Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = harmful substances in the atmosphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3829 KB  
Article
Air Pollutant Concentration Prediction Using a Generative Adversarial Network with Multi-Scale Convolutional Long Short-Term Memory and Enhanced U-Net
by Jiankun Zhang, Pei Su, Juexuan Wang and Zhantong Cai
Sustainability 2025, 17(24), 11177; https://doi.org/10.3390/su172411177 - 13 Dec 2025
Viewed by 480
Abstract
Accurate prediction of air pollutant concentrations, particularly fine particulate matter (PM2.5), is essential for controlling and preventing heavy pollution incidents by providing early warnings of harmful substances in the atmosphere. This study proposes a novel spatiotemporal model for PM2.5 concentration [...] Read more.
Accurate prediction of air pollutant concentrations, particularly fine particulate matter (PM2.5), is essential for controlling and preventing heavy pollution incidents by providing early warnings of harmful substances in the atmosphere. This study proposes a novel spatiotemporal model for PM2.5 concentration prediction based on a Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (CWGAN-GP). The framework incorporates three key design components: First, the generator employs an Inception-style Convolutional Long Short-Term Memory (ConvLSTM) network, integrating parallel multi-scale convolutions and hierarchical normalization. This design enhances multi-scale spatiotemporal feature extraction while effectively suppressing boundary artifacts via a map-masking layer. Second, the discriminator adopts an architecturally enhanced U-Net, incorporating spectral normalization and shallow instance normalization. Feature-guided masked skip connections are introduced, and the output is designed as a raw score map to mitigate premature saturation during training. Third, a composite loss function is utilized, combining adversarial loss, feature-matching loss, and inter-frame spatiotemporal smoothness. A sliding-window conditioning mechanism is also implemented, leveraging multi-level features from the discriminator for joint spatiotemporal optimization. Experiments conducted on multi-source gridded data from Dongguan demonstrate that the model achieves a 12 h prediction performance with a Root Mean Square Error (RMSE) of 4.61 μg/m3, a Mean Absolute Error (MAE) of 6.42 μg/m3, and a Coefficient of Determination (R2) of 0.80. The model significantly alleviates performance degradation in long-term predictions when the forecast horizon is extended from 3 to 12 h, the RMSE increases by only 1.84 μg/m3, and regional deviations remain within ±3 μg/m3. These results indicate strong capabilities in spatial topology reconstruction and robustness against concentration anomalies, highlighting the model’s potential for hyperlocal air quality early warning. It should be noted that the empirical validation is limited to the specific environmental conditions of Dongguan, and the model’s generalizability to other geographical and climatic settings requires further investigation. Full article
(This article belongs to the Special Issue Atmospheric Pollution and Microenvironmental Air Quality)
Show Figures

Figure 1

23 pages, 4486 KB  
Article
Composition and Occurrence of Airborne Fungi in Two Urbanized Areas of the City of Sofia, Bulgaria
by Margarita Ivanova, Galina Stoyancheva, Vladislava Dishliyska, Jeny Miteva-Staleva, Radoslav Abrashev, Boryana Spasova, Yana Gocheva, Lyudmila Yovchevska, Galina Satchanska, Maria Angelova and Ekaterina Krumova
Appl. Microbiol. 2025, 5(3), 96; https://doi.org/10.3390/applmicrobiol5030096 - 11 Sep 2025
Cited by 1 | Viewed by 1681
Abstract
Air pollution remains one of the most urgent global challenges, affecting both public health and environmental integrity, with its severity escalating in parallel with industrialization and urban expansion. Defined as the presence of harmful substances in the atmosphere, air pollution poses risks to [...] Read more.
Air pollution remains one of the most urgent global challenges, affecting both public health and environmental integrity, with its severity escalating in parallel with industrialization and urban expansion. Defined as the presence of harmful substances in the atmosphere, air pollution poses risks to human health and disrupts the development of plant and animal life. Urban areas, particularly large cities, frequently exhibit pollutant concentrations that exceed safety thresholds established by the World Health Organization (WHO). This study presents a comprehensive analysis of airborne fungal microbiota in two distinct districts of Sofia, Bulgaria: the highly urbanized city center (Orlov Most) and a less urbanized southwestern area (New Bulgarian University, Ovcha Kupel). Weekly fluctuations in mold spore abundance were monitored, revealing elevated contamination levels on Fridays, likely due to intensified vehicular traffic preceding weekends and public holidays. Taxonomic identification of dominant mold species was conducted using both classical and molecular genetic methods. The isolated fungal strains predominantly belonged to the phylum Ascomycota (80%), with Talaromyces and Alternaria emerging as the most prevalent genera. Additionally, antifungal susceptibility testing indicated that most isolates were sensitive to commonly used antifungal agents, although resistance was observed in two strains of Talaromyces wortmannii. These findings underscore the significance of fungal bioaerosols in urban air quality assessments and highlight the need for targeted monitoring and mitigation strategies. Full article
Show Figures

Figure 1

27 pages, 1324 KB  
Review
Selection of a Universal Method for Measuring Nitrogen Oxides in Underground Mines: A Literature Review and SWOT Analysis
by Aleksandra Banasiewicz and Anna Janicka
Atmosphere 2025, 16(9), 1051; https://doi.org/10.3390/atmos16091051 - 4 Sep 2025
Cited by 1 | Viewed by 1470
Abstract
Workstations in deep underground mines are among the most dangerous in the world. Workers are exposed to various hazards such as water hazards, climate hazards, and gas hazards. In this article, the authors proposed the most suitable method for measuring nitrogen oxides, such [...] Read more.
Workstations in deep underground mines are among the most dangerous in the world. Workers are exposed to various hazards such as water hazards, climate hazards, and gas hazards. In this article, the authors proposed the most suitable method for measuring nitrogen oxides, such as nitric oxide(NO) and nitrogen dioxide (NO2), under actual underground mine conditions. The selection of the method was based on a literature review, in which the authors presented a brief characterization of available measurement methods and proposed their classification into four categories: chemical methods, electrochemical methods, chemiluminescence methods, and analytical methods. A SWOT analysis was used to select the appropriate method for NOx determination. The authors focused on identifying the most universal method that can handle measurements in the harsh conditions of underground mines, with an emphasis on ease of use in the field. Due to the mine atmosphere being rich in harmful substances, the selectivity of the method was also taken into account. The method chosen by the authors is intended for measuring both low concentrations of NOx (in the atmosphere) and high concentrations (diesel exhaust emissions). Because of the versatility of the method and its potential application in both small and large laboratories, the cost criterion was also considered. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Graphical abstract

26 pages, 3346 KB  
Article
Environmental Life Cycle Assessment of the Materials, Components, and Elements of a Mono-Si Photovoltaic Power Plant
by Patryk Leda, Izabela Piasecka and Grzegorz Szala
Materials 2025, 18(12), 2748; https://doi.org/10.3390/ma18122748 - 11 Jun 2025
Viewed by 1041
Abstract
The main objective of this study is to assess the environmental life cycle of the materials, components, and elements of a mono-Si photovoltaic power plant towards their sustainable development. Currently, photovoltaic installations are considered to be environmentally friendly systems that produce “green” energy. [...] Read more.
The main objective of this study is to assess the environmental life cycle of the materials, components, and elements of a mono-Si photovoltaic power plant towards their sustainable development. Currently, photovoltaic installations are considered to be environmentally friendly systems that produce “green” energy. During their exploitation, no pollutants are emitted into the environment. However, the processes of manufacturing and post-used management of their materials, components and elements are associated with both high demand for energy and matter, as well as with emissions of harmful substances into the atmosphere, water, and soil. For this reason, from the perspective of the entire life cycle, photovoltaic power plants may contribute to the deterioration of human health, the reduction in the quality of the environment, and the depletion of non-renewable fossil resources. Due to these potential threats, it was considered appropriate to conduct a Life Cycle Assessment of a real 2 MW photovoltaic power plant located in northern Poland, in terms of compliance with the main assumptions of sustainable development. The analysis was conducted using the Life Cycle Assessment (LCA) methodology (the ReCiPe 2016 model). Impacts on the environment was assessed in three areas: human health, ecosystem quality, and material resources. Two scenarios were adopted for the post-used management of materials, components, and elements: landfill disposal and recycling. Based on the conducted research, it was found that, among the assessed groups of photovoltaic power plant components (photovoltaic modules, supporting structure, inverter station, and electrical infra-structure), photovoltaic modules have the highest level of harmful impact on the environment (especially the manufacturing stage). The use of recycling processes at the end of their use would reduce their harmful impact over the entire life cycle of a photovoltaic power plant and better fit with the main principles of sustainable development. Full article
Show Figures

Figure 1

37 pages, 2097 KB  
Review
Impact of Agriculture on Greenhouse Gas Emissions—A Review
by Karolina Sokal and Magdalena Kachel
Energies 2025, 18(9), 2272; https://doi.org/10.3390/en18092272 - 29 Apr 2025
Cited by 8 | Viewed by 5450
Abstract
The restrictions imposed by the European Green Deal on Europe are expected to make Europe climate-neutral by 2050. In this context, this article examines the current efforts to reduce emission levels, focusing on available international scientific papers concerning European territory, particularly Poland. The [...] Read more.
The restrictions imposed by the European Green Deal on Europe are expected to make Europe climate-neutral by 2050. In this context, this article examines the current efforts to reduce emission levels, focusing on available international scientific papers concerning European territory, particularly Poland. The study paid special attention to the sector of agriculture, which is considered a key contributor to greenhouse gas generation. It also analysed the impact of various tillage techniques and the application of organic and inorganic fertilisers, e.g., nitrogen fertilisers, digestate, or compost, on the emissions of greenhouse gases and other environmentally harmful substances. Although there are few scientific articles available that comprehensively describe the problem of greenhouse gas emissions from agriculture, it is still possible to observe the growing awareness of farmers and their daily impact on the environment. The current study demonstrated that agricultural activities significantly contribute to the emissions of three main greenhouse gases: carbon dioxide, nitrous oxide, and methane. The tillage and soil fertilisation methods used play a crucial role in their emissions into the atmosphere. The use of no-tillage (or reduced-tillage) techniques contributes to the sustainable development of agriculture while reducing greenhouse gas emissions. The machinery and fuels used, along with innovative systems and sensors for precise fertilisation, play a significant role in lowering emission levels in agriculture. The authors intend to identify potential opportunities to improve crop productivity and contribute to sustainable reductions in gas emissions. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

15 pages, 280 KB  
Review
Carbon Cycling in Wetlands Under the Shadow of Microplastics: Challenges and Prospects
by Linan Liu, Yizi Hua, Jingmin Sun, Shakeel Ahmad, Xin He, Yuguo Zhuo and Jingchun Tang
Toxics 2025, 13(3), 143; https://doi.org/10.3390/toxics13030143 - 20 Feb 2025
Cited by 7 | Viewed by 2679
Abstract
Wetlands are one of the most crucial ecosystems for regulating carbon sequestration and mitigating global climate change. However, the disturbance to carbon dynamics caused by microplastics (MPs) in wetlands cannot be overlooked. This review explores the impacts of MPs on the carbon cycles [...] Read more.
Wetlands are one of the most crucial ecosystems for regulating carbon sequestration and mitigating global climate change. However, the disturbance to carbon dynamics caused by microplastics (MPs) in wetlands cannot be overlooked. This review explores the impacts of MPs on the carbon cycles within wetland ecosystems, focusing on the underlying physicochemical and microbial mechanisms. The accumulation of MPs in wetland sediments can severely destabilize plant root functions, disrupting water, nutrient, and oxygen transport, thereby reducing plant biomass development. Although MPs may temporarily enhance carbon storage, they ultimately accelerate the mineralization of organic carbon, leading to increased atmospheric carbon dioxide emissions and undermining long-term carbon sequestration. A critical aspect of this process involves shifts in microbial community structures driven by selective microbial colonization on MPs, which affect organic carbon decomposition and methane production, thus posing a threat to greenhouse gas emissions. Notably, dissolved organic matter derived from biodegradable MPs can promote the photoaging of coexisting MPs, enhancing the release of harmful substances from aged MPs and further impacting microbial-associated carbon dynamics due to disrupted metabolic activity. Therefore, it is imperative to deepen our understanding of the adverse effects and mechanisms of MPs on wetland health and carbon cycles. Future strategies should incorporate microbial regulation and ecological engineering techniques to develop effective methodologies aimed at maintaining the sustainable carbon sequestration capacity of wetlands affected by MP contamination. Full article
Show Figures

Graphical abstract

10 pages, 1728 KB  
Article
Simulation Analysis of the Semi-Trailer Steered Wheels Control Algorithm
by Michał Abramowski, Piotr Fundowicz, Hubert Sar, Andrzej Reński and Mateusz Brukalski
Sensors 2025, 25(3), 626; https://doi.org/10.3390/s25030626 - 22 Jan 2025
Cited by 1 | Viewed by 2235
Abstract
As part of improving road safety around trucks, a solution was proposed to reduce the swept path width of a moving tractor–semi-trailer. This article presents a mathematical analysis of the movement of a tractor unit with a traditional semi-trailer with fixed axles and [...] Read more.
As part of improving road safety around trucks, a solution was proposed to reduce the swept path width of a moving tractor–semi-trailer. This article presents a mathematical analysis of the movement of a tractor unit with a traditional semi-trailer with fixed axles and steered wheels. A simulation analysis of both presented vehicles was carried out. The core of the algorithm controlling the steering angle of the semi-trailer wheels is presented. The influence of controlling the semi-trailer’s swivel wheels on the swept path width of a tractor–trailer with a semi-trailer equipped with swivel wheels is discussed. The assumptions for building the control algorithm are presented. The article presents the advantages of the solution used along with the control algorithm. Measurable benefits resulting from the use of the presented solution are presented, such as increasing cargo space, reducing cargo transport costs, and reducing aerodynamic resistance and fuel consumption. It is worth emphasizing that reducing fuel consumption is very important because it reduces the emission of harmful exhaust gases into the atmosphere. The swept path width is important especially in the case of vehicles moving in a limited area, for example in the parking lots of transhipment and logistics centers, between urban buildings. Vehicles admitted to traffic meet the minimum conditions imposed by homologation regulations, but reducing the swept path width allows for improving the operational properties of the tractor–semi-trailer. The use of the proposed control algorithm to control the turn of the semi-trailer’s steered wheels brings tangible benefits both in improving road safety and in reducing the emission of harmful substances into the environment. Full article
(This article belongs to the Special Issue Sensors and Systems for Automotive and Road Safety (Volume 2))
Show Figures

Figure 1

22 pages, 4382 KB  
Article
The Management of Harmful Emissions from Heavy-Duty Transport Towards Sustainable Development
by Olena Stryhunivska, Bożena Zwolińska and Robert Giel
Sustainability 2024, 16(24), 10988; https://doi.org/10.3390/su162410988 - 14 Dec 2024
Cited by 1 | Viewed by 2352
Abstract
The increasing number of heavy-duty vehicles (HDVs) on roads has become a major contributor to harmful emissions, posing critical environmental challenges and exacerbating global warming. This study aims to establish correlations between road types and the emissions they generate, offering actionable insights for [...] Read more.
The increasing number of heavy-duty vehicles (HDVs) on roads has become a major contributor to harmful emissions, posing critical environmental challenges and exacerbating global warming. This study aims to establish correlations between road types and the emissions they generate, offering actionable insights for logistics planning and strategies to mitigate diesel vehicle emissions. The analysis is based on input data from a selected transport company, covering parameters such as vehicle type, average mileage, speed, and driving style, as well as environmental conditions like ambient temperature and humidity. Emissions and energy consumption levels are estimated using the COPERT model. A key research challenge involves accurately predicting and managing air pollution caused by HDVs under varying vehicular, technological, and fuel conditions, as well as fluctuating atmospheric and operational factors. The findings indicate that highway driving produces the highest emissions of pollutants such as Se and Zn, while urban peak hours record the highest levels of NOx, NO, and NO2. These results emphasise the critical role of strategic route selection in reducing total emissions and managing levels of individual harmful substances. This research highlights the importance of integrating sustainable practices into transport planning to reduce environmental impacts, align with global climate objectives, and advance sustainable development in the transport sector. Full article
(This article belongs to the Special Issue Low-Carbon Logistics and Supply Chain Management)
Show Figures

Figure 1

17 pages, 3430 KB  
Article
Chemical Assessment of Real Driving Tire and Road Wear Particles in Urban and Suburban Seoul, Korea
by Sunhee Mun, Hwansoo Chong, Yunsung Lim and Sangil Kwon
Sustainability 2024, 16(23), 10395; https://doi.org/10.3390/su162310395 - 27 Nov 2024
Cited by 1 | Viewed by 2474
Abstract
Extensive research about non-exhaust fine particles from tires and brakes in vehicles has been reported, focusing on the significant effects on air pollution and human harm. Significant investigations are still needed in determining the cause of influence on the environment and human health. [...] Read more.
Extensive research about non-exhaust fine particles from tires and brakes in vehicles has been reported, focusing on the significant effects on air pollution and human harm. Significant investigations are still needed in determining the cause of influence on the environment and human health. The regulations on emissions have been discussed in earnest, starting with the introduction of brake wear particle emission standards in Euro 7. Various indoor and outdoor experiments have been conducted, such as analysis of the amount of wear on tires and brakes, and analysis of the physical and chemical properties of fine particles, and the effect of non-exhaust fine wear particles on the atmosphere and human health, as fundamental data for the introduction of emission standards and the development of low-wear tires and brakes to meet regulations. Recently, international standardized indoor experimental methods for brakes have been announced, and indoor and outdoor experimental methods for tires have been continuously studied to develop international standardized methods. In particular, tire and road wear particles, including brake wear particles, are usually mixed with each other in the non-exhaust particles from a vehicle driving on real roads, and in-depth research is being performed on their accurate classification and characteristic analysis. In this study, the characteristics of the volatile organic compounds and marker substances for tire and tire and road wear particles were analyzed. A system was installed on the vehicle to collect non-exhaust wear fine particles from the vehicle running on two different roads, urban and suburban, of the Seoul area, and the proving ground road. The specific findings are as follows: (1) From the chemical analysis of the volatile organic compounds, high n-hexane and n-dodecane were measured in the tire–road-wear particles. (2) The volatile organic compound species in the PM2.5 (aerodynamic diameter ≤ 2.5 µm) increased as the vehicle velocity increased. (3) For the PM10 (aerodynamic diameter ≤ 10 µm), high volatile organic compound species were recorded at 40 km/h of the vehicle velocity. (4) This study also revealed that higher vinylcyclohexene and dipentene were measured in the particle size below 10 μm than those in PM2.5. Full article
Show Figures

Figure 1

23 pages, 7308 KB  
Article
Reforming Natural Gas for CO2 Pre-Combustion Capture in Trinary Cycle Power Plant
by Nikolay Rogalev, Andrey Rogalev, Vladimir Kindra, Olga Zlyvko and Dmitriy Kovalev
Energies 2024, 17(22), 5544; https://doi.org/10.3390/en17225544 - 6 Nov 2024
Cited by 4 | Viewed by 1875
Abstract
Today, most of the world’s electric energy is generated by burning hydrocarbon fuels, which causes significant emissions of harmful substances into the atmosphere by thermal power plants. In world practice, flue gas cleaning systems for removing nitrogen oxides, sulfur, and ash are successfully [...] Read more.
Today, most of the world’s electric energy is generated by burning hydrocarbon fuels, which causes significant emissions of harmful substances into the atmosphere by thermal power plants. In world practice, flue gas cleaning systems for removing nitrogen oxides, sulfur, and ash are successfully used at power facilities but reducing carbon dioxide emissions at thermal power plants is still difficult for technical and economic reasons. Thus, the introduction of carbon dioxide capture systems at modern power plants is accompanied by a decrease in net efficiency by 8–12%, which determines the high relevance of developing methods for increasing the energy efficiency of modern environmentally friendly power units. This paper presents the results of the development and study of the process flow charts of binary and trinary combined-cycle gas turbines with minimal emissions of harmful substances into the atmosphere. This research revealed that the net efficiency rate of a binary CCGT with integrated post-combustion technology capture is 39.10%; for a binary CCGT with integrated pre-combustion technology capture it is 40.26%; a trinary CCGT with integrated post-combustion technology capture is 40.35%; and for a trinary combined-cycle gas turbine with integrated pre-combustion technology capture it is 41.62%. The highest efficiency of a trinary CCGT with integrated pre-combustion technology capture is due to a reduction in the energy costs for carbon dioxide capture by 5.67 MW—compared to combined-cycle plants with integrated post-combustion technology capture—as well as an increase in the efficiency of the steam–water circuit of the combined-cycle plant by 3.09% relative to binary cycles. Full article
(This article belongs to the Topic Clean and Low Carbon Energy, 2nd Edition)
Show Figures

Figure 1

16 pages, 4260 KB  
Article
Thermogravimetric Analysis of Combustion of Semi-Coke Obtained from Coniferous Wood and Mixtures on Their Basis
by Andrey Zhuikov, Tatyana Pyanykh, Irina Grishina, Stanislav Chicherin and Yana Zhuikova
Fire 2024, 7(11), 385; https://doi.org/10.3390/fire7110385 - 28 Oct 2024
Cited by 6 | Viewed by 2392
Abstract
Coal remains one of the most used solid fuels for heat and electricity generation but burning coal releases large amounts of CO2 into the urban atmosphere in addition to harmful substances. In order to reduce the consumption of solid fossil fuels, it [...] Read more.
Coal remains one of the most used solid fuels for heat and electricity generation but burning coal releases large amounts of CO2 into the urban atmosphere in addition to harmful substances. In order to reduce the consumption of solid fossil fuels, it is necessary to search for fuels capable of replacing coal in terms of its thermal and environmental characteristics. One of the best alternative fuels is biomass, which is considered carbon neutral, but its thermal characteristics are worse than those of solid fossil fuels. In this work, an alternative to coal was studied for the first time, which was semi-coke, obtained by gasification at a temperature of 700–900 °C, the heat of combustion of which turned out to be higher than that of biomass before thermal treatment by 75%. We also studied fuel mixtures based on the resulting semi-coke. The aim of the work is to determine the main characteristics of combustion of semi-coke obtained from coniferous wood and mixtures based on them. The method of thermogravimetric analysis in oxidising medium at a heating rate of 20 °C/min was applied for the research. According to the results of this analysis, the ignition and burnout temperatures were determined, the combustion index was determined, the duration of coke residue combustion was determined, and synergetic interactions between the mixture components influencing the combustion characteristics were established. It was found that the ignition temperature of semi-coke is more than 50% higher than that of biomass and the burnout temperature is 10% higher. Adding 50% of biomass to semi-coke increases the combustion index by more than 30% and decreases the ignition temperature and burnout temperature. The mixture components synergistically interact with each other during combustion to reduce the value of maximum mass loss rate. It was found that the atomic ratios of O/C and H/C in semi-coke are lower than in biomass before gasification. Full article
(This article belongs to the Special Issue Ignition Mechanism and Advanced Combustion Technology)
Show Figures

Figure 1

15 pages, 11685 KB  
Article
Spatiotemporal Changes in Air Pollution within the Studied Road Segment
by Agata Jaroń and Anna Borucka
Sustainability 2024, 16(17), 7292; https://doi.org/10.3390/su16177292 - 24 Aug 2024
Cited by 2 | Viewed by 1597
Abstract
Environmental protection is a pivotal element of sustainable development, both essential and indispensable in the construction of smart, green cities. Road transport contributes significantly to atmospheric pollution, accounting for as much as 25% of annual emissions within the European Union (EU). To combat [...] Read more.
Environmental protection is a pivotal element of sustainable development, both essential and indispensable in the construction of smart, green cities. Road transport contributes significantly to atmospheric pollution, accounting for as much as 25% of annual emissions within the European Union (EU). To combat the adverse effects of road transport, the EU has set targets to reduce greenhouse gas emissions from both passenger and commercial vehicles. Consequently, sustainable air pollution management has become a focal point for numerous researchers. This study continues the investigation into the distribution of air pollutants along a specific highway segment in Poland. The article addresses two primary research questions: first, the temporal and spatial variations in air pollution adjacent to a major highway in Poland, and second, whether emission levels exhibit significant annual differences and if there is a correlation between pollutant concentrations and the distance from the roadway. The findings offer valuable data on one of the principal substances polluting the air along EU transportation routes. Moreover, the analysis provides recommendations for future road infrastructure renovation projects and strategies to protect the public from harmful traffic-related pollutants, thereby supporting the development of green cities in accordance with sustainable development principles. Full article
(This article belongs to the Special Issue Air Pollution Management and Environment Research)
Show Figures

Figure 1

14 pages, 5469 KB  
Proceeding Paper
Forecasting Traffic Flow Using Machine Learning Algorithms
by Makhamadaziz Rasulmukhamedov, Timur Tashmetov and Komoliddin Tashmetov
Eng. Proc. 2024, 70(1), 14; https://doi.org/10.3390/engproc2024070014 - 31 Jul 2024
Cited by 8 | Viewed by 4223
Abstract
This article is dedicated to the study of traffic flow forecasting at the intersection of Bogishamol Street in Tashkent, Uzbekistan. In the context of the rapid growth of vehicular traffic and frequent congestion, developing effective forecasting models is a pressing task that will [...] Read more.
This article is dedicated to the study of traffic flow forecasting at the intersection of Bogishamol Street in Tashkent, Uzbekistan. In the context of the rapid growth of vehicular traffic and frequent congestion, developing effective forecasting models is a pressing task that will help optimize traffic flow management. The research examines and analyzes various machine learning methods, such as decision trees, random forests, and gradient boosting, for predicting traffic intensity. The data for the models was collected using video cameras installed at the intersection which provided accurate and up-to-date traffic flow information. The main focus of the study is on the comparative analysis of the performance of these methods. The comparison was made using various evaluation metrics, such as the coefficient of determination (R2), mean squared error (MSE), and mean absolute error (MAE). These metrics allowed for an objective assessment of the accuracy and effectiveness of each method in the context of traffic flow prediction. The results of the study showed that the gradient boosting model demonstrated the best performance among the methods considered. It achieved the highest R2 values and the lowest MSE and MAE values, indicating its high accuracy and ability to adequately predict changes in traffic flows. The decision tree and random forest models also showed good results but were outperformed by gradient boosting in key indicators. The findings have significant practical implications. They can be used to develop intelligent traffic management systems aimed at increasing the capacity of roads and intersections. This, in turn, can help reduce congestion, lower emissions of harmful substances into the atmosphere, and decrease economic costs associated with traffic delays. Full article
Show Figures

Figure 1

11 pages, 1622 KB  
Article
Chemical Transformations of Benzyl Alcohol Caused by Atomic Chlorine
by Dariusz S. Sarzyński and Irena Majerz
Molecules 2024, 29(13), 3124; https://doi.org/10.3390/molecules29133124 - 30 Jun 2024
Viewed by 3577
Abstract
Atomic chlorine present in the polluted troposphere can form potentially carcinogenic compounds as a result of a reaction with a natural product. This paper examines the stability of benzyl alcohol—a natural product commonly found in cosmetics—in interaction with atomic chlorine, which is becoming [...] Read more.
Atomic chlorine present in the polluted troposphere can form potentially carcinogenic compounds as a result of a reaction with a natural product. This paper examines the stability of benzyl alcohol—a natural product commonly found in cosmetics—in interaction with atomic chlorine, which is becoming ever more present in the Earth’s atmosphere as a result of its pollution. Research shows that atomic chlorine generated in the gas phase easily penetrates the liquid phase of benzyl alcohol, resulting in the formation of hydrochloric acid. The resulting HCl initiates further transformations of benzyl alcohol. Our study presents the amounts of the reaction products. The quantitative analysis was made using the GC method, and all the products were identified using the GC-MS method. The products include dichloromethyl benzene, 2-chlorobenzyl alcohol, and 3-chlorobenzyl alcohol, which are harmful, but are formed in very small amounts. The harmful substance occurring in a much higher amount is benzyl chloride—that is a product of acidification of benzyl alcohol by HCl. Full article
(This article belongs to the Special Issue Analytical Techniques in Pharmaceutical and Biomedical Analysis II)
Show Figures

Figure 1

22 pages, 1939 KB  
Article
Comparative Life Cycle Assessment of Electric and Internal Combustion Engine Vehicles
by Andrey Kurkin, Evgeny Kryukov, Olga Masleeva, Yaroslav Petukhov and Daniil Gusev
Energies 2024, 17(11), 2747; https://doi.org/10.3390/en17112747 - 4 Jun 2024
Cited by 9 | Viewed by 13057
Abstract
This article is devoted to the ecological comparison of electric and internal combustion engine vehicles throughout their entire life cycle, from mining to recycling. A scientifically based approach to a comprehensive environmental assessment of the impact of vehicles on the environment has been [...] Read more.
This article is devoted to the ecological comparison of electric and internal combustion engine vehicles throughout their entire life cycle, from mining to recycling. A scientifically based approach to a comprehensive environmental assessment of the impact of vehicles on the environment has been developed. To analyze the impact on the environmental situation, aspects such as the consumption of natural resources, waste generation, electricity consumption, emission of harmful substances into the atmosphere, water consumption, and greenhouse gas emissions are taken into consideration. As a result of comparing the environmental impacts of vehicles, it was found that natural resources consumption and production of industrial waste from electric vehicles (EV) is 6 times higher than from internal combustion engine vehicles (ICEV). Harmful substance emissions and greenhouse gas emissions from EV production are 1.65 and 1.5 times higher, respectively. The EV total electricity consumption is 1.4 times higher than that of ICEVs. At the same time, it was revealed that during operation, EVs have higher energy consumption and emit more harmful substances into the atmosphere, but EVs produce less greenhouse gas emissions. It means that at different life cycle stages, EVs have a much higher negative impact on the environment compared to gasoline engine vehicles. Full article
Show Figures

Figure 1

Back to TopTop