of synergistic strategies as a sustainable tool for improving disease management in aquaculture while supporting efforts to limit antibiotic resistance. Full article
(This article belongs to the Special Issue Challenges of Antibiotic Resistance: Biofilms and Anti-Biofilm Agents)
Show Figures

Graphical abstract

35 pages, 2832 KB  
Article
Dietary Methionine Supplementation Improves Rainbow Trout (Oncorhynchus mykiss) Immune Responses Against Viral Haemorrhagic Septicaemia Virus (VHSV)
by Mariana Vaz, Gonçalo Espregueira Themudo, Inês Carvalho, Felipe Bolgenhagen Schöninger, Carolina Tafalla, Patricia Díaz-Rosales, Benjamín Costas and Marina Machado
Biology 2026, 15(2), 163; https://doi.org/10.3390/biology15020163 - 16 Jan 2026
Viewed by 223
Abstract
Several studies have demonstrated that methionine supplementation in fish diets enhances immune status, inflammatory response, and resistance to bacterial infections by modulating for DNA methylation, aminopropylation, and transsulfuration pathways. However, the immunomodulatory effects of methionine in viral infections remain unexplored. This study aimed [...] Read more.
Several studies have demonstrated that methionine supplementation in fish diets enhances immune status, inflammatory response, and resistance to bacterial infections by modulating for DNA methylation, aminopropylation, and transsulfuration pathways. However, the immunomodulatory effects of methionine in viral infections remain unexplored. This study aimed to evaluate the effect of methionine supplementation on immune modulation and resistance to the viral haemorrhagic septicaemia virus (VHSV) in rainbow trout (Oncorhynchus mykiss). Two diets were formulated and fed to juvenile rainbow trout for four weeks: a control diet (CTRL) with all nutritional requirements, including the amino acid profile required for the species, and a methionine-supplemented diet (MET), containing twice the normal requirement of DL-methionine. After feeding, fish were bath-infected with VHSV, while control fish were exposed to a virus-free bath. Samples were collected at 0 (after feeding trial), 24, 72, and 120 h post-infection for the haematological profile, humoral immune response, oxidative stress, viral load, RNAseq, and gene expression analysis. In both diets, results showed a peak in viral activity at 72 h, followed by a reduction in viral load at 120 h, indicating immune recovery. During the peak of infection, leukocytes, thrombocytes, and monocytes migrated to the infection site, while oxidative stress biomarkers (superoxide dismutase glutathione S-transferase, and glutathione redox ratio) suggested a compromised ability to manage cellular imbalance due to intense viral activity. At 120 h, immune recovery and homeostasis were observed due to an increase in the amount of nitric oxide, GSH/GSSG levels, leukocyte replacement, monocyte influx, and a reduction in the viral load. When focusing on the infection peak, gene ontology (GO) analysis showed several exclusively enriched pathways in the skin and gills of MET-fed fish, driven by the upregulation of several key genes. Genes involved in recognition/signalling, inflammatory response, and other genes with direct antiviral activity, such as TLR3, MYD88, TRAF2, NF-κB, STING, IRF3, -7, VIG1, caspases, cathepsins, and TNF, were observed. Notably, VIG1 (viperin), a key antiviral protein, was significantly upregulated in gills, confirming the modulatory role of methionine in inducing its transcription. Viperin, which harbours an S-adenosyl-L-methionine (SAM) radical domain, is directly related to methionine biosynthesis and plays a critical role in the innate immune response to VHSV infection in rainbow trout. In summary, this study suggests that dietary methionine supplementation can enhance a more robust fish immune response to viral infections, with viperin as a crucial mediator. The improved antiviral readiness observed in MET-fed fish underscores the potential of targeted nutritional adjustments to sustain fish health and welfare in aquaculture. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

20 pages, 491 KB  
Article
Comparative Molecular and Antimicrobial Analysis of Lactococcus garvieae and Lactococcus petauri from Marine and Freshwater Fish Farms in the Mediterranean
by Daniel González-Martín, María Ubieto, Silvia del Caso, Elena Planas, Imanol Ruiz-Zarzuela, Celia Sanz and José Luis Arnal
Animals 2026, 16(2), 277; https://doi.org/10.3390/ani16020277 - 16 Jan 2026
Viewed by 195
Abstract
Piscine lactococcosis is an emerging bacterial disease that threatens freshwater and marine aquaculture in the Mediterranean region. This study characterized isolates of Lactococcus garvieae and Lactococcus petauri from farmed fish through molecular identification, genomic typing and antimicrobial susceptibility testing. A total of 39 [...] Read more.
Piscine lactococcosis is an emerging bacterial disease that threatens freshwater and marine aquaculture in the Mediterranean region. This study characterized isolates of Lactococcus garvieae and Lactococcus petauri from farmed fish through molecular identification, genomic typing and antimicrobial susceptibility testing. A total of 39 bacterial strains were analyzed using species-specific real-time PCR assays, multilocus sequence typing and broth microdilution to determine minimum inhibitory concentrations. Results suggest a temporal shift in freshwater systems, where L. garvieae predominated in earlier isolates (mainly ST13, CC4), while L. petauri (ST14, CC14) appears as the dominant species in recent years. In marine fish, only L. garvieae was detected, mainly ST95 (CC95), a lineage previously reported in Europe. Molecular variability was found in both species with lineages capable of infecting livestock and humans. Amoxicillin displayed promising results; florfenicol showed moderate activity, while flumequine exhibited no inhibitory effect. Oxytetracycline and trimethoprim–sulfamethoxazole showed variable results requiring prudent use. These region-specific susceptibility profiles provide updated baseline data to guide empirical antimicrobial therapy while awaiting laboratory confirmation, highlighting the evolution of lactococcosis in aquaculture and emphasizing the need for molecular surveillance, antimicrobial stewardship, and vaccine updates within a One Health framework to mitigate impacts on Mediterranean aquaculture and public health. Full article
(This article belongs to the Special Issue Lactococcosis: A Single Disease for Multiple Lactococcus Species)
Show Figures

Figure 1

19 pages, 3935 KB  
Article
Effects of Florfenicol on Intestinal Structure, Microbial Community and Antibiotic Resistance Genes in Penaeus vannamei
by Gengshen Wang, Xinyong Shi, Yi Yan, Jianjun Xie, Demin Zhang and Huajun Zhang
Microorganisms 2026, 14(1), 204; https://doi.org/10.3390/microorganisms14010204 - 15 Jan 2026
Viewed by 174
Abstract
Antibiotic feeding in shrimp farming is an optional practice conducted with the aim of preventing and controlling bacterial diseases. However, the administration of antibiotics can disrupt the microbiota of both shrimp and surrounding environment, potentially compromising host health. Given the limited effective antibiotic [...] Read more.
Antibiotic feeding in shrimp farming is an optional practice conducted with the aim of preventing and controlling bacterial diseases. However, the administration of antibiotics can disrupt the microbiota of both shrimp and surrounding environment, potentially compromising host health. Given the limited effective antibiotic options in aquaculture, it is crucial to evaluate the effects of florfenicol (FF) on the intestinal health of shrimp and the associated microbial communities. This study first investigated the impact of FF on the intestinal structure of Penaeus vannamei over two feeding durations (5 and 10 days), each followed by a 10-day basal diet recovery period. Simultaneously, variations in microbial communities and antibiotic resistance genes (ARGs) in both the intestine and rearing water were explored. The results showed that intestinal damage was aggravated with the extension of FF duration and gradually recovered after FF withdrawal. Significant changes in microbial composition and β-diversity were observed in both the rearing water and intestine following FF feeding. Extending the FF treatment to 10 days led to a reduced abundance of Rhodobacteraceae and an increased abundance of Flavobacteriaceae and Vibrionaceae in the intestine after 10 days of feeding the basic diet, which may pose a potential risk to shrimp health. Based on correlation analysis of ARGs, microbial communities and pathogenic bacteria, we speculated that rearing water may serve as a reservoir for ARGs dissemination compared to the shrimp intestine. These findings are of great importance for assessing the impact of administration duration under the FF therapeutic dose and highlight the potential risks associated with its overuse in shrimp farming. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

18 pages, 3696 KB  
Article
Real-Time Monitoring of Microbial Contamination and Stress Biomarkers with Liquid Crystal-Based Immunosensors for Food Safety Assessment
by Maria Simone Soares, Andreia C. M. Rodrigues, Sílvia. F. S. Pires, Amadeu M. V. M. Soares, Ana P. L. Costa, Jan Nedoma, Pedro L. Almeida, Nuno Santos and Carlos Marques
Biosensors 2026, 16(1), 59; https://doi.org/10.3390/bios16010059 - 13 Jan 2026
Viewed by 215
Abstract
Aquaculture is a crucial global food production sector that faces challenges in water quality management, food safety, and stress-related health concerns in aquatic species. Cortisol, a key stress biomarker in fish, and Escherichia coli (E. coli) contamination in bivalve mollusks are [...] Read more.
Aquaculture is a crucial global food production sector that faces challenges in water quality management, food safety, and stress-related health concerns in aquatic species. Cortisol, a key stress biomarker in fish, and Escherichia coli (E. coli) contamination in bivalve mollusks are critical indicators that require sensitive and real-time detection methods. Liquid crystal (LC)-based immunosensors have emerged as a promising solution for detecting biological analytes due to their high sensitivity, rapid response, and label-free optical detection capabilities. Therefore, this study explores the development and application of LC-based immunosensors for the detection of cortisol in artificial and real recirculating aquaculture system (RAS) samples, as well as E. coli in real contaminated water and clam samples during the depuration processes of bivalve mollusks. The biosensors exhibited the capacity to detect cortisol with a response time in seconds and a limit of detection (LOD) of 0.1 ng/mL. Furthermore, they demonstrated specificity to cortisol when tested against different interfering substances, including testosterone, glucose, and cholesterol. Furthermore, it was possible to correlate cortisol concentrations in different filtration stages and track E. coli contamination during depuration. The results confirm the feasibility of LC-based immunosensors as a user-friendly, portable, and efficient diagnostic tool for aquaculture applications. Full article
(This article belongs to the Special Issue Advances in Miniaturized Optical Components for Biosensing)
Show Figures

Figure 1

23 pages, 942 KB  
Review
Climate Change, Fish and Shellfish, and Parasite Dynamics: A Comprehensive Review
by Fernando Atroch, Luis Filipe Rangel, Camilo Ayra-Pardo and Maria João Santos
J. Mar. Sci. Eng. 2026, 14(2), 167; https://doi.org/10.3390/jmse14020167 - 13 Jan 2026
Viewed by 205
Abstract
Anthropogenic climate change represents a critical and complex threat to the health and resilience of aquatic ecosystems. This review aims to critically synthesise and evaluate the synergetic and antagonistic mechanisms through which rising water temperature, the most prominent climatic factor, modulates the host–parasite [...] Read more.
Anthropogenic climate change represents a critical and complex threat to the health and resilience of aquatic ecosystems. This review aims to critically synthesise and evaluate the synergetic and antagonistic mechanisms through which rising water temperature, the most prominent climatic factor, modulates the host–parasite relationship. The systematic literature review was conducted across a high-impact database (Web of Science), focusing on the extraction and qualitative analysis of data concerning infection dynamics and both host and parasite interactions. The findings demonstrate that thermal stress imposes a dual penalty on host–parasite systems: (1) it confers a critical thermal advantage to direct-life cycle parasites, significantly accelerating their virulence, reproduction, and infective capacity; (2) simultaneously, it severely compromises the immunocompetence and physiological resilience of piscine hosts, often through immunometabolic trade-offs and inflammatory dysfunction. This toxic synergy is the root cause of the exponential disease prevalence/intensity of parasites and fish mass mortality events, directly impacting biodiversity and global aquaculture sustainability. In contrast, it may also cause the disruption of the transmission chains to threaten complex life cycle parasites with localised extinction. We conclude that climate mitigation must be urgently recognised and implemented as a primary strategy for biological risk management to secure aquatic health and global food safety. Full article
(This article belongs to the Special Issue Parasitology of Marine Animals)
Show Figures

Figure 1

29 pages, 7737 KB  
Article
The Regulation of Oxidative Stress Is a Conserved Response to RNA Virus Infection in Fish
by Alejandro Romero, Patricia Pereiro, Antonio Figueras and Beatriz Novoa
Antioxidants 2026, 15(1), 96; https://doi.org/10.3390/antiox15010096 - 12 Jan 2026
Viewed by 257
Abstract
RNA viruses are major pathogens in fish, causing high mortality and substantial economic losses in aquaculture. To uncover conserved antiviral mechanisms, we investigated the response of turbot (Scophthalmus maximus) to viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), and [...] Read more.
RNA viruses are major pathogens in fish, causing high mortality and substantial economic losses in aquaculture. To uncover conserved antiviral mechanisms, we investigated the response of turbot (Scophthalmus maximus) to viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), and red-spotted grouper nervous necrosis virus (RGNNV) using a comparative proteomic approach complemented by in vivo and in vitro functional assays. Proteomic analyses revealed the central, conserved role of proteins involved in reactive oxygen species (ROS) production and redox homeostasis during early infection. Functional assays using head kidney-derived leukocytes identified neutrophils and macrophages as the primary ROS producers and showed that the modulation of cytoplasmic and mitochondrial ROS, as well as ROS-dependent DNA release, follows virus-specific patterns. The pharmacological inhibition of NADPH oxidase and mitochondrial ROS significantly affected viral replication, demonstrating the direct role of ROS in viral pathogenicity. Collectively, these findings highlight redox modulation as a conserved host response in teleost fish during RNA virus infection, linking oxidative stress regulation to viral progression. This knowledge provides a foundation for developing broad-spectrum therapeutic or preventive strategies to enhance disease resistance and promote sustainable aquaculture. Full article
(This article belongs to the Special Issue Reactive Oxygen Species Signalling and Oxidative Stress in Fish)
Show Figures

Figure 1

23 pages, 5093 KB  
Article
Positive Effects of Allicin on Cytotoxicity, Antioxidative Status, and Immunity in “Eriocheir sinensis” Hepatopancreatic Cells Against Oxidative Stress-Induced Injury
by Yiqing Guo, Peng Huang, Wenhui Wang, Jingwen Wu, Jinliang Du, Jiayi Li, Jiancao Gao, Haojun Zhu, Jun Gao, Yao Zheng, Yanbing Zhuang, Gangchun Xu and Liping Cao
Antioxidants 2026, 15(1), 93; https://doi.org/10.3390/antiox15010093 - 12 Jan 2026
Viewed by 243
Abstract
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced [...] Read more.
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced oxidative stress in Chinese mitten crabs (Eriocheir sinensis) to evaluate the hepatoprotective effects of allicin. Integrating biochemical, transcriptomic, and ultrastructural analyses, we found that allicin significantly alleviated T-BHP-induced cytotoxicity and oxidative damage in vitro. Mechanistically, allicin up-regulated antioxidant genes including glutathione peroxidase (gpx) and thioredoxin reductase 1 (trxr1), and down-regulated pro-inflammatory cytokines such as interleukin-1 beta (il-1β), suggesting the concomitant activation of the Nrf2 signaling pathway and inhibition of the p38-MAPK/NF-κB pathway. Transcriptomics further indicated its role in restoring proteostasis and mitochondrial function. A 35-day feeding trial validated these findings in vivo; dietary supplementation with 300 mg·kg−1 allicin effectively reversed T-BHP-induced disturbances in antioxidant enzyme activities and immune-related gene expression. These consistent findings demonstrate that allicin alleviates hepatopancreatic oxidative damage through multi-pathway synergism, supporting its potential as a green and effective antioxidant feed additive in aquaculture. Full article
Show Figures

Figure 1

23 pages, 1045 KB  
Article
Modulatory Role of Oral GHRP-6 in the Immune Response and Digestive Enzyme Function in Juvenile Tilapia (Oreochromis sp.) Challenged with Pseudomonas aeruginosa
by Liz Mariam de Armas, Adrian Rodríguez-Gabilondo, Liz Hernández, Ernesto A. Quintana, Alejandro J. Campos, Noelia N. Pérez, Danielle Reyes, Antonio Morales, Osmany Rodrigo, Yaima González, Leandro Rodriguez-Viera, Mario Pablo Estrada and Rebeca Martínez
Fishes 2026, 11(1), 33; https://doi.org/10.3390/fishes11010033 - 7 Jan 2026
Viewed by 232
Abstract
Aquaculture has been established as a sustainable alternative to traditional fisheries, which face challenges such as overexploitation and environmental degradation. However, disease outbreaks, often caused by poor farming conditions, pollution, and environmental stress, remain a major concern, leading to economic losses and increasing [...] Read more.
Aquaculture has been established as a sustainable alternative to traditional fisheries, which face challenges such as overexploitation and environmental degradation. However, disease outbreaks, often caused by poor farming conditions, pollution, and environmental stress, remain a major concern, leading to economic losses and increasing the risk of antibiotic resistance due to the overuse of antibiotics. Therefore, it is crucial to seek new strategies that improve fish health and well-being, preventing drug resistance and promoting sustainable practices. GHRP-6, a synthetic growth hormone-releasing peptide that mimics ghrelin, has shown potential immunostimulatory properties and feed efficiency in fish. In this study, we evaluated the effects of orally administered GHRP-6 in an oil-based formulation on juvenile tilapia (Oreochromis sp.) challenged or unchallenged with Pseudomonas aeruginosa. We assessed its influence on immune gene expression and digestive enzyme activity. The results demonstrated that GHRP-6 treatment significantly enhanced growth performance (weight and length), reduced in vivo bacterial load after infection, and modulated key genes related to innate and adaptive immunity in the gills, intestine and head kidney. In addition, our results demonstrated, for the first time, a direct link between a growth hormone secretagogue in fish and the modulation of specific enzyme activity in the gut following a bacterial challenge. These findings highlight the potential of GHRP-6 as a dietary immunomodulator and growth promoter in fish farming, offering a promising strategy to reduce antibiotic usage and promote more sustainable aquaculture practices. Full article
(This article belongs to the Special Issue Dietary Supplementation in Aquaculture)
Show Figures

Figure 1

Back to TopTop