Research on Impact Attenuation Characteristics of Greyhound Racing Track Padding for Injury Prevention
Abstract
:1. Introduction
2. Greyhound Racing Impact and Padding Conditions
2.1. Greyhound Racing Speed
2.2. Greyhound Racing Track Padding
3. Laboratory Impact Attenuation Test of Different Padding
3.1. Head Injury Criterion (HIC) Definition and Application
- Minor (e.g., superficial laceration).
- Moderate (e.g., fractured sternum).
- Serious (e.g., open fracture of humerus).
- Severe (e.g., perforated trachea).
- Critical (e.g., ruptured liver with tissue loss).
- Maximum (e.g., total severance of aorta).
3.2. Laboratory Impact Attenuation Test
4. On-Site Impact Attenuation Test of Different Padding
4.1. On-Site Impact Test of the 75 mm-Thick Padding at the Greyhound Racing Track
4.2. On-Site Impact Test of Other Padding Cases at the Greyhound Racing Track
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
t | HIC duration |
FP | Finish post |
g | Maximum acceleration |
HIC | Head injury criterion |
TP | Transition point |
References
- Leeworthy, D. A diversion from the new leisure: Greyhound racing, working-class culture, and the politics of unemployment in inter-war South Wales. Sport Hist. 2012, 32, 53–73. [Google Scholar] [CrossRef]
- Baker, N. Going to the dogs—Hostility to greyhound racing in Britain: Puritanism, socialism and pragmaticism. J. Sport Hist. 1996, 23, 97–119. [Google Scholar]
- Thayer, G.A. Going to the Dogs: Greyhound Racing, Animal Activism, and American Popular Culture; University Press of Kansas: Lawrence, KS, USA, 2013. [Google Scholar]
- Sicard, G.; Short, K.; Manley, P. A survey of injuries at five greyhound racing tracks. J. Small Anim. Pract. 1999, 40, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Guilliard, M. Third tarsal bone fractures in the greyhound. J. Small Anim. Pract. 2010, 51, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Iddon, J.; Lockyer, R.; Frean, S. The effect of season and track condition on injury rate in racing greyhounds. J. Small Anim. Pract. 2014, 55, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.I.; Eager, D.; Walker, P.D. Greyhound racing ideal trajectory path generation for straight to bend based on jerk rate minimization. Sci. Rep. 2020, 10, 7088. [Google Scholar] [CrossRef] [PubMed]
- Eager, D.; Pendrill, A.M.; Reistad, N. Beyond velocity and acceleration: Jerk, snap and higher derivatives. Eur. J. Phys. 2016, 37, 065008. [Google Scholar] [CrossRef]
- Eager, D. Accelerometers used in the measurement of jerk, snap, and crackle. In Proceedings of the Australian Acoustical Society Annual Conference, AAS 2018, Adelaide, Australia, 7–9 November 2018. [Google Scholar]
- Hossain, M.I.; Eager, D.; Walker, P. Simulation of racing greyhound kinematics. In Proceedings of the SIMULTECH 2019—9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Prague, Czech Republic, 29–31 July 2019. [Google Scholar]
- Hayati, H.; Eager, D.; Pendrill, A.M.; Alberg, H. Jerk within the Context of Science and Engineering—A Systematic Review. Vibration 2020, 3, 371–409. [Google Scholar] [CrossRef]
- Goodwin, A. Bundaberg’s First Greyhound Death of 2022. Available online: https://bundabergtoday.com.au/news/2022/03/23/bundabergs-first-greyhound-death-of-2022/ (accessed on 30 July 2022).
- Hayati, H.; Eager, D.; Stephenson, R.; Brown, T.; Arnott, E. The impact of track related parameters on catastrophic injury rate of racing greyhounds. In Proceedings of the 9th Australasian Congress on Applied Mechanics (ACAM9), Sydney, Australia, 27–29 November 2017; pp. 27–29. [Google Scholar]
- Starling, M.; Spurrett, A.; McGreevy, P. A pilot study of methods for evaluating the effects of arousal and emotional valence on performance of racing greyhounds. Animals 2020, 10, 1037. [Google Scholar] [CrossRef]
- Eager, D.; Hossain, I.; Ishac, K.; Robins, S. Analysis of Racing Greyhound Path Following Dynamics Using a Tracking System. Animals 2021, 11, 2687. [Google Scholar] [CrossRef] [PubMed]
- Eager, D. Undersurfacing—Myths and Facts; Kidsafe NSW Inc., Playground Advisory Unit: Sydney, NSW, Australia, 2003. [Google Scholar]
- Eager, D.; Chapman, C. Playground Surface Standards—A Discussion Paper. In Proceedings of the Kidsafe National Playground Conference, Sydney, NSW, Australia, 22–23 March 2004. [Google Scholar]
- Eager, D.; Chapman, C. Playground Impact Attenuating Sands; Australasian Parks and Leisure: Sydney, NSW, Australia, 2008. [Google Scholar]
- Eager, D. Playground Equipment and Surfacing Certification; Australasian Parks and Leisure: Sydney, NSW, Australia, 2009. [Google Scholar]
- Eager, D. Do Surfacing Standards Reflect Reality? International Conference Playground Fall Impacts; TüV Austria Academy: Brunn am Gebirge, Austria, 2013. [Google Scholar]
- Eager, D.; Hayati, H.; Chapman, C. Impulse force as an additional safety criterion for improving the injury prevention performance of impact attenuation surfaces in children’s playgrounds. In Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016. [Google Scholar]
- Eager, D.; Hayati, H. Additional injury prevention criteria for impact attenuation surfacing within children’s playgrounds. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2019, 5, 011002. [Google Scholar] [CrossRef]
- Chalmers, D.J.; Marshall, S.W.; Langley, J.D.; Evans, M.J.; Brunton, C.R.; Kelly, A.M.; Pickering, A.F. Height and surfacing as risk factors for injury in falls from playground equipment: A case-control study. Inj. Prev. 1996, 2, 98–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IsoLynx. The IsoLynx Real-Time Location System (RTLS) Athlete Tracking System. Available online: http://www.finishlynx.com/isolynx/ (accessed on 30 July 2022).
- Hayati, H.; Eager, D.; Walker, P. The effects of surface compliance on greyhound galloping dynamics. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2019, 233, 1033–1043. [Google Scholar] [CrossRef]
- McHenry, B.G. Head injury criterion and the ATB. ATB Users’ Group 2004, 29, 5–8. [Google Scholar]
- Yoon, J.M.; Lee, Y.; Park, S.O.; Han, Y.H.; Park, G.J. Crash optimization considering the head injury criterion. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 2879–2890. [Google Scholar] [CrossRef]
- Mariotti, G.V.; Golfo, S.; Nigrelli, V.; Carollo, F. Head injury criterion: Mini review. Am. J. Biomed. Sci. Res. 2019, 5, 406–407. [Google Scholar] [CrossRef]
- Mackay, M. The increasing importance of the biomechanics of impact trauma. Sadhana 2007, 32, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Eager, D.; Chapman, C.; Qi, Y.; Ishac, K.; Hossain, M.I. Additional Criteria for Playground Impact Attenuating Sand. Appl. Sci. 2021, 11, 8805. [Google Scholar] [CrossRef]
- AS 4422:2016; Playground Surfacing—Specifications, Requirements and Test Method. Standards Australia: Sydney, NSW, Australia, 2016.
- Z614:20; Children’s Playground Equipment and Surfacing. CSA: Toronto, ON, Canada, 2020.
- EN 1177-2018; Impact Attenuating Playground Surfacing—Methods of Test for the Determination of Impact Attenuation. CEN: Brussels, Belgium, 2018.
- F1292-18; Standard Specification for Impact Attenuation of Surface Materials within the Use Zone of Playground Equipment. ASTM International: West Conshohocken, PA, USA, 2018.
- Prasad, P.; Mertz, H.J. The position of the United States delegation to the ISO Working Group 6 on the use of HIC in the automotive environment. SAE Trans. 1985, 94, 106–116. [Google Scholar]
Location (a) | Location (b) | Location (c) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Height | Velocity | Test | HIC | t | g | HIC | t | g | HIC | t | g |
(m) | (m/s) | (ms) | (g) | (ms) | (g) | (ms) | (g) | ||||
0.75 | 3.84 | 1 | 30 | 28.50 | 20 | 33 | 25.89 | 22 | |||
2 | 30 | 28.41 | 21 | 32 | 26.07 | 21 | |||||
3 | 30 | 28.14 | 21 | 32 | 26.16 | 21 | |||||
Average | 30 | 28.35 | 20.67 | 32.33 | 26.04 | 21.33 | |||||
0.95 | 4.32 | 1 | 43 | 26.97 | 24 | 43 | 25.32 | 24 | |||
2 | 43 | 26.73 | 25 | 44 | 24.54 | 24 | |||||
3 | 43 | 26.88 | 24 | 43 | 24.81 | 24 | |||||
Average | 43 | 26.86 | 24.33 | 43.33 | 24.89 | 24 | |||||
1.15 | 4.75 | 1 | 59 | 24.84 | 28 | 55 | 24.27 | 28 | 27 | 37.29 | 19 |
2 | 59 | 24.45 | 29 | 55 | 24.33 | 28 | 28 | 36.27 | 19 | ||
3 | 58 | 24.54 | 28 | 56 | 24.30 | 28 | 28 | 35.58 | 19 | ||
Average | 58.67 | 24.61 | 28.33 | 55.33 | 24.30 | 28 | 27.67 | 36.38 | 19 | ||
1.35 | 5.15 | 1 | 73 | 23.37 | 32 | 64 | 23.70 | 31 | 36 | 34.98 | 22 |
2 | 77 | 23.25 | 32 | 69 | 23.34 | 31 | 35 | 34.05 | 22 | ||
3 | 72 | 23.73 | 31 | 67 | 23.16 | 31 | 35 | 33.66 | 22 | ||
Average | 74 | 23.45 | 31.67 | 66.67 | 23.4 | 31 | 35.33 | 34.23 | 22 | ||
1.55 | 5.51 | 1 | 96 | 22.14 | 36 | 81 | 22.65 | 34 | 44 | 31.62 | 25 |
2 | 93 | 21.99 | 36 | 85 | 22.05 | 34 | 44 | 32.52 | 25 | ||
3 | 92 | 22.23 | 35 | 85 | 21.69 | 35 | 47 | 30.18 | 26 | ||
Average | 93.67 | 22.12 | 35.67 | 83.67 | 22.13 | 34.33 | 45 | 31.44 | 25.33 | ||
1.75 | 5.86 | 1 | 117 | 22.98 | 38 | 99 | 21.90 | 38 | 51 | 29.73 | 28 |
2 | 122 | 20.94 | 40 | 103 | 21.45 | 38 | 55 | 28.50 | 29 | ||
3 | 115 | 21.18 | 39 | 103 | 21.24 | 38 | 52 | 29.28 | 28 | ||
Average | 118 | 21.7 | 39 | 101.67 | 21.53 | 38 | 52.67 | 29.17 | 28.33 |
Location (a) | Location (b) | Location (c) | |||||||
---|---|---|---|---|---|---|---|---|---|
Test | HIC | t | g | HIC | t | g | HIC | t | g |
(ms) | (g) | (ms) | (g) | (ms) | (g) | ||||
1 | 87 | 12.72 | 80 | 1515 | 1.35 | 336 | 50 | 29.37 | 25 |
2 | 83 | 13.05 | 77 | 1509 | 1.35 | 335 | 51 | 29.61 | 25 |
3 | 86 | 12.75 | 83 | 1539 | 1.26 | 347 | 49 | 29.58 | 24 |
Average | 85.33 | 12.84 | 80 | 1521 | 1.32 | 339.33 | 50 | 29.52 | 24.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eager, D.; Zhou, S.; Hossain, I.; Ishac, K.; Halkon, B. Research on Impact Attenuation Characteristics of Greyhound Racing Track Padding for Injury Prevention. Vibration 2022, 5, 497-512. https://doi.org/10.3390/vibration5030028
Eager D, Zhou S, Hossain I, Ishac K, Halkon B. Research on Impact Attenuation Characteristics of Greyhound Racing Track Padding for Injury Prevention. Vibration. 2022; 5(3):497-512. https://doi.org/10.3390/vibration5030028
Chicago/Turabian StyleEager, David, Shilei Zhou, Imam Hossain, Karlos Ishac, and Ben Halkon. 2022. "Research on Impact Attenuation Characteristics of Greyhound Racing Track Padding for Injury Prevention" Vibration 5, no. 3: 497-512. https://doi.org/10.3390/vibration5030028