Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = head injury criterion (HIC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5068 KiB  
Article
Energy-Absorbing Countermeasures for Subway-to-Pedestrian Collisions: A Combined Experimental and Multibody Modelling Approach
by Daniel Hall, Logan Zentz, Patrick Lynch and Ciaran Simms
Appl. Sci. 2025, 15(11), 6219; https://doi.org/10.3390/app15116219 - 31 May 2025
Viewed by 419
Abstract
Epidemiological analysis has revealed key insights into the frequency, severity, and circumstances surrounding subway-to-pedestrian incidents; however, there remains a lack of available impact test data specific to this impact type that can be used in modelling and countermeasure design studies. To address this [...] Read more.
Epidemiological analysis has revealed key insights into the frequency, severity, and circumstances surrounding subway-to-pedestrian incidents; however, there remains a lack of available impact test data specific to this impact type that can be used in modelling and countermeasure design studies. To address this gap, nine controlled impact tests were conducted using a cylindrical headform to derive force–penetration relationships for foam, as well as foam encased in 1 mm aluminium or 3 mm ABS shells. These relationships were validated in MADYMO multibody simulations. Building on a previous multibody computational study of subway-to-pedestrian collisions this research evaluates three passive countermeasure designs using a reduced simulation test matrix: three impact velocities (8, 10, and 12 m/s) and a trough depth of 0.75 m. In subway collisions, due to the essential rigidity of a subway front relative to a pedestrian, it is the pedestrian stiffness characteristics that primarily dictate the contact dynamics, as opposed to a combined effective stiffness. However, the introduction of energy-absorbing countermeasures alters this interaction. Results indicate that modular energy-absorbing panels attached to the train front significantly reduced the Head Injury Criterion (HIC) (by 90%) in the primary impact and pedestrian-to-wheel contact risk (by 58%), with greater effectiveness when a larger frontal area was covered. However, reducing primary impact severity alone did not substantially lower total fatal injury risk. A rail-guard design, used in combination with frontal panels, reduced secondary impact severity and led to the largest overall reduction in fatal injuries. This improvement came with an expected increase in hospitalisation-level outcomes, such as limb trauma, reflecting a shift from fatal to survivable injuries. These findings demonstrate that meaningful reductions in fatalities are achievable, even with just 0.5 m of available space on the train front. While further development is needed, this study supports the conclusion that subway-to-pedestrian fatalities are preventable. Full article
Show Figures

Figure 1

24 pages, 5946 KiB  
Article
Methodology for Occupant Head-Neck Injury Testing in Under-Body Blast Impact Based on Virtual-Real Fusion
by Xinge Si, Changan Di, Peng Peng and Cong Xu
Appl. Sci. 2025, 15(11), 5796; https://doi.org/10.3390/app15115796 - 22 May 2025
Viewed by 414
Abstract
The high-biofidelity dummy used to evaluate occupant protection under blast conditions is often costly and vulnerable. To address the limitations of low-cost, simplified dummy head–neck structures, which exhibit significant differences in mechanical properties compared to high-biofidelity dummies, a virtual–real fusion-based test method for [...] Read more.
The high-biofidelity dummy used to evaluate occupant protection under blast conditions is often costly and vulnerable. To address the limitations of low-cost, simplified dummy head–neck structures, which exhibit significant differences in mechanical properties compared to high-biofidelity dummies, a virtual–real fusion-based test method for assessing occupant head–neck injury in under-body blast impacts is proposed. A simplified dummy head–neck physical model, designed based on human biomechanical characteristics, is constructed for physical testing. A mapping test model based on 1D convolutional neural network (1D-CNN) is developed as the virtual counterpart to process physical model test data, specifically head and chest centroid accelerations, into head centroid acceleration and upper neck axial compression force matching the Hybrid III 50th numerical model. Pendulum collision tests are conducted to simulate under-body blast impacts, generating multiple sets of head and chest acceleration data. Under identical loading conditions, the head centroid acceleration and upper neck axial compression force of the Hybrid III 50th numerical model are computed. The parameters of the mapping test model are then optimized using these simulated experimental datasets based on non-dominated sorting genetic algorithm II (NSGA-II). Validation through blast experiments demonstrates that the proposed method achieves high accuracy, with errors of 10.9% for the Head Injury Criterion (HIC15) and 2.4% for upper neck maximum axial compression force compared to the Hybrid III 50th numerical model calculations. This approach effectively bridges the gap between biofidelity and cost-efficiency in dummy testing for blast impact scenarios. Full article
Show Figures

Figure 1

25 pages, 11546 KiB  
Article
Mechanical Performance Evaluation of Negative-Poisson’s-Ratio Honeycomb Helmets in Craniocerebral Injury Protection
by Bin Yang, Xingyu Zhang, Yang Zheng, Peng Zhang, Xin Li, Jinguo Wu, Feng Gao, Jiajia Zou, Xuan Ma, Hao Feng, Li Li and Xinyu Wei
Materials 2025, 18(10), 2188; https://doi.org/10.3390/ma18102188 - 9 May 2025
Viewed by 650
Abstract
Helmets are crucial for protecting motorcycle riders from head injuries in accidents. This study proposes a helmet pad design based on a negative-Poisson’s-ratio (NPR) structure and comprehensively evaluates its protective effect on head injuries. A concave hexagonal honeycomb structure was embedded into the [...] Read more.
Helmets are crucial for protecting motorcycle riders from head injuries in accidents. This study proposes a helmet pad design based on a negative-Poisson’s-ratio (NPR) structure and comprehensively evaluates its protective effect on head injuries. A concave hexagonal honeycomb structure was embedded into the energy-absorbing lining of a motorcycle helmet, and finite element collision simulations were conducted according to the ECE R22.05 standard. These simulations compared and analyzed the differences in protective performance between concave hexagonal honeycomb helmets with different parameter configurations and traditional expanded polystyrene (EPS) helmets under flat anvil impact scenarios. Using biomechanical parameters, including peak linear acceleration (PLA), head injury criterion (HIC), intracranial pressure (ICP), maximum principal strain (MPS), and the probability of AIS2+ traumatic brain injury, the protective effect of the helmets on traumatic brain injury was evaluated. The results showed that when the wall angle of the honeycomb structure was 60°, honeycomb helmets with wall thicknesses of 0.8 mm and 1.0 mm significantly reduced PLA and HIC values. In particular, the honeycomb helmet with a wall thickness of 1.0 mm reduced ICP by 25.7%, while the honeycomb helmet with a wall thickness of 1.2 mm exhibited the lowest maximum principal strain in the skull compared to EPS helmets and reduced the probability of AIS2+ brain injury by 7.2%. Concave hexagonal honeycomb helmets demonstrated an excellent protective performance in reducing the risk of traumatic brain injury. These findings provide important theoretical foundations and engineering references for the design and optimization of new protective helmets. Full article
Show Figures

Figure 1

20 pages, 12792 KiB  
Article
Experimental Testbed for Nondestructive Analysis of Curtain Airbags in Child Safety Applications
by Isaac Lopez-Alvarez, Christopher René Torres-SanMiguel, Ivan Lenin Cruz-Jaramillo, Juan Alejandro Flores-Campos and Ilse Cervantes
Safety 2025, 11(2), 42; https://doi.org/10.3390/safety11020042 - 8 May 2025
Viewed by 1247
Abstract
Side impacts tend to produce more severe injuries than frontal collisions, particularly for vulnerable occupants such as children. Despite this, there is a limited number of studies and developments focused on side impact protection systems, and existing airbag evaluations often rely on destructive [...] Read more.
Side impacts tend to produce more severe injuries than frontal collisions, particularly for vulnerable occupants such as children. Despite this, there is a limited number of studies and developments focused on side impact protection systems, and existing airbag evaluations often rely on destructive and high-cost test methods. This study introduces a novel, cost-effective, and nondestructive experimental testbed designed to evaluate curtain airbags for vehicles in segments B, C, D, and E. The main objective is to develop an adjustable mechanical structure that replicates the side frame geometry of multiple vehicles, allowing the mounting and evaluation of various curtain airbags under realistic conditions. The prototype, capable of withstanding deployment forces of up to 7000 N, was tested with a 3-year-old child dummy, recording a peak head acceleration of 136.17 g, corresponding to AIS level 2. Deployment speeds reached 7.77 m/s, with inflation times between 29 and 36 ms—values that fall within the range reported in previous experimental and numerical studies. The testbed demonstrated consistency in its performance metrics and offers a valuable tool for enhancing child occupant safety in side impacts. Furthermore, it provides a measurable Head Injury Criterion (HIC) range that can be used to interpret injury severity in child occupants. This work contributes significantly to the development of flexible and safe testing methodologies for side airbag systems, reducing the reliance on full-scale crash testing. Full article
(This article belongs to the Special Issue The Safe System Approach to Road Safety)
Show Figures

Figure 1

23 pages, 7434 KiB  
Article
Experimental Investigation and Safety Classification Evaluation of Small Drone Collision with Humans
by Chunyu Bai, Yazhou Guo, Qinghua Qin, Yunlai Zhou, Zhigang Li and Yafeng Wang
Biomimetics 2025, 10(3), 157; https://doi.org/10.3390/biomimetics10030157 - 3 Mar 2025
Viewed by 822
Abstract
The safety of small drones in collision with humans has become a key focus in engineering and research fields. This study presents a vertical drop test platform for collision tests involving three representative drones (Air, Mavic 2, and M200) impacting the head of [...] Read more.
The safety of small drones in collision with humans has become a key focus in engineering and research fields. This study presents a vertical drop test platform for collision tests involving three representative drones (Air, Mavic 2, and M200) impacting the head of a Hybrid III dummy from different heights and orientations. The deformation and damage of the drones during various collision scenarios, as well as the dynamic responses of the dummy head and neck, are analyzed. The head injury criterion (HIC), together with 3 ms cumulative acceleration (head acc 3 ms), are used to evaluate head injury, while the shear force, axial force, as well as bending moment are applied to evaluate neck injury. The effects of drone type, drop height, and drone collision position on dummy head and neck injury risk are comprehensively analyzed, as well as the quantitative relations between the head and neck injury metrics, and the drop height for the three typical drones are derived. Via the acquired equations, the head and neck injury risks for the three typical drones involved in this study and other similar drones falling from distinct heights shall be predicted. This study proposes a novel method focusing on classifying the safety grades of drone collision with dummy. The safety grades for these three typical drones are categorized via the drop height. The findings further provide crucial data and analytical methods for establishing drone safety standards. Full article
Show Figures

Figure 1

13 pages, 4670 KiB  
Article
Development and Dynamic Numerical Evaluation of a Lightweight Sports Helmet Using Topology Optimization and Advanced Architected Materials
by Nikolaos Kladovasilakis, Konstantinos Tsongas, Eleftheria Maria Pechlivani and Dimitrios Tzetzis
Designs 2025, 9(2), 28; https://doi.org/10.3390/designs9020028 - 28 Feb 2025
Viewed by 990
Abstract
Sports activities often carry a high risk of injury, varying in severity, making the use of protective equipment, such as helmets and kneecaps, essential in many cases. Among all potential injuries, head injuries are the most crucial due to their severity. Hence, in [...] Read more.
Sports activities often carry a high risk of injury, varying in severity, making the use of protective equipment, such as helmets and kneecaps, essential in many cases. Among all potential injuries, head injuries are the most crucial due to their severity. Hence, in the last decades, the scientific interest has been focused on establishing head injury criteria and improving the helmet design with the ultimate goal of the reduction in injury probability and increasing the athlete’s performance. In this context, the current study aims to develop a lightweight sports helmet with increased safety performance, utilizing topology optimization processes and advanced architected materials. In detail, the design of a conventional helmet was developed and modified applying in specific regions advanced architected materials, such as triply periodic minimal surfaces (TPMS) and hybrid structures, with functionally graded configurations to produce sandwich-like structures capable of absorbing mechanical energy from impacts. The developed helmet’s designs were numerically evaluated through dynamic finite element analyses (FEA), simulating the helmet’s impact on a wall with a specific velocity. Through these analyses, the plastic deformation of the designed helmets was observed, coupled with the stress concentration contours. Furthermore, the results of FEAs were utilized in order to calculate the values of the head injury criterion (HIC). Finally, the developed topologically optimized helmet design incorporating the hybrid lattice structure revealed increased energy absorption, reaching a HIC of 1618, improved by around 14% compared to the conventional design configuration. Full article
Show Figures

Figure 1

13 pages, 6902 KiB  
Article
Development of an Equivalent Analysis Model of PVB Laminated Glass for TRAM Crash Safety Analysis
by Yuhyeong Jeong, Youngjin Jeon, Wonjoo Lee and Jonghun Yoon
Polymers 2025, 17(1), 25; https://doi.org/10.3390/polym17010025 - 26 Dec 2024
Cited by 1 | Viewed by 862
Abstract
This study focuses on an equivalent model of Polyvinyl Butyral (PVB) laminated glass to simulate the Head Injury Criterion (HIC) when a pedestrian collides with a TRAM. To simulate the collision behavior that occurs when a pedestrian’s head collides with PVB laminated glass, [...] Read more.
This study focuses on an equivalent model of Polyvinyl Butyral (PVB) laminated glass to simulate the Head Injury Criterion (HIC) when a pedestrian collides with a TRAM. To simulate the collision behavior that occurs when a pedestrian’s head collides with PVB laminated glass, a comparison was made between the results of the widely used PLC model for PVB laminated glass modeling and an actual dynamic head impact test. The material properties of the tempered glass and PVB film used in the PLC and equivalent models were obtained via four-point bending tests and tensile tests, respectively. The proposed equivalent model is developed by assigning the thickness, material properties, and positional information of each layer in the multilayer PLC model to the integration points of the shell element. The results of the equivalent analysis model were found to accurately simulate the collision behavior when compared with the results of both the dynamic head impact test and the PLC model. Moreover, the analysis cost improved to approximately 15% of that of the traditional PLC model. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

22 pages, 10074 KiB  
Article
Impact of Vehicle Steering Strategy on the Severity of Pedestrian Head Injury
by Danqi Wang, Wengang Deng, Lintao Wu, Li Xin, Lizhe Xie and Honghao Zhang
Biomimetics 2024, 9(10), 593; https://doi.org/10.3390/biomimetics9100593 - 30 Sep 2024
Cited by 2 | Viewed by 1536
Abstract
In response to the sudden violation of pedestrians crossing the road, intelligent vehicles take into account factors such as the road conditions in the accident zone, traffic rules, and surrounding vehicles’ driving status to make emergency evasive decisions. Thus, the collision simulation models [...] Read more.
In response to the sudden violation of pedestrians crossing the road, intelligent vehicles take into account factors such as the road conditions in the accident zone, traffic rules, and surrounding vehicles’ driving status to make emergency evasive decisions. Thus, the collision simulation models for pedestrians and three types of vehicles, i.e., sedans, Sport Utility Vehicles (SUVs), and Multi-Purpose Vehicle (MPVs), are built to investigate the impact of vehicle types, vehicle steering angles, collision speeds, collision positions, and pedestrian orientations on head injuries of pedestrians. The results indicate that the Head Injury Criterion (HIC) value of the head increases with the increase in collision speed. Regarding the steering angles, when a vehicle’s steering direction aligns with a pedestrian’s position, the pedestrian remains on top of the vehicle’s hood for a longer period and moves together with the vehicle after the collision. This effectively reduces head injuries to pedestrians. However, when the vehicle’s steering direction is opposite to the pedestrian’s position, the pedestrian directly collides with the ground, resulting in higher head injuries. Among them, MPVs cause the most severe injuries, followed by SUVs, and sedans have the least impact. Overall, intelligent vehicles have great potential to reduce head injuries of pedestrians in the event of sudden pedestrian-vehicle collisions by combining with Automatic Emergency Steering (AES) measures. In the future, efforts need to be made to establish an optimized steering strategy and optimize the handling of situations where steering is ineffective or even harmful. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 2nd Edition)
Show Figures

Figure 1

11 pages, 1897 KiB  
Article
Assessing Kinematic Variables in Short-Track Speed Skating Helmets: A Comparative Study between Traditional Rigid Foam and Anti-Rotation Designs
by Aïda Valevicius, Felix Croteau, Thomas Romeas, Suzanne Leclerc and David J. Pearsall
Biomechanics 2024, 4(3), 483-493; https://doi.org/10.3390/biomechanics4030034 - 13 Aug 2024
Viewed by 1663
Abstract
Purpose: Short-track speed skating results in high-energy crashes with an elevated risk of head injury. The goal of this study was to evaluate the resulting kinematics of an anti-rotation helmet technology for speed skating. Methods: Two traditional rigid foam speed-skating helmets (BT [...] Read more.
Purpose: Short-track speed skating results in high-energy crashes with an elevated risk of head injury. The goal of this study was to evaluate the resulting kinematics of an anti-rotation helmet technology for speed skating. Methods: Two traditional rigid foam speed-skating helmets (BT and ST) were compared with one anti-rotation speed skating helmet (MIPS). Each helmet was impacted with a pneumatic device across three locations. The resulting linear or rotational accelerations (PLA or PRA) and rotational velocities (PRV) were measured with accelerometers placed on a Hybrid III head form. Additionally, the head impact criterion (HIC) was calculated from accelerations and the brain injury criterion (BrIC) was obtained from rotational velocities. Results: MIPS showed significantly higher values of accelerations (PLA = 111.24 ± 9.21 g and PRA = 8759.11 ± 2601.81 rad/s2) compared with the other helmets at all three impact locations (p < 0.01, ES = 3.00 to 4.11). However, velocities were lowest, but not significantly different, for the MIPS helmet (25.77 ± 1.43 rad/s). Furthermore, all resulting kinematics except peak linear accelerations were significantly different across impact locations. Conclusion: Helmet designs specific to the collision characteristics of speed skating may still be lacking, but would decrease the risk of sport-related concussions. Full article
Show Figures

Figure 1

17 pages, 5623 KiB  
Article
A Hierarchical Prediction Method for Pedestrian Head Injury in Intelligent Vehicle with Combined Active and Passive Safety System
by Liangliang Shi, Honghao Zhang, Lintao Wu, Yu Liu, Kuo Cheng, Yong Han and Danqi Wang
Biomimetics 2024, 9(3), 124; https://doi.org/10.3390/biomimetics9030124 - 21 Feb 2024
Cited by 2 | Viewed by 2139
Abstract
With the development of intelligent vehicle technology, the probability of road traffic accidents occurring has been effectively reduced to a certain extent. However, there is still insufficient research on head injuries in human vehicle collisions, making it impossible to effectively predict pedestrian head [...] Read more.
With the development of intelligent vehicle technology, the probability of road traffic accidents occurring has been effectively reduced to a certain extent. However, there is still insufficient research on head injuries in human vehicle collisions, making it impossible to effectively predict pedestrian head injuries in accidents. To study the efficacy of a combined active and passive safety system on pedestrian head protection through the combined effect of the exterior airbag and the braking control systems of an intelligent vehicle, a “vehicle–pedestrian” interaction system is constructed in this study and is verified by real collision cases. On this basis, a combined active and passive system database is developed to analyze the cross-influence of the engine hood airbag and the vehicle braking curve parameters on pedestrian HIC (head injury criterion). Meanwhile, a hierarchy design strategy for a combined active and passive system is proposed, and a rapid prediction of HIC is achieved via the establishment of a fitting equation for each grading. The results show that the exterior airbag can effectively protect the pedestrian’s head, prevent the collision between the pedestrian’s head and the vehicle front structure, and reduce the HIC. The braking parameter H2 is significantly correlated with head injury, and when H2 is less than 1.8, the HIC value is less than 1000 in nearly 90% of cases. The hierarchy design strategy and HIC prediction method of the combined active and passive system proposed in this paper can provide a theoretical basis for rapid selection and parameter design. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics)
Show Figures

Figure 1

28 pages, 16845 KiB  
Article
Pedestrian Safety in Frontal Tram Collision, Part 1: Historical Overview and Experimental-Data-Based Biomechanical Study of Head Clashing in Frontal and Side Impacts
by Frantisek Lopot, Lubos Tomsovsky, Frantisek Marsik, Jan Masek, Petr Kubovy, Roman Jezdik, Monika Sorfova, Barbora Hajkova, Dita Hylmarova, Martin Havlicek, Ondrej Stocek, Martin Doubek, Tommi Tikkanen, Martin Svoboda and Karel Jelen
Sensors 2023, 23(21), 8819; https://doi.org/10.3390/s23218819 - 30 Oct 2023
Cited by 4 | Viewed by 2721
Abstract
This article represents the first paper in a two-part series dealing with safety during tram–pedestrian collisions. This research is dedicated to the safety of trams for pedestrians during collisions and is motivated by the increased number of lethal cases. The first part of [...] Read more.
This article represents the first paper in a two-part series dealing with safety during tram–pedestrian collisions. This research is dedicated to the safety of trams for pedestrians during collisions and is motivated by the increased number of lethal cases. The first part of this paper includes an overview of tram face development from the earliest designs to the current ones in use and, at the same time, provides a synopsis and explanation of the technical context, including a link to current and forthcoming legislation. The historical design development can be characterised by three steps, from an almost vertical front face, to leaned and pointed shapes, to the current inclined low-edged windshield without a protruding coupler. However, since most major manufacturers now export their products worldwide and customisation is only of a technically insignificant nature, our conclusions are generalisable (supported by the example of Berlin). The most advantageous shape of the tram’s front, minimising the effects on pedestrians in all collision phases, has evolved rather spontaneously and was unprompted, and it is now being built into the European Commission regulations. The goal of the second part of this paper is to conduct a series of tram–pedestrian collisions with a focus on the frontal and side impacts using a crash test dummy (anthropomorphic test device—ATD). Four tram types approaching the collision at four different impact speeds (5 km/h, 10 km/h, 15 km/h, and 20 km/h) were used. The primary outcome variable was the resultant head acceleration. The risk and severity of possible head injuries were assessed using the head injury criterion (HIC15) and its linkage to the injury level on the Abbreviated Injury Scale (AIS). The results showed increasing head impacts with an increasing speed for all tram types and collision scenarios. Higher values of head acceleration were reached during the frontal impact (17–124 g) compared to the side one (2–84 g). The HIC15 values did not exceed the value of 300 for any experimental setting, and the probability of AIS4+ injuries did not exceed 10%. The outcomes of tram–pedestrian collisions can be influenced by the ATD’s position and orientation, the impact speed and front-end design of trams, and the site of initial contact. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 11104 KiB  
Article
Numerical Reconstruction of Cyclist Impact Accidents: Can Helmets Protect the Head-Neck of Cyclists?
by Fang Wang, Ke Peng, Tiefang Zou, Qiqi Li, Fan Li, Xinghua Wang, Jiapeng Wang and Zhou Zhou
Biomimetics 2023, 8(6), 456; https://doi.org/10.3390/biomimetics8060456 - 27 Sep 2023
Cited by 5 | Viewed by 2923
Abstract
Cyclists are vulnerable road users and often suffer head-neck injuries in car–cyclist accidents. Wearing a helmet is currently the most prevalent protection method against such injuries. Today, there is an ongoing debate about the ability of helmets to protect the cyclists’ head-neck from [...] Read more.
Cyclists are vulnerable road users and often suffer head-neck injuries in car–cyclist accidents. Wearing a helmet is currently the most prevalent protection method against such injuries. Today, there is an ongoing debate about the ability of helmets to protect the cyclists’ head-neck from injury. In the current study, we numerically reconstructed five real-world car–cyclist impact accidents, incorporating previously developed finite element models of four cyclist helmets to evaluate their protective performances. We made comparative head-neck injury predictions for unhelmeted and helmeted cyclists. The results show that helmets could clearly lower the risk of severe (AIS 4+) brain injury and skull fracture, as assessed by the predicted head injury criterion (HIC), while a relatively limited decrease in AIS 4+ brain injury risk can be achieved in terms of the analysis of CSDM0.25. Assessment using the maximum principal strain (MPS0.98) and head impact power (HIP) criteria suggests that helmets could lower the risk of diffuse axonal injury and subdural hematoma of the cyclist. The helmet efficacy in neck protection depends on the impact scenario. Therefore, wearing a helmet does not seem to cause a significant neck injury risk level increase to the cyclist. Our work presents important insights into the helmet’s efficacy in protecting the head-neck of cyclists and motivates further optimization of protective equipment. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics)
Show Figures

Figure 1

12 pages, 4156 KiB  
Article
A Methodology for Stochastic Simulation of Head Impact on Windshields
by Christopher Brokmann, Christian Alter and Stefan Kolling
Appl. Mech. 2023, 4(1), 179-190; https://doi.org/10.3390/applmech4010010 - 3 Feb 2023
Cited by 4 | Viewed by 2446
Abstract
In accidents involving cars with pedestrians, the impact of the head on structural parts of the vehicle presents a significant risk of injury. If the head hits the windshield, the injury is highly influenced by glass fracture. In pedestrian protection tests, a head [...] Read more.
In accidents involving cars with pedestrians, the impact of the head on structural parts of the vehicle presents a significant risk of injury. If the head hits the windshield, the injury is highly influenced by glass fracture. In pedestrian protection tests, a head form impactor is shot on the windshield while the resultant acceleration at the centre of gravity of the head is measured. To assess the risk of fatal or serious injury, a head injury criterion (HIC) as an explicit function of the measured acceleration can be determined. The braking strength of glass, which has a major impact on the head acceleration, however, is not deterministic but depends on production-related microcracks on the glass surface as well as on the loading rate. The aim of the present paper is to show a pragmatic method for how to include the stochastic failure of glass in crash and impact simulations. The methodology includes a fracture mechanical model for the strain rate-dependent failure of glass, an experimental determination of the glass strength for the different areas of a windshield (surface, edge, and screen-printing area), a statistical evaluation of the experimental data, and a computation of an HIC probability distribution by stochastic simulation. Full article
(This article belongs to the Special Issue Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

12 pages, 4973 KiB  
Article
Injury Biomechanics Evaluation of a Driver with Disabilities during a Road Accident—A Numerical Approach
by Kamil Sybilski, Fábio A. O. Fernandes, Mariusz Ptak and Ricardo J. Alves de Sousa
Materials 2022, 15(22), 7956; https://doi.org/10.3390/ma15227956 - 10 Nov 2022
Cited by 2 | Viewed by 2077
Abstract
Numerical methods are often a robust way to predict how external mechanical loads affect individual biological structures. Computational models of biological systems have been developed over the years, reaching high levels of detail, complexity, and precision. In this study, two cases were analysed, [...] Read more.
Numerical methods are often a robust way to predict how external mechanical loads affect individual biological structures. Computational models of biological systems have been developed over the years, reaching high levels of detail, complexity, and precision. In this study, two cases were analysed, differing in the airbag operation; in the first, the airbag was normally activated, and in the second case, the airbag was disabled. We analysed a model of a disabled person without a left leg who steers a vehicle using a specialized knob on the steering wheel. In both cases, a head-on collision between a car moving at an initial speed of 50 km/h and a rigid obstacle was analysed. We concluded that the activated airbag for a person with disabilities reduces the effects of asymmetries in the positioning of the belts and body support points. Moreover, all the biomechanical parameters, analysed on the 50th percentile dummy, i.e., HIC, seat belt contact force and neck injury criterion (Nij) support the use of an airbag. The resulting accelerations, measured in the head of the dummy, were induced into a finite element head model (YEAHM) to kinematically drive the head and simulate both accidents, with and without the airbag. In the latter, the subsequent head injury prediction revealed a form of contrecoup injury, more specifically cerebral contusion based on the intracranial pressure levels that were achieved. Therefore, based on the in-depth investigation, a frontal airbag can significantly lower the possibility of injuries for disabled drivers, including cerebral contusions. Full article
Show Figures

Figure 1

16 pages, 6032 KiB  
Article
Research on Impact Attenuation Characteristics of Greyhound Racing Track Padding for Injury Prevention
by David Eager, Shilei Zhou, Imam Hossain, Karlos Ishac and Ben Halkon
Vibration 2022, 5(3), 497-512; https://doi.org/10.3390/vibration5030028 - 4 Aug 2022
Cited by 1 | Viewed by 3172
Abstract
To reduce injuries to greyhounds caused by collisions with fixed racing track objects such as the outside fence or the catching pen structures, padding systems are widely adopted. However, there are currently neither recognised standards nor minimum performance thresholds for greyhound industry padding [...] Read more.
To reduce injuries to greyhounds caused by collisions with fixed racing track objects such as the outside fence or the catching pen structures, padding systems are widely adopted. However, there are currently neither recognised standards nor minimum performance thresholds for greyhound industry padding systems. This research is the first of its kind to investigate the impact attenuation characteristics of different padding systems for use within the greyhound racing industry for the enhanced safety and welfare of racing greyhounds. A standard head injury criterion (HIC) meter was used to examine padding impact attenuation performance based on the maximum g-force, HIC level and the HIC duration. Initially, greyhound racing speed was recorded and analysed with the IsoLynx system to understand the potential impact hazard to greyhounds during racing which indicates the necessity for injury prevention with padding. A laboratory test was subsequently conducted to compare the impact attenuation performance of different kinds of padding. Since padding impact attenuation characteristics are also affected by the installation and substrate, onsite testing was conducted to obtain the padding system impact attenuation performance in actual greyhound racing track applications. The test results confirm that the padding currently used within the greyhound industry is adequate for the fence but inadequate when used for rigid structural members such as the catching pen gate supports. Thus, increasing the padding thickness is strongly recommended if it is used at such locations. More importantly, it is also recommended that, after the installation of padding on the track, its impact attenuation characteristics be tested according to the methodology developed herein to verify the suitability for protecting greyhounds from injury. Full article
Show Figures

Figure 1

Back to TopTop