Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = habitability of Europa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4660 KiB  
Article
Early Technology Readiness Level (TRL) Development of the Microfluidic Inorganic Conductivity Detector for Europa and the Solenoid-Based Actuator Assembly for Impact Penetrators
by Chinmayee Govinda Raj, Mohamed Odeh, Cambrie Salyards and Amanda Stockton
Sensors 2024, 24(23), 7704; https://doi.org/10.3390/s24237704 - 2 Dec 2024
Viewed by 1097
Abstract
This study introduces an innovative in situ lander/impact-penetrator design tailored for Discovery-class missions to Europa, specifically focused on conducting astrobiological analyses. The platform integrates a microfluidic capacitively coupled contactless conductivity detector (C4D), optimized for the detection of low-concentration salts potentially indicative of biological [...] Read more.
This study introduces an innovative in situ lander/impact-penetrator design tailored for Discovery-class missions to Europa, specifically focused on conducting astrobiological analyses. The platform integrates a microfluidic capacitively coupled contactless conductivity detector (C4D), optimized for the detection of low-concentration salts potentially indicative of biological activity. Our microfluidic system allows for automated sample routing and precise conductivity-based detection, making it suitable for the harsh environmental and logistical demands of Europa’s icy surface. This technology provides a robust toolset for exploring extraterrestrial habitability by enabling in situ chemical analyses with minimal operational intervention, paving the way for advanced astrobiological investigations on Europa. Full article
Show Figures

Figure 1

18 pages, 687 KiB  
Review
A Review on Hypothesized Metabolic Pathways on Europa and Enceladus: Space-Flight Detection Considerations
by Jessica M. Weber, Theresa C. Marlin, Medha Prakash, Bronwyn L. Teece, Katherine Dzurilla and Laura M. Barge
Life 2023, 13(8), 1726; https://doi.org/10.3390/life13081726 - 11 Aug 2023
Cited by 8 | Viewed by 5706
Abstract
Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies [...] Read more.
Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon’s ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions. Full article
(This article belongs to the Section Astrobiology)
Show Figures

Figure 1

16 pages, 1821 KiB  
Review
Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons
by Francisco Calapez, Rodrigo Dias, Rute Cesário, Diogo Gonçalves, Bruno Pedras, João Canário and Zita Martins
Life 2023, 13(2), 478; https://doi.org/10.3390/life13020478 - 9 Feb 2023
Cited by 3 | Viewed by 4834
Abstract
Some of the icy moons of the solar system with a subsurface ocean, such as Europa and Enceladus, are the targets of future space missions that search for potential extraterrestrial life forms. While the ice shells that envelop these moons have been studied [...] Read more.
Some of the icy moons of the solar system with a subsurface ocean, such as Europa and Enceladus, are the targets of future space missions that search for potential extraterrestrial life forms. While the ice shells that envelop these moons have been studied by several spacecrafts, the oceans beneath them remain unreachable. To better constrain the habitability conditions of these moons, we must understand the interactions between their frozen crusts, liquid layers, and silicate mantles. To that end, astrobiologists rely on planetary field analogues, for which the polar regions of Earth have proven to be great candidates. This review shows how spectroscopy is a powerful tool in space missions to detect potential biosignatures, in particular on the aforementioned moons, and how the polar regions of the Earth are being used as planetary field analogues for these extra-terrestrial environments. Full article
Show Figures

Figure 1

16 pages, 6017 KiB  
Article
Modeling Virus and Bacteria Populations in Europa’s Subsurface Ocean
by Adriana C. Gomez-Buckley, Gordon M. Showalter and Michael L. Wong
Life 2022, 12(5), 620; https://doi.org/10.3390/life12050620 - 21 Apr 2022
Cited by 4 | Viewed by 6476
Abstract
The search for life in the universe is often informed by the study of “extreme” environments on Earth, which provide analogs for habitable locations in the Solar System, and whose microbial inhabitants may therefore also serve as analogs for potential life forms in [...] Read more.
The search for life in the universe is often informed by the study of “extreme” environments on Earth, which provide analogs for habitable locations in the Solar System, and whose microbial inhabitants may therefore also serve as analogs for potential life forms in extraterrestrial milieus. Recent work has highlighted the ubiquity and importance of viral entities in terrestrial ecosystems, which calls for a greater understanding of the roles that viruses might play in hypothetical extraterrestrial biomes. While some studies have modeled the dynamics of viral and bacterial populations in icy ocean environments on Earth, previous work has yet to apply these findings to icy ocean worlds such as Jupiter’s moon Europa. It is commonly theorized that hydrothermal vents on Europa could produce the necessary reductants for chemosynthesis to take place on the ocean bottom. In the case that Europa’s ocean is a reductant-limited environment, how might reductants and organic matter reach the sub-ice region to power a more easily accessible ecosystem? Here, we propose a ‘viral elevator,’ a mechanism that functions similarly to the ‘viral shunt’ in Earth’s oceans, which could create and shuttle dissolved organic matter (DOM) to a hypothetical sub-ice biosphere through viral carriers. Current models of Europa’s ocean currents and stratification support the movement of DOM to the sub-ice biosphere. We adapt an existing model for bacterial and viral population dynamics in Earth’s Arctic sea ice to Europa and use parameters from various Arctic-based studies as proxies for Europa’s environment. We find that viral burst size has the most significant effect on the virus-to-bacteria ratio (VBR) and system longevity in closed systems (such as brine pockets within Europa’s icy crust), with higher burst sizes clearly increasing both. When applying our model to an open system with an influx of DOM from the viral elevator, we found that a steady-state system is attainable, with resulting sub-ice biofilms on the order of 0.1 mm thick (global equivalent layer). This has implications for future searches for life on Europa, given that life directly under the ice will be easier to detect and observe than life near the ocean bottom. Full article
(This article belongs to the Special Issue Frontiers of Astrobiology, Volume II)
Show Figures

Figure 1

19 pages, 4323 KiB  
Article
Morphological Phenotypes, Cell Division, and Gene Expression of Escherichia coli under High Concentration of Sodium Sulfate
by Khanh Nguyen and Pradeep Kumar
Microorganisms 2022, 10(2), 274; https://doi.org/10.3390/microorganisms10020274 - 25 Jan 2022
Cited by 10 | Viewed by 4830
Abstract
Sodium and sulfate ions are among the suggested abundant ions on Europa, a moon of Jupiter. In order to investigate the potential habitability of Europa, we study the effects of sodium sulfate (Na2SO4) on a non-halophilic bacterium by subjecting [...] Read more.
Sodium and sulfate ions are among the suggested abundant ions on Europa, a moon of Jupiter. In order to investigate the potential habitability of Europa, we study the effects of sodium sulfate (Na2SO4) on a non-halophilic bacterium by subjecting Escherichia coli (E. coli) to a wide range of Na2SO4 concentrations (0–1.0 m). We discover that, as the concentration of sodium sulfate increases, the biomass doubling time increases and the cell growth is completely inhibited at 1.0 m Na2SO4. Furthermore, we find that E. coli exhibits three distinct morphological phenotypes—(i) shortened, (ii) normal, and (iii) elongated/filamented cells at 0.6 m and 0.8 m Na2SO4. We have examined the expression of different genes involved in sodium and sulfate transport (nhaA, nhaB, cysZ, sbp), osmotically driven transport of water (aqpZ), sulfate metabolism (cysN), fatty acid production (fabA), and a global transcriptional regulator (osmZ). Our results suggest that the expression of these genes is not affected significantly at high concentrations of sodium sulfate in the exponential growth phase. Using our experimental data and the existing data in the literature, we show that the osmotic pressure difference may play a major role in determining the growth inhibition of E. coli and B. subtilis at high concentrations of salt. Full article
(This article belongs to the Special Issue Halophilic Microorganisms)
Show Figures

Figure 1

49 pages, 19325 KiB  
Article
How Well Do We Know Europa’s Topography? An Evaluation of the Variability in Digital Terrain Models of Europa
by Michael T. Bland, Randolph L. Kirk, Donna M. Galuszka, David P. Mayer, Ross A. Beyer and Robin L. Fergason
Remote Sens. 2021, 13(24), 5097; https://doi.org/10.3390/rs13245097 - 15 Dec 2021
Cited by 9 | Viewed by 3771
Abstract
Jupiter’s moon Europa harbors one of the most likely environments for extant extraterrestrial life. Determining whether Europa is truly habitable requires understanding the structure and thickness of its ice shell, including the existence of perched water or brines. Stereo-derived topography from images acquired [...] Read more.
Jupiter’s moon Europa harbors one of the most likely environments for extant extraterrestrial life. Determining whether Europa is truly habitable requires understanding the structure and thickness of its ice shell, including the existence of perched water or brines. Stereo-derived topography from images acquired by NASA Galileo’s Solid State Imager (SSI) of Europa are often used as a constraint on ice shell structure and heat flow, but the uncertainty in such topography has, to date, not been rigorously assessed. To evaluate the current uncertainty in Europa’s topography we generated and compared digital terrain models (DTMs) of Europa from SSI images using both the open-source Ames Stereo Pipeline (ASP) software and the commercial SOCET SET® software. After first describing the criteria for assessing stereo quality in detail, we qualitatively and quantitatively describe both the horizontal resolution and vertical precision of the DTMs. We find that the horizontal resolution of the SOCET SET® DTMs is typically 8–11× the root mean square (RMS) pixel scale of the images, whereas the resolution of the ASP DTMs is 9–13× the maximum pixel scale of the images. We calculate the RMS difference between the ASP and SOCET SET® DTMs as a proxy for the expected vertical precision (EP), which is a function of the matching accuracy and stereo geometry. We consistently find that the matching accuracy is ~0.5 pixels, which is larger than well-established “rules of thumb” that state that the matching accuracy is 0.2–0.3 pixels. The true EP is therefore ~1.7× larger than might otherwise be assumed. In most cases, DTM errors are approximately normally distributed, and errors that are several times the derived EP occur as expected. However, in two DTMs, larger errors (differences) occur and correlate with real topography. These differences primarily result from manual editing of the SOCET SET® DTMs. The product of the DTM error and the resolution is typically 4–8 pixel2 if calculated using the RMS image scale for SOCET SET® DTMs and the maximum images scale for the ASP DTMs, which is consistent with recent work using martian data sets and suggests that the relationship applies more broadly. We evaluate how ASP parameters affect DTM quality and find that using a smaller subpixel refinement kernel results in DTMs with smaller (better) resolution but, in some cases, larger gaps, which are sometimes reduced by increasing the size of the correlation kernel. We conclude that users of ASP should always systematically evaluate the choice of parameters for a given dataset. Full article
(This article belongs to the Special Issue Planetary 3D Mapping, Remote Sensing and Machine Learning)
Show Figures

Figure 1

10 pages, 1370 KiB  
Brief Report
Complex Brines and Their Implications for Habitability
by Nilton O. Renno, Erik Fischer, Germán Martínez and Jennifer Hanley
Life 2021, 11(8), 847; https://doi.org/10.3390/life11080847 - 19 Aug 2021
Cited by 5 | Viewed by 3249
Abstract
There is evidence that life on Earth originated in cold saline waters around scorching hydrothermal vents, and that similar conditions might exist or have existed on Mars, Europa, Ganymede, Enceladus, and other worlds. Could potentially habitable complex brines with extremely low freezing temperatures [...] Read more.
There is evidence that life on Earth originated in cold saline waters around scorching hydrothermal vents, and that similar conditions might exist or have existed on Mars, Europa, Ganymede, Enceladus, and other worlds. Could potentially habitable complex brines with extremely low freezing temperatures exist in the shallow subsurface of these frigid worlds? Earth, Mars, and carbonaceous chondrites have similar bulk elemental abundances, but while the Earth is depleted in the most volatile elements, the Icy Worlds of the outer solar system are expected to be rich in them. The cooling of ionic solutions containing substances that likely exist in the Icy Worlds could form complex brines with the lowest eutectic temperature possible for the compounds available in them. Indeed, here, we show observational and theoretical evidence that even elements present in trace amounts in nature are concentrated by freeze–thaw cycles, and therefore contribute significantly to the formation of brine reservoirs that remain liquid throughout the year in some of the coldest places on Earth. This is interesting because the eutectic temperature of water–ammonia solutions can be as low as ~160 K, and significant fractions of the mass of the Icy Worlds are estimated to be water substance and ammonia. Thus, briny solutions with eutectic temperature of at least ~160 K could have formed where, historically, temperature have oscillated above and below ~160 K. We conclude that complex brines must exist in the shallow subsurface of Mars and the Icy Worlds, and that liquid saline water should be present where ice has existed, the temperature is above ~160 K, and evaporation and sublimation have been inhibited. Full article
(This article belongs to the Special Issue Microbial Life in the Solar System)
Show Figures

Figure 1

15 pages, 17950 KiB  
Article
Growth, Cell Division, and Gene Expression of Escherichia coli at Elevated Concentrations of Magnesium Sulfate: Implications for Habitability of Europa and Mars
by Sudip Nepal and Pradeep Kumar
Microorganisms 2020, 8(5), 637; https://doi.org/10.3390/microorganisms8050637 - 27 Apr 2020
Cited by 13 | Viewed by 5994
Abstract
We perform quantitative studies of the growth, death, and gene expression of Escherichia coli in a wide range of magnesium sulfate (MgSO 4 ) concentrations (0–2.5 M). Elevated concentration of MgSO 4 causes the inhibition of cell growth, leading to an increase in [...] Read more.
We perform quantitative studies of the growth, death, and gene expression of Escherichia coli in a wide range of magnesium sulfate (MgSO 4 ) concentrations (0–2.5 M). Elevated concentration of MgSO 4 causes the inhibition of cell growth, leading to an increase in the population doubling time. We find that cells exhibit three distinct morphological phenotypes—(i) normal, (ii) filamentous, and (iii) small cells at 1.25 M MgSO 4 . Filamentous cells arise due to the lack of cell division, while the small cells arise due to the partial plasmolysis of the cells. We further find that cell death starts for salt concentrations >1.25 M and increases with an increasing concentration of MgSO 4 . For salt concentrations ≥1.66 M, the growth of cells stops and all the cells become smaller than the control cells, suggesting the plasmolysis of the population. Cells grown at salt concentration up to 2.07 M are reversible in both the growth rate and morphology upon the removal of the salt stress. The time scale of reversibility increases with increasing salt concentration. Finally, we investigate the expression of an osmotically inducible gene (osmC), genes involved in magnesium transport (corA), sulfate transport (cysP), and osmotically driven transport of water (aqpZ). We find that a high concentration of magnesium sulfate leads to the upregulation of cysP and osmC. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 2597 KiB  
Article
Survivability of Anhydrobiotic Cyanobacteria in Salty Ice: Implications for the Habitability of Icy Worlds
by Barbara Cosciotti, Amedeo Balbi, Alessandra Ceccarelli, Claudia Fagliarone, Elisabetta Mattei, Sebastian Emanuel Lauro, Federico Di Paolo, Elena Pettinelli and Daniela Billi
Life 2019, 9(4), 86; https://doi.org/10.3390/life9040086 - 22 Nov 2019
Cited by 11 | Viewed by 5221
Abstract
Two anhydrobiotic strains of the cyanobacterium Chroococcidiopsis, namely CCMEE 029 and CCMEE 171, isolated from the Negev Desert in Israel and from the Dry Valleys in Antarctica, were exposed to salty-ice simulations. The aim of the experiment was to investigate the cyanobacterial [...] Read more.
Two anhydrobiotic strains of the cyanobacterium Chroococcidiopsis, namely CCMEE 029 and CCMEE 171, isolated from the Negev Desert in Israel and from the Dry Valleys in Antarctica, were exposed to salty-ice simulations. The aim of the experiment was to investigate the cyanobacterial capability to survive under sub-freezing temperatures in samples simulating the environment of icy worlds. The two strains were mixed with liquid solutions having sub-eutectic concentration of Na2SO4, MgSO4 and NaCl, then frozen down to different final temperatures (258 K, 233 K and 203 K) in various experimental runs. Both strains survived the exposure to 258 K in NaCl solution, probably as they migrated in the liquid veins between ice grain boundaries. However, they also survived at 258 K in Na2SO4 and MgSO4-salty-ice samples—that is, a temperature well below the eutectic temperature of the solutions, where liquid veins should not exist anymore. Moreover, both strains survived the exposure at 233 K in each salty-ice sample, with CCMEE 171 showing an enhanced survivability, whereas there were no survivors at 203 K. The survival limit at low temperature was further extended when both strains were exposed to 193 K as air-dried cells. The results suggest that vitrification might be a strategy for microbial life forms to survive in potentially habitable icy moons, for example in Europa’s icy crust. By entering a dried, frozen state, they could be transported from niches, which became non-habitable to new habitable ones, and possibly return to metabolic activity. Full article
(This article belongs to the Special Issue Planetary Exploration of Habitable Environments)
Show Figures

Figure 1

16 pages, 2676 KiB  
Article
The Oxygen Release Instrument: Space Mission Reactive Oxygen Species Measurements for Habitability Characterization, Biosignature Preservation Potential Assessment, and Evaluation of Human Health Hazards
by Christos D. Georgiou, Christopher P. McKay, Richard C. Quinn, Electra Kalaitzopoulou, Polyxeni Papadea and Marianna Skipitari
Life 2019, 9(3), 70; https://doi.org/10.3390/life9030070 - 27 Aug 2019
Cited by 2 | Viewed by 4555
Abstract
We describe the design of an instrument, the OxR (for Oxygen Release), for the enzymatically specific and non-enzymatic detection and quantification of the reactive oxidant species (ROS), superoxide radicals (O2•−), and peroxides (O22−, e.g., H2O [...] Read more.
We describe the design of an instrument, the OxR (for Oxygen Release), for the enzymatically specific and non-enzymatic detection and quantification of the reactive oxidant species (ROS), superoxide radicals (O2•−), and peroxides (O22−, e.g., H2O2) on the surface of Mars and Moon. The OxR instrument is designed to characterize planetary habitability, evaluate human health hazards, and identify sites with high biosignature preservation potential. The instrument can also be used for missions to the icy satellites of Saturn’s Titan and Enceladus, and Jupiter’s Europa. The principle of the OxR instrument is based on the conversion of (i) O2•− to O2 via its enzymatic dismutation (which also releases H2O2), and of (ii) H2O2 (free or released by the hydrolysis of peroxides and by the dismutation of O2•−) to O2 via enzymatic decomposition. At stages i and ii, released O2 is quantitatively detected by an O2 sensor and stoichiometrically converted to moles of O2•− and H2O2. A non-enzymatic alternative approach is also designed. These methods serve as the design basis for the construction of a new small-footprint instrument for specific oxidant detection. The minimum detection limit of the OxR instrument for O2•− and O22− in Mars, Lunar, and Titan regolith, and in Europa and Enceladus ice is projected to be 10 ppb. The methodology of the OxR instrument can be rapidly advanced to flight readiness by leveraging the Phoenix Wet Chemical Laboratory, or microfluidic sample processing technologies. Full article
(This article belongs to the Special Issue Themed Issue Commemorating Prof. David Deamer's 80th Birthday)
Show Figures

Figure 1

Back to TopTop