Complex Brines and Their Implications for Habitability
Abstract
1. Introduction
2. Freeze–Thaw Cycles and the Formation of Complex Brines
3. Low Temperature Brine Candidates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hays, L.; Achenbach, L.; Bailey, J.; Barnes, R.; Baross, J.; Bertka, C.; Boston, P.; Boyd, E.; Cable, M.; Chen, I.; et al. NASA Astrobiology Strategy. 2015. Available online: http://astrobiology.nasa.gov/uploads/filer_public/01/28/01283266-e401-4dcb-8e05-3918b21edb79/nasa_astrobiology_strategy_2015_151008.pdf (accessed on 12 August 2021).
- Siegel, B.Z.; McMurty, G.; Siegel, S.M.; Chen, J.; LaRock, P. Life in the calcium chloride environment of Don Juan pond, Antarctica. Nature 1979, 280, 828–829. [Google Scholar] [CrossRef]
- Marion, G.M.; Fritsen, C.H.; Eicken, H.; Payne, M.C. The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 2003, 3, 785–811. [Google Scholar] [CrossRef]
- Hoehler, T. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2004, 2, 205–215. [Google Scholar] [CrossRef]
- Wackett, L.; Dodge, A.; Ellis, L. Microbial genomics and the periodic table. Appl. Environ. Microbiol. 2004, 70, 647–655. [Google Scholar] [CrossRef]
- NRC. Searching for Life Across Space and Time. Proceedings of a Workshop; National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Pappalardo, R.T.; Vance, S.; Bagenal, F.; Bills, B.G.; Blaney, D.L.; Blankenship, D.D.; Brinckerhoff, W.B.; Connerney, J.E.P.; Hand, K.P.; Hoehler, T.M.; et al. Science potential from a Europa lander. Astrobiology 2013, 13, 740–773. [Google Scholar] [CrossRef] [PubMed]
- Rummel, J.D.; Beaty, D.W.; Jones, M.A.; Bakermans, C.; Barlow, N.G.; Boston, P.J.; Chevrier, V.F.; Clark, B.C.; de Vera, J.P.; Gough, R.V.; et al. A new analysis of Mars “special regions”: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 2014, 14, 887–968. [Google Scholar] [CrossRef] [PubMed]
- Junge, K.; Krembs, C.; Deming, J.; Stierle, A.; Eicken, H. A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann. Glaciol. 2001, 33, 304–310. [Google Scholar] [CrossRef]
- Wankat, P.C. Desalination by natural freezing. Desalination 1973, 13, 147–157. [Google Scholar] [CrossRef]
- Rennó, N.O.; Bos, B.J.; Catling, D.; Clark, B.C.; Drube, L.; Fisher, D.; Goetz, W.; Hviid, S.F.; Keller, H.U.; Kok, J.F.; et al. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res. Planets 2009, 114, 1991–2012. [Google Scholar] [CrossRef]
- Besley, L.M.; Bottomley, G.A. The water vapour equilibria over magnesium perchlorate hydrates. J. Chem. Thermodyn. 1969, 1, 13–19. [Google Scholar] [CrossRef]
- Pestova, O.N.; Myund, L.A.; Khripun, M.K.; Prigaro, A.V. Polythermal study of the systems M(ClO4)2-H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russ. J. Appl. Chem. 2005, 78, 409–413. [Google Scholar] [CrossRef]
- Hecht, M.H.; Kounaves, S.P.; Quinn, R.C.; West, S.J.; Young, S.M.M.; Ming, D.W.; Catling, D.C.; Clark, B.C.; Boynton, W.V.; Hoffman, J.; et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 2009, 325, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.; Martínez, G.M.; Elliott, H.M.; Rennó, N.O. Experimental evidence for the formation of liquid saline water on Mars. Geophys. Res. Lett. 2014, 41, 4456–4462. [Google Scholar] [CrossRef] [PubMed]
- Toner, J.D.; Catling, D.C.; Light, B. Soluble salts at the Phoenix Lander site, Mars: A reanalysis of the Wet Chemistry Laboratory data. Geochim. et Cosmochim. Acta 2014, 136, 142–168. [Google Scholar] [CrossRef]
- Toner, J.D.; Catling, D.C. Water activities of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental heat capacities: Water activity> 0.6 below 200 K. Geochim. Cosmochim. Acta 2016, 181, 164–174. [Google Scholar] [CrossRef]
- Koop, T.; Kapilashrami, A.; Molina, L.T.; Molina, M.J. Phase transitions of sea-salt/water mixtures at low temperatures: Implications for ozone chemistry in the polar marine boundary layer. J. Geophys. Res. 2000, 105, 26393–26402. [Google Scholar] [CrossRef]
- Brass, G.W. Stability of brines on Mars. Icarus 1980, 42, 20–28. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Sanloup, C.; Jambon, A.; Gillet, P. A simple chondritic model of Mars. Phys. Earth Planet. Inter. 1999, 112, 43–54. [Google Scholar] [CrossRef]
- Lewis, J.S. Satellites of the outer planets: Their physical and chemical nature. Icarus 1971, 15, 174–185. [Google Scholar] [CrossRef]
- Kargel, J.S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 1991, 94, 368–390. [Google Scholar] [CrossRef]
- Kargel, J.S. Ammonia-water volcanism on icy satellites: Phase relations at 1 atmosphere. Icarus 1992, 100, 556–574. [Google Scholar] [CrossRef]
- Waite, J.H., Jr.; Lewis, W.S.; Magee, B.A.; Lunine, J.I.; McKinnon, W.B.; Glein, C.R.; Mousis, O.; Young, D.T.; Brockwell, T.; Westlake, J.; et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 2009, 460, 487. [Google Scholar] [CrossRef]
- Farmer, C.B. Liquid water on Mars. Icarus 1976, 28, 279–289. [Google Scholar] [CrossRef]
- Clark, B.C.; Van Hart, D.C. The salts of Mars. Icarus 1981, 45, 370–378. [Google Scholar] [CrossRef]
- Johnson, R.E. Surface chemistry in the Jovian magnetosphere radiation environment. Chem. Dyn. Extrem. Environ. 2001, 11, 390–419. [Google Scholar]
- McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.D.; Crowley, J.K.; Martin, P.D.; Ocampo, A.; et al. Salts on Europa’s surface detected by Galileo’s nearinfrared mapping spectrometer. Science 1998, 280, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.M.; Bullock, M.A. Experimental studies of Mars-analog brines. J. Geophys. Res. 1999, 104, 21925–21934. [Google Scholar] [CrossRef]
- Dalton, J.B.; Prieto-Ballesteros, O.; Kargel, J.S.; Jamieson, C.S.; Jolivet, J.; Quinn, R. Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 2005, 177, 472–490. [Google Scholar] [CrossRef]
- McKinnon, W.B.; Prialnik, D.; Stern, S.A.; Coradini, A. Structure and evolution of Kuiper belt objects and dwarf planets. Sol. Syst. Beyond Neptune 2008, 1, 213–241. [Google Scholar]
- Chevrier, V.F.; Altheide, T.S. Low temperature aqueous ferric sulfate solutions on the surface of Mars. Geophys. Res. Lett. 2008, 35, L22101. [Google Scholar] [CrossRef]
- Glavin, D.P.; Freissinet, C.; Miller, K.E.; Eigenbrode, J.L.; Brunner, A.E.; Buch, A.; Sutter, B.; Archer, P.D., Jr.; Atreya, S.K.; Brinckerhoff, W.B.; et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 2013, 118, 1955–1973. [Google Scholar] [CrossRef]
- Hand, K.P.; Carlson, R.W. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices. J. Geophys. Res. Planets 2012, 117, E3008. [Google Scholar] [CrossRef]
- Hanley, J.; Dalton III, J.B.; Chevrier, V.F.; Jamieson, C.S.; Barrows, R.S. Reflectance spectra of hydrated chlorine salts: The effect of temperature with implications for Europa. J. Geophys. Res. Planets 2014, 119, 2370–2377. [Google Scholar] [CrossRef]
- Ming, D.W.; Archer, P.D.; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; et al. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1245267. [Google Scholar] [CrossRef]
- Osterloo, M.M.; Anderson, F.S.; Hamilton, V.E.; Hynek, B.M. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. Planets 2010, 115, E10012. [Google Scholar] [CrossRef]
- Fischer, P.D.; Brown, M.E.; Hand, K.P. Spatially Resolved Spectroscopy of Europa: The Distinct Spectrum of Large-scale Chaos. Astron. J. 2015, 150, 164. [Google Scholar] [CrossRef]
- Hammond, N.P.; Parmenteir, E.M.; Barr, A.C. Compaction and Melt Transport in Ammonia-Rich Ice Shells: Implications for the Evolution of Triton. J. Geophys. Res. Planets 2018, 123, 3105–3118. [Google Scholar] [CrossRef]
- Ligier, N.; Poulet, F.; Carter, J.; Brunetto, R.; Gourgeot, F. VLT/SINFONI observations of Europa: New insights into the surface composition. Astron. J. 2016, 151, 163. [Google Scholar] [CrossRef]
- Trumbo, S.K.; Brown, M.E.; Hand, K.P. Sodium chloride on the surface of Europa. Sci. Adv. 2019, 5, eaaw7123. [Google Scholar] [CrossRef] [PubMed]
- Fanale, F.P.; Li, Y.H.; De Carlo, E.; Farley, C.; Sharma, S.K.; Horton, K.; Granahan, J.C. An experimental estimate of Europa’s “ocean” composition independent of Galileo orbital remote sensing. J. Geophys. Res. Planets 2001, 106, 14595–14600. [Google Scholar] [CrossRef]
- Zolotov, M.Y.; Shock, E.L. Composition and stability of salts on the surface of Europa and their oceanic origin. J. Geophys. Res. Planets 2001, 106, 32815–32827. [Google Scholar] [CrossRef]
- Burt, D.M.; Knauth, L.P. Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. J. Geophys. Res. Planets 2003, 108, 8026. [Google Scholar] [CrossRef]
- Dickson, J.L.; Head, J.W.; Levy, J.S.; Marchant, D.R. Don Juan Pond, Antarctica: Near-surface CaCl 2-brine feeding Earth’s most saline lake and implications for Mars. Sci. Rep. 2013, 3, 1166. [Google Scholar] [CrossRef] [PubMed]
- Gough, R.V.; Chevrier, V.F.; Tolbert, M.A. Formation of liquid water at low temperatures via the deliquescence of calcium chloride: Implications for Antarctica and Mars. Planet. Space Sci. 2016, 131, 79–87. [Google Scholar] [CrossRef]
- Rupert, F.F. The Solid Hydrates of Ammonia. J. Am. Chem. Soc. 1909, 31, 866–868. [Google Scholar] [CrossRef][Green Version]
- Birch, A.J.; MacDonald, D.K.C. Metal-ammonia solutions. Nature 1947, 159, 811. [Google Scholar] [CrossRef]
- Coulter, L.V.; Gibson, J.K.; Mammano, N. Low-temperature thermal effects in lithium/ammonia-d3 systems. J. Phys. Chem. 1984, 88, 3896–3900. [Google Scholar] [CrossRef]
- Dundas, C.M.; McEwen, A.S.; Chojnacki, M.; Milazzo, M.P.; Byrne, S.; McElwaine, J.N.; Urso, A. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nat. Geosci. 2017, 10, 903–907. [Google Scholar] [CrossRef]
- McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C. Seasonal flows on warm Martian slopes. Science 2011, 333, 740–743. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Rivera-Valentin, E.G. Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys. Res. Lett. 2012, 39, L21202. [Google Scholar] [CrossRef]
- Heinz, J.; Schulze-Makuch, D.; Kounaves, S.P. Deliquescence-induced wetting and RSL-like darkening of a Mars analogue soil containing various perchlorate and chloride salts. Geophys. Res. Lett. 2016, 43, 4880–4884. [Google Scholar] [CrossRef]
- Ojha, L.; Wilhelm, M.B.; Murchie, S.L.; McEwen, A.S.; Wray, J.J.; Hanley, J.; Massé, M.; Chojnacki, M. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 2015, 8, 829–832. [Google Scholar] [CrossRef]
- Cull, S.; Arvidson, R.E.; Morris, R.V.; Wolff, M.; Mellon, M.T.; Lemmon, M.T. Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations. J. Geophys. Res. Planets 2010, 115, 1991–2012. [Google Scholar] [CrossRef]
- Smith, P.H.; Tamppari, L.K.; Arvidson, R.E.; Bass, D.; Blaney, D.; Boynton, W.V.; Carswell, A.; Catling, D.C.; Clark, B.C.; Duck, T.; et al. H2O at the Phoenix landing site. Science 2009, 325, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.; Martínez, G.M.; Rennó, N.O. Formation and persistence of liquid brine in the Martian polar region: Experimental analysis throughout the diurnal cycle at the Phoenix landing site. Astrobiology 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.; Martínez, G.M.; Rennó, N.O.; Tamppari, L.K.; Zent, A.P. Relative Humidity on Mars: New Results From the Phoenix TECP Sensor. J. Geophys. Res. Planets 2019, 124, 2780–2792. [Google Scholar] [CrossRef] [PubMed]
- Heinz, J.; Krahn, T.; Schulze-Makuch, D. A new record for microbial perchlorate tolerance: Fungal growth in NaClO4 brines and its implications for putative life on Mars. Life 2020, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Boetius, A.; Joye, S. Thriving in salt. Science 2009, 324, 1523–1525. [Google Scholar] [CrossRef] [PubMed]
- Haferburg, G.; Gröning, J.A.; Schmidt, N.; Kummer, N.A.; Erquicia, J.C.; Schlömann, M. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia. Microbiol. Res. 2017, 199, 19–28. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Boden, R.; Hillebrand, A.; Kumaresan, D.; Moussard, H.; Baciu, M.; Lu, Y.; Murrell, J.C. Life without light: Microbial diversity and evidence of sulfur-and ammonium-based chemolithotrophy in Movile Cave. ISME J. 2009, 3, 1093. [Google Scholar] [CrossRef]
- Mikucki, J.A.; Pearson, A.; Johnston, D.T.; Turchyn, A.V.; Farquhar, J.; Schrag, D.P.; Anbar, A.D.; Priscu, J.C.; Lee, P.A. A contemporary microbially maintained subglacial ferrous ocean. Science 2009, 324, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Siegert, M.J.; Ellis-Evans, J.C.; Tranter, M.; Mayer, C.; Petit, J.R.; Salamatin, A.; Priscu, J.C. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 2001, 414, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Rennó, N.O.; Backhus, R.; Cooper, C.; Flatico, J.M.; Fischer, E.; Greer, L.C.; Krasowski, M.J.; Kremic, T.; Martínez, G.M.; Prokop, N.F.; et al. A Simple Instrument Suite for Characterizing Habitability and Weathering: The Modern Aqueous Habitat Reconnaissance Suite (MAHRS). Astrobiology 2019, 19, 849–866. [Google Scholar] [CrossRef]
- Haberle, R.M.; McKay, C.P.; Schaeffer, J.; Cabrol, N.A.; Grin, E.A.; Zent, A.P.; Quinn, R. On the possibility of liquid water on present-day Mars. J. Geophys. Res. Planets 2001, 106, 23317–23326. [Google Scholar] [CrossRef]
- Gough, R.V.; Chevrier, V.F.; Baustian, K.J.; Wise, M.E.; Tolbert, M.A. Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars. Earth Planet. Sci. Lett. 2011, 312, 371–377. [Google Scholar] [CrossRef]
- Möhlmann, D.T.F. Latitudinal distribution of temporary liquid cryobrines on Mars. Icarus 2011, 214, 236–239. [Google Scholar] [CrossRef]
- Harri, A.-M.; Genzer, M.; Kemppinen, O.; Gomez-Elvira, J.; Haberle, R.; Polkko, J.; Savijärvi, H.; Rennó, N.; Rodriguez-Manfredi, J.A.; Schmidtet, W.; et al. Mars Science Laboratory relative humidity observations: Initial results. J. Geophys. Res. Planets 2014, 119, 2132–2147. [Google Scholar] [CrossRef]
- Zent, A.P.; Hecht, M.H.; Cobos, D.R.; Wood, S.E.; Hudson, T.L.; Milkovich, S.M.; DeFlores, L.P.; Mellon, M.T. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res. 2010, 115, E00E14. [Google Scholar] [CrossRef]
- Bryson, K.L.; Chevrier, V.; Sears, D.W.G.; Ulrich, R. Stability of ice on Mars and the water vapor diurnal cycle: Experimental study of the sublimation of ice through a fine-grained basaltic regolith. Icarus 2008, 196, 446–458. [Google Scholar] [CrossRef]
- Clark, B.C. Implications of abundant hygroscopic minerals in the martian regolith. Icarus 1978, 34, 645–665. [Google Scholar] [CrossRef]
- Rao, M.N.; Sutton, S.R.; McKay, D.S.; Dreibus, G. Clues to Martian brines based on halogens in salts from nakhlites and MER samples. J. Geophys. Res. 2005, 110, E12S06. [Google Scholar] [CrossRef]
- Nichiporuk, W.; Moore, C.B. Lithium, sodium and potassium abundances in carbonaceous chondrites. Geochim. Cosmochim. Acta 1974, 38, 1691–1701. [Google Scholar] [CrossRef]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- McLennan, S.M.; Anderson, R.B.; Bell, J.F.; Bridges, J.C.; Calef, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; et al. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 2014, 343, 1244734. [Google Scholar] [CrossRef]
- Donald, L.H.; Sterner, S.M.; Robert, J. Bodnar Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol. 1988, 83, 197–202. [Google Scholar]
- Chevrier, V.F.; Hanley, J.; Altheide, T.S. Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars. Geophys. Res. Lett. 2009, 36, L10202. [Google Scholar] [CrossRef]
- Hanley, J.; Chevrier, V.F.; Berget, D.J.; Adams, R.D. Chlorate salts and solutions on Mars. Geophys. Res. Lett. 2012, 39, L08201. [Google Scholar] [CrossRef]
- Möhlmann, D.; Thomsen, K. Properties of cryobrines on Mars. Icarus 2011, 212, 123–130. [Google Scholar] [CrossRef]
- Ohtake, T. Freezing points of H2SO4 aqueous solutions and formation of stratospheric ice clouds. Tellus B 1993, 45, 138–144. [Google Scholar] [CrossRef]
- Green, W.J.; Lyons, W.B. The Saline Lakes of the McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 2009, 15, 321–348. [Google Scholar] [CrossRef]
- Biddanda, B.A.; Nold, S.C.; Ruberg, S.A.; Kendall, S.T.; Sanders, T.G.; Gray, J.J. Great Lakes sinkholes: A microbiogeochemical frontier. EOS Trans. 2009, 90, 61–62. [Google Scholar] [CrossRef]
- Joye, S.B.; Samarkin, V.A. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat. Geosci. 2009, 2, 349–354. [Google Scholar] [CrossRef]
- Baas-Becking, L.G.M. Salt effects on swarmers of Dunaliella viridis Teod. J. Gen. Physiol. 1931, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 13. [Google Scholar] [CrossRef]
- Wilkansky, B. Life in the Dead Sea. Nature 1936, 138, 467. [Google Scholar] [CrossRef]
- Arahal, D.R.; Dewhirst, F.E.; Paster, B.J.; Volcani, B.E.; Ventosa, A. Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl. Environ. Microbiol. 1996, 62, 3779–3786. [Google Scholar] [CrossRef] [PubMed]
- Walsby, A.E. A square bacterium. Nature 1980, 283, 69–71. [Google Scholar] [CrossRef]
- Finstad, K.M.; Probst, A.J.; Thomas, B.C.; Andersen, G.L.; Demergasso, C.; Echeverría, A.; Amundson, R.G.; Banfield, J.F. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics. Front. Microbiol. 2017, 8, 1435. [Google Scholar] [CrossRef] [PubMed]
- Pontefract, A.; Zhu, T.F.; Walker, V.K.; Hepburn, H.; Lui, C.; Zuber, M.T.; Ruvkun, G.; Carr, C.E. Microbial diversity in a hypersaline sulfate lake: A terrestrial analog of ancient Mars. Front. Microbiol. 2017, 8, 1819. [Google Scholar] [CrossRef]
- Bernhard, J.M.; Kormas, K.; Pachiadaki, M.G.; Rocke, E.; Beaudoin, D.J.; Morrison, C.; Visscher, P.T.; Cobban, A.; Starczak, V.R. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front. Microbiol. 2014, 5, 605. [Google Scholar] [CrossRef] [PubMed]
- Laye, V.J.; DasSarma, S. An Antarctic extreme halophile and its polyextremophilic enzyme: Effects of perchlorate salts. Astrobiology 2018, 18, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Heinz, J.; Waajen, A.C.; Airo, A.; Alibrandi, A.; Schirmack, J.; Schulze-Makuch, D. Bacterial growth in chloride and perchlorate brines: Halotolerances and salt stress responses of Planococcus halocryophilus. Astrobiology 2019, 19, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
Mars | Te in Water Solution (K) | Icy Worlds | Te in Water Solution (K) |
---|---|---|---|
Ca(ClO4)2 | 199 a | NaCl | 251 d |
Mg(ClO4)2 | 206 b | MgCl2 | 240 d |
Mg(ClO3)2 | 204 c | MgSO4 | 269 d |
Fe2(SO4)3 | 247 d | KCl | 262 e |
Ca(ClO3)2 | 232 c | H2 SO4 | 186 f |
CaCl2 | 223 d | Mg(ClO4)2 | 212 b |
MgSO4 | 269 d | LiBr | 201 d |
LiBr | 201 d | NH3 | ~160–170 e |
NH3 | ~160–170 e | Li-NH3 | ~90 f |
Environment | Salt and Salt Concentration | Microorganisms |
---|---|---|
Atacama’s salt crusts [91] | Nearly saturated NaCl | Halobacteriales, Bacteroidetes, Algae, and Cyanobacterial |
Dead Sea [86] | Ca, Mg and Na (nearly saturated) Chlorides | Algae (Dunaliella Salina) |
Spotted Lake [92] | Nearly saturated Sulfates | Archaea, uncharacterized Bacteria, and Cyanobacteria |
Don Juan Pond [2] | Saturated CaCl2 | Yeasts, Algae, Fungi and Bacteria |
Discovery Basin [93] | Nearly saturated MgCl2 | Protists and Fungi |
L’Atalante Basin [93] | Na and K Sulfates | Protists and Fungi |
Laboratory [60,94] | Perchlorates at 9% | Archea (Halorubrum lacusprofundi) |
Laboratory [60,95] | NaClO4 at 12% | Bacteria (Planococcus halocryophilus) |
Laboratory [60] | NaClO4 at 20% | Fungi (Debaryomyces hansenii) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renno, N.O.; Fischer, E.; Martínez, G.; Hanley, J. Complex Brines and Their Implications for Habitability. Life 2021, 11, 847. https://doi.org/10.3390/life11080847
Renno NO, Fischer E, Martínez G, Hanley J. Complex Brines and Their Implications for Habitability. Life. 2021; 11(8):847. https://doi.org/10.3390/life11080847
Chicago/Turabian StyleRenno, Nilton O., Erik Fischer, Germán Martínez, and Jennifer Hanley. 2021. "Complex Brines and Their Implications for Habitability" Life 11, no. 8: 847. https://doi.org/10.3390/life11080847
APA StyleRenno, N. O., Fischer, E., Martínez, G., & Hanley, J. (2021). Complex Brines and Their Implications for Habitability. Life, 11(8), 847. https://doi.org/10.3390/life11080847