Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = green walnut

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3152 KiB  
Article
Enzymatic Modification of Walnut Shell for High-Efficiency Adsorptive Methylene Blue Removal
by Xifeng Lv, Xuejian Zhou, Ruiqi Yang, Di Cai and Wenqiang Ren
Materials 2025, 18(15), 3434; https://doi.org/10.3390/ma18153434 - 22 Jul 2025
Viewed by 205
Abstract
Developing energy-efficient and environmentally benign synthesis protocols is crucial to agricultural waste-based adsorbent preparation. This study prepared novel walnut shell-derived adsorbents by enzymatic modification using a green process, and the as-prepared material was used for methylene blue (MB) removal from wastewater. The results [...] Read more.
Developing energy-efficient and environmentally benign synthesis protocols is crucial to agricultural waste-based adsorbent preparation. This study prepared novel walnut shell-derived adsorbents by enzymatic modification using a green process, and the as-prepared material was used for methylene blue (MB) removal from wastewater. The results showed that under the optimized conditions (100 mg L−1 methylene blue (MB) solution, pH 7, 30 °C, 120 min adsorption time, and 0.14 g adsorbent dosage), WS-1 exhibited an MB removal efficiency of 93.67%, which was only slightly lower than that of WS-2 that was prepared by further carbonization of WS-1 using the low-temperature hydrothermal method (99.01%). Kinetic analysis confirmed WS-1 exhibited pseudo-second-order adsorption kinetics, which were generally similar to those of WS-2. However, the results obtained by the isotherm model followed by the Langmuir model of WS-1 indicated monolayer adsorption involving combined weak chemisorption and physisorption, which was different from the WS-2 (followed the Freundlich model that inferred multilayer chemisorption). In conclusion, this study successfully converted walnut shells, a type of agricultural waste, into functional adsorbents by a novel, simple, and greener enzymatic modification method, thereby achieving dual benefits of waste valorization and wastewater treatment. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

13 pages, 1563 KiB  
Article
A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid
by Yashuang Hei, Lisi Ba, Xingwei Shi, Huanhuan Guo, Sisi Wen, Bingxiao Zheng, Wenjie Gu and Zhiju Zhao
Molecules 2025, 30(14), 2980; https://doi.org/10.3390/molecules30142980 - 15 Jul 2025
Viewed by 305
Abstract
Ascorbic acid (AA) is a vital biomarker for human metabolic processes, and many diseases are strongly linked to aberrant variations in its content. It is crucial to detect the levels of AA with sensitivity, speed, and accuracy. In this work, three-dimensional honeycomb-like porous [...] Read more.
Ascorbic acid (AA) is a vital biomarker for human metabolic processes, and many diseases are strongly linked to aberrant variations in its content. It is crucial to detect the levels of AA with sensitivity, speed, and accuracy. In this work, three-dimensional honeycomb-like porous carbons derived from discarded walnut (green) husks (DWGH-HCPCs) were synthesized using a process involving hydrothermal treatment, freeze-drying, and carbonization. The DWGH-HCPCs, with a high specific surface area of 419.72 m2 g−1, large pore volume of 0.35 cm3 g−1 and high density of defective sites, are used to fabricate the electrochemical sensor for the detection of AA. The electrochemical performance of the DWGH-HCPC-modified glassy carbon electrode (GCE) (DWGH-HCPC/GCE) was investigated through chronoamperometry, differential pulse voltammetry, and cyclic voltammetry. Compared with the GCE, the DWGH-HCPC/GCE exhibits higher sensitivities (34.7 μA mM−1 and 22.7 μA mM−1), a wider linear range (10–1040 μM and 1040–3380 μM), and a lower detection limit (0.26 μM) for AA detection. Specifically, the real sample concentrations of AA in beverages and artificial urine were successfully identified by DWGH-HCPC/GCE. Additionally, the DWGH-HCPC/GCE demonstrated great feasibility in the simultaneous detection of AA, dopamine (DA), and uric acid (UA). Therefore, as a green, eco-friendly, and low-cost electrode modifier, DWGH-HCPCs have broad prospects in the development of electrochemical sensing platforms for food and medical applications. Full article
Show Figures

Figure 1

16 pages, 5169 KiB  
Article
Analysis of Walnut Source–Sink–Flow Anatomical Structure Under Source–Sink Regulation Based on Fruit-Bearing Branch Scale
by Luyu Lv, Cuifang Zhang, Zhilong Yang, Zeyun Zhao and Shiwei Wang
Appl. Sci. 2025, 15(13), 7523; https://doi.org/10.3390/app15137523 - 4 Jul 2025
Viewed by 207
Abstract
This study used Xinxin 2 (Juglans regia L. ‘Xinxin2’), a major cultivated walnut variety in Xinjiang, China, to clarify the response and adaptation mechanisms of the anatomical structures of walnut related to source–sink–flow under altered source–sink relationships. We anatomically observed the leaves, [...] Read more.
This study used Xinxin 2 (Juglans regia L. ‘Xinxin2’), a major cultivated walnut variety in Xinjiang, China, to clarify the response and adaptation mechanisms of the anatomical structures of walnut related to source–sink–flow under altered source–sink relationships. We anatomically observed the leaves, fruit stalks, and fruit of bearing branches by artificially adjusting the leaf-to-fruit ratio (LFR). The LFR substantially affected the leaf structure and thickness of the fruit-bearing branches obtained via girdled (p < 0.05). The results of the analysis of the leaf anatomy revealed that a low LFR impeded leaf growth and internal structural development while accelerating senescence, whereas a high LFR promoted leaf growth and delayed senescence. The same trend was observed for the phloem area (PA) of the fruit stalk with the increase in fruit load when the number of leaves on the fruit branch was the same. The maximum PA was reached when the number of fruits was high (except for 4L:3F). This indicates that the micro-anatomical structure of the fruit stalk is more developed under the treatment of a higher number of pinnate compound leaves and fruit level of LFRs. The cells of the 1L:3F and 2L:3F were considerably smaller in the green peel and kernel of the fruit on the branches obtained via girdled than those of 5L:1F plants (p < 0.05). No significant difference was found in the number of cells per unit area or the cross-sectional area of cells in the pericarp and kernel of the fruit under LFRs (p > 0.05); however, a large difference was noted in the microanatomical structure of the pericarp and kernel of fruit. Changes in the structural adaptation characteristics of walnut leaves (source), fruit stalk (flow), and fruit (sink) are related to source–sink regulation. A change in the LFR affects the carbohydrate synthesis in the leaves (source), transport in fruit stalks (flow), and the carbohydrate reception in fruits (sink). Full article
Show Figures

Figure 1

17 pages, 4747 KiB  
Article
Identification of Botrytis cinerea as a Walnut Fruit Rot Pathogen, and Its Biocontrol by Trichoderma
by Andrea Zabiák, András Csótó, Károly Pál, Erzsébet Fekete, Levente Karaffa and Erzsébet Sándor
Horticulturae 2025, 11(7), 725; https://doi.org/10.3390/horticulturae11070725 - 22 Jun 2025
Viewed by 535
Abstract
Walnut (Juglans regia L.) fruit rot significantly impacts yield and quality, yet the pathogens responsible for it remain insufficiently characterized. In this study, we identified several fungi associated with the disease and characterized their morphology and physiology. Pathogenicity tests at two developmental [...] Read more.
Walnut (Juglans regia L.) fruit rot significantly impacts yield and quality, yet the pathogens responsible for it remain insufficiently characterized. In this study, we identified several fungi associated with the disease and characterized their morphology and physiology. Pathogenicity tests at two developmental stages of the walnut fruit were performed for the newly described pathogen. Among the Botrytis, Alternaria, and Penicillium species, Botrytis cinerea sensu lato stands out as a newly identified pathogen of the cultivated walnut. Growth assessments revealed variability in B. cinerea strains, with consistent patterns found across different temperatures. Pathogenicity of the isolated B. cinerea strains differed: one strain caused husk necrosis, three strains caused kernel necrosis in younger fruits, while two strains induced kernel necrosis in the later developmental stages. Additionally, we evaluated the biocontrol potential of Trichoderma strains against B. cinerea and demonstrated their efficiency in suppressing each isolated B. cinerea strain (76–100% inhibition), highlighting their potential in sustainable disease management in walnut production. Full article
Show Figures

Graphical abstract

15 pages, 3115 KiB  
Article
Spatial–Temporal Distribution Characteristics of the Water Footprint and Water-Saving Potential of Fruit Trees in Tarim River Basin
by Xinyuan Lin, Yan Chen, Zheng He, Minghua Li, Baoxia Ci, Yang Liu, Xin Zhang and Fuyu Ma
Water 2025, 17(8), 1158; https://doi.org/10.3390/w17081158 - 13 Apr 2025
Viewed by 387
Abstract
It is of great significance to optimize water resource management and promote sustainable development in the Tarim River Basin (TRB) by using the water footprint (WF) evaluation method to evaluate the water shortage of fruit trees in the TRB and analyse its water-saving [...] Read more.
It is of great significance to optimize water resource management and promote sustainable development in the Tarim River Basin (TRB) by using the water footprint (WF) evaluation method to evaluate the water shortage of fruit trees in the TRB and analyse its water-saving potential. This study aimed to elucidate the WF spatial–temporal distribution characteristics of fruit trees in the water-limited TRB from 2000 to 2020 and evaluate their water-saving potential capability. The WF was calculated using a combination of irrigation technology simulation and water usage assessments for four different fruit trees (apple, pear, date, and walnut). The results indicate that the green WF (WFgreen) initially increased and then decreased, reaching its lowest value of only 175.09 m3/t in 2020, and decreased by 22.71% from 2000 to 2020. WFblue decreased by 47.13% over the same period. In 2020, the WFblue of date and walnut accounted for a higher percentage of WFblue. WFblue significantly exceeded WFgreen, indicating their high water consumption and the limited adoption of water-saving technologies in the study area. Due to the increase in fruit tree planting area and fertilization, WFgrey exhibited an overall upward trend. Meanwhile, the total WF (WFtotal) indicated a general downward trend, though the walnut tree had the highest WFtotal at 2.21 × 105 m3/t, indicating the popularization of water-saving technology. The results show that, taking 2020 as the baseline, the WFblue of the four fruit trees in the TRB was 2.64 × 105 m3/t (accounting for 89.1%), total WFblue decreased by 0.73 × 105 m3/t (a decrease of 48.38%) after drip irrigation, and the water-saving potential in the five prefectures of the TRB was in the range of 38.55–56.18%. Therefore, the promotion of drip irrigation technology plays a key role in alleviating the water pressure of fruit trees and promoting the sustainable utilization of water resources in the TRB. Full article
(This article belongs to the Special Issue Water Footprint and Energy Sustainability)
Show Figures

Figure 1

15 pages, 620 KiB  
Article
Host Jumps and Pathogenicity of Botryosphaeriaceae Species on Grapevines (Vitis vinifera) in Chile
by Yadira Hernández, Mauricio Lolas, Karina Elfar, Akif Eskalen, Felipe Gainza-Cortés and Gonzalo A. Díaz
Microorganisms 2025, 13(2), 331; https://doi.org/10.3390/microorganisms13020331 - 3 Feb 2025
Cited by 1 | Viewed by 1129
Abstract
Botryosphaeria dieback disease is a significant grapevine trunk disease (GTD) caused by species of Botryosphaeriaceae in Chile and worldwide. Moreover, Botryosphaeriaceae have been described attacking fruit and nut crops in Chile. However, it remains unknown whether fungal isolates from tree hosts have the [...] Read more.
Botryosphaeria dieback disease is a significant grapevine trunk disease (GTD) caused by species of Botryosphaeriaceae in Chile and worldwide. Moreover, Botryosphaeriaceae have been described attacking fruit and nut crops in Chile. However, it remains unknown whether fungal isolates from tree hosts have the potential to infect grapevines in Chile. The aggressiveness and potential cross infection of species of Botryosphaeriaceae collected from crops (grapevines, apples, blueberries, and walnuts), was assessed on grapevines. Plant materials, including nursery cuttings, lignified canes, and green shoots of grapevine cultivars (Cabernet Sauvignon, Syrah, Sauvignon Blanc, Malbec, Aspirant Bouschet, and Merlot), were inoculated with Diplodia mutila, D. seriata, Dothiorella sarmentorum, Lasiodiplodia theobromae, Neofusicoccum arbuti, and N. parvum, under greenhouse and vineyard conditions. Regardless of the origin of the isolates, most species of Botryosphaeriaceae were pathogenic on plant materials, causing necrotic lesions of mean lengths from 11.9 to 86.2 mm using mycelial suspension and from 24.8 to 253.7 mm with mycelial plugs. Notably, Neofusicoccum species were the most aggressive, regardless of host origin. Other less aggressive species included L. theobromae, D. mutila, and D. seriata isolated from apple and walnut. This study highlights the potential of species of Botryosphaeriaceae from alternative fruit hosts as inoculum sources for grapevines in Chile. Full article
(This article belongs to the Special Issue Plant Pathogens: Monitoring, Identification and Biological Control)
Show Figures

Figure 1

22 pages, 4681 KiB  
Article
Extraction and Characterization of Antioxidants and Cellulose from Green Walnut Husks
by Ivan M. Savić and Ivana M. Savić Gajić
Foods 2025, 14(3), 409; https://doi.org/10.3390/foods14030409 - 27 Jan 2025
Cited by 3 | Viewed by 1819
Abstract
The ultrasound-assisted extraction process with microwave pretreatment was modeled and optimized to maximize the yield of antioxidants from green walnut husks using a response surface methodology with Box–Behnken design. In this design, the ultrasound-assisted extraction time (10–40 min), ultrasound-assisted extraction temperature (40–60 °C), [...] Read more.
The ultrasound-assisted extraction process with microwave pretreatment was modeled and optimized to maximize the yield of antioxidants from green walnut husks using a response surface methodology with Box–Behnken design. In this design, the ultrasound-assisted extraction time (10–40 min), ultrasound-assisted extraction temperature (40–60 °C), and microwave pretreatment time (20–60 s) were selected as the factors, while the total antioxidant content was defined as the response. The solvent of choice for extracting antioxidants was 50% (v/v) ethanol. After optimization using the desirability function, an ultrasound-assisted extraction time of 23 min, ultrasound-assisted extraction temperature of 60 °C, and microwave pretreatment time of 60 s were proposed as the optimal conditions and their validity was verified. Under these conditions, the experimentally determined total antioxidant content was 3.69 g of gallic acid equivalent per 100 g of dry matter. In addition to phenolics, UHPLC–ESI–MS/MS analysis indicated the presence of lipids, quinones, terpenoids, and organic acids in the extract. After the antioxidant extraction, the solid residue was further processed to isolate cellulose in line with the concept of sustainable manufacturing. The structural characterization and hydration properties of cellulose were analyzed to identify its key features and assess its potential for value-added applications. The results demonstrate that green walnut husks are a valuable and cost-effective agro-industrial byproduct for extracting antioxidants and isolating cellulose. This aligns with the principles of a circular economy and the sustainable production of natural compounds. Full article
Show Figures

Graphical abstract

18 pages, 4751 KiB  
Article
Genome-Wide Identification of the WD40 Gene Family in Walnut (Juglans regia L.) and Its Expression Profile in Different Colored Varieties
by Ruimin Xi, Jiayu Ma, Xinyi Qiao, Xinhao Wang, Hang Ye, Huijuan Zhou, Ming Yue and Peng Zhao
Int. J. Mol. Sci. 2025, 26(3), 1071; https://doi.org/10.3390/ijms26031071 - 26 Jan 2025
Cited by 1 | Viewed by 908
Abstract
The walnut (Juglans regia) is a woody oilseed crop with high economic and food value as its kernels are edible and its hulls can be widely used in oil extraction and plugging, chemical raw materials, and water purification. Currently, red walnut [...] Read more.
The walnut (Juglans regia) is a woody oilseed crop with high economic and food value as its kernels are edible and its hulls can be widely used in oil extraction and plugging, chemical raw materials, and water purification. Currently, red walnut varieties have emerged, attracting consumer interest due to their high nutritional values as they are rich in anthocyanins. WD40 is a widespread superfamily in eukaryotes that play roles in plant color regulation and resistance to stresses. In order to screen for JrWD40 associated with walnut color, we identified 265 JrWD40s in walnuts by genome-wide identification, which were unevenly distributed on 16 chromosomes. According to the phylogenetic tree, all JrWD40s were classified into six clades. WGD (Whole genome duplication) is the main reason for the expansion of the JrWD40 gene family. JrWD40s were relatively conserved during evolution, but their gene structures were highly varied; lower sequence similarity may be the main reason for the functional diversity of JrWD40s. Some JrWD40s were highly expressed only in red or green walnuts. In addition, we screened 16 unique JrWD40s to walnuts based on collinearity analysis. By qRT-PCR, we found that JrWD40-133, JrWD40-150, JrWD40-155, and JrWD40-206 may regulate anthocyanin synthesis through positive regulation, whereas JrWD40-65, JrWD40-172, JrWD40-191, JrWD40-224, and JrWD40-254 may inhibit anthocyanin synthesis, suggesting that these JrWD40s are key genes affecting walnut color variation. Full article
(This article belongs to the Special Issue Advances in Genetics and Phylogenomics of Tree)
Show Figures

Figure 1

15 pages, 6406 KiB  
Article
Isolation and Identification of Aspergillus spp. from Rotted Walnuts and Inhibition Mechanism of Aspergillus flavus via Cinnamon Essential Oil
by Doudou Zhang, Kangjing Luo, Shaocong Wen, Qing Zhou, Bochao Li, Wenhui Liang and Jianbing Di
Foods 2025, 14(3), 357; https://doi.org/10.3390/foods14030357 - 22 Jan 2025
Cited by 3 | Viewed by 1778
Abstract
Walnuts are prone to contamination by rotting fungi. However, the microflora present in walnuts across various regions of China has not been thoroughly investigated. Cinnamon essential oil (CEO) is commonly used in food preservation because of its natural safety and strong antimicrobial properties. [...] Read more.
Walnuts are prone to contamination by rotting fungi. However, the microflora present in walnuts across various regions of China has not been thoroughly investigated. Cinnamon essential oil (CEO) is commonly used in food preservation because of its natural safety and strong antimicrobial properties. Additionally, studies on the antifungal potential of CEO to prevent walnut spoilage are limited. Therefore, we investigated Aspergillus spp. contamination in moldy walnuts stored across different locations in Shanxi, China. A total of 100 moldy walnut samples underwent traditional mycological analysis to isolate Aspergillus spp. The antibacterial properties and the mechanisms by which CEO targets Aspergillus spp. were thoroughly investigated. Five representative morphospecies were subsequently classified to the species level using Internal Transcribed Spacer sequence analysis. The dominant species were Aspergillus flavus and Aspergillus fumigatus, with frequencies of 100% and 93%, respectively, followed by Aspergillus nigers, Aspergillus terreus, and Aspergillus tubingensis, with frequencies of 78%, 47%, and 40%, respectively. Overall, 358 fungal species belonging to the Aspergillus genus were recovered. The MIC of CEO against A. flavus in vitro was 0.78 g/L. Furthermore, CEO compromised the permeability and integrity of the cell membrane, causing the leakage of intracellular components and promoting the accumulation of malondialdehyde compounds and a decrease in superoxide dismutase activity. Overall, we isolated and identified Aspergillus spp. in moldy walnuts and confirmed the feasibility of using CEO as a green anti-Aspergillus spp. agent for the preservation of walnuts. Full article
(This article belongs to the Special Issue Advances and Future Challenges to Microbial Food Safety—Volume II)
Show Figures

Figure 1

18 pages, 3521 KiB  
Article
Assessment of the Effects of Newly Fabricated CaO, CuO, ZnO Nanoparticles on Callus Formation Maintenance of Alfalfa (Medicago sativa L.) Under In Vitro Salt Stress
by Mustafa Akçay, Merve Simsek Geyik, Busra Yazicilar, Fatma Boke, Hayrunnisa Nadaroglu, Okkes Atıcı and İsmail Bezirganoğlu
Agronomy 2025, 15(1), 180; https://doi.org/10.3390/agronomy15010180 - 13 Jan 2025
Viewed by 1060
Abstract
Nanoparticles play an important role in plant response to abiotic stresses including salt stress. In this study, the physiological and histological responses of CuO, ZnO, and CaO nanoparticle (NP) applications on callus tissues developed from two alfalfa lines (Erzurum and Muş) exposed to [...] Read more.
Nanoparticles play an important role in plant response to abiotic stresses including salt stress. In this study, the physiological and histological responses of CuO, ZnO, and CaO nanoparticle (NP) applications on callus tissues developed from two alfalfa lines (Erzurum and Muş) exposed to salt (NaCl) stress were evaluated. The NPs were synthesized from the extracts obtained from healthy walnut shells using the green synthesis approach and then characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction analysis (XRD). The leaf explants were placed in an MS medium containing 4 mg L−1 2,4-D (2,4-dichlorophenoxyacetic acid), 50 mM NaCl, and 0.8 ppm of NPs for 1 month in the dark. CaO NP is determined to be more effective than CuO and ZnO in callus induction from leaf explants. Malondialdehyde (MDA) content was higher in the callus treated with 0.8 ppm CuO NP + 50 mM NaCl compared to other treatments. The callus induction stage, without salt treatments, showed the best results with 0.8 ppm CaO NPs for both H2O2 levels and peroxidase (POX) activity compared to the other NPs. The highest protein rate was obtained from the callus induction stage and callus formation stage after 50 mM treatment NaCl with 0.8 ppm CuO. The LCSM results displayed, under in vitro conditions, that the treatment of NPs can greatly suppress the negative effects of salt stress on calli samples. SEM analysis supported the results obtained by laser scanning confocal microscopy (LSCM) analysis. Our findings suggest that CuO, CaO, and ZnO NPs can offer a simple and effective method to protect alfalfa callus from NaCl stress severity. Furthermore, these NPs, particularly CaO, hold potential for broader application and should be evaluated under various abiotic conditions beyond salt stress. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

19 pages, 4442 KiB  
Article
Phytotoxicity Assessment of Agro-Industrial Waste and Its Biochar: Germination Bioassay in Four Horticultural Species
by Romina Zabaleta, Eliana Sánchez, Ana Laura Navas, Viviana Fernández, Anabel Fernandez, Daniela Zalazar-García, María Paula Fabani, Germán Mazza and Rosa Rodriguez
Agronomy 2024, 14(11), 2573; https://doi.org/10.3390/agronomy14112573 - 1 Nov 2024
Cited by 3 | Viewed by 1660
Abstract
This study investigated the phytotoxicity of agro-industrial wastes (almond, walnut, pistachio and peanut shells, asparagus spears, and brewer’s spent grain) and their biochar through germination bioassays in several horticultural species: green pea, lettuce, radish, and arugula. Biowaste was pyrolyzed under controlled conditions to [...] Read more.
This study investigated the phytotoxicity of agro-industrial wastes (almond, walnut, pistachio and peanut shells, asparagus spears, and brewer’s spent grain) and their biochar through germination bioassays in several horticultural species: green pea, lettuce, radish, and arugula. Biowaste was pyrolyzed under controlled conditions to produce biochar, and both biowaste and biochar were characterized. Germination bioassay was conducted using seeds exposed to different dilutions of aqueous extract of biowaste and their biochar (0, 50, and 100%). Germination percentage, seed vigor, germination index, and root and aerial lengths were evaluated. The results showed that the phytotoxicity of the biowaste was significantly different to that of its biochar. The biochar obtained demonstrated changing effects on germination and seedling growth. In particular, biochar extracts from spent brewers grains, walnut shells, and pistachio shells showed 5–14% increases in seed vigor and root and aerial length. Furthermore, the response of different species to both agro-industrial waste and biochar revealed species-specific sensitivity. Seeds of lettuce and arugula species were more sensitive to aqueous extracts than radish and green peas. This knowledge not only elucidates the behavior of agro-industrial waste-based biochar in the early stage of plant development but also provides valuable insights regarding phytotoxicity, seed sensitivity, and the variables involved in germination. Full article
Show Figures

Figure 1

18 pages, 6919 KiB  
Article
Behavioral, Physiological, and Molecular Mechanisms Underlying the Adaptation of Helicoverpa armigera to the Fruits of a Marginal Host: Walnut (Juglans regia)
by Haiqiang Li, Xinzheng Huang, Long Yang, Haining Liu, Bing Liu and Yanhui Lu
Plants 2024, 13(19), 2761; https://doi.org/10.3390/plants13192761 - 1 Oct 2024
Cited by 1 | Viewed by 1372
Abstract
In northwest China, changes in cultivation patterns and the scarcity of preferred hosts have forced Helicoverpa armigera to feed on the marginal host walnut (Juglans regia). However, the mechanisms allowing this adaptation remain poorly understood. Here, we investigated the behavioral, physiological, [...] Read more.
In northwest China, changes in cultivation patterns and the scarcity of preferred hosts have forced Helicoverpa armigera to feed on the marginal host walnut (Juglans regia). However, the mechanisms allowing this adaptation remain poorly understood. Here, we investigated the behavioral, physiological, and molecular mechanisms underlying the local adaptation of this pest to walnut fruits. The green husk and shell generally contained higher levels of phytochemicals than the kernel. Bioassays revealed that the phytochemical-rich green husk and shell were less preferred, reduced larval fitness and growth, and elevated the activity of detoxification enzymes compared to the nutrient-rich kernel, which were further supported by a larger number of upregulated detoxification genes in insects fed green husks or shells based on transcriptome sequencing. Together, these data suggest that P450 genes (LOC110371778) may be crucial to H. armigera adaptation to the phytochemicals of walnuts. Our findings provide significant insight into the adaptation of H. armigera to walnut, an alternative host of lower quality. Meanwhile, our study provides a theoretical basis for managing resistance to H. armigera larvae in walnut trees and is instrumental in developing comprehensive integrated pest management strategies for this pest in walnut orchards and other agricultural systems. Full article
(This article belongs to the Special Issue Integrated Pest Management—from Chemicals to Green Management)
Show Figures

Figure 1

32 pages, 15307 KiB  
Article
Juglans regia as Urban Trees: Genetic Diversity and Walnut Kernel Quality Assessment
by Alina-Maria Tenche-Constantinescu, Dacian Virgil Lalescu, Sorina Popescu, Ioan Sarac, Cerasela Petolescu, Dorin Camen, Adina Horablaga, Cosmin Alin Popescu, Mihai Valentin Herbei, Lucian Dragomir, George Popescu, Olimpia Alina Iordănescu, Alexandra Becherescu and Emilian Onisan
Horticulturae 2024, 10(10), 1027; https://doi.org/10.3390/horticulturae10101027 - 27 Sep 2024
Cited by 5 | Viewed by 1725
Abstract
Juglans regia L. is an edible fruit tree cultivated worldwide for its fruits and wood and as an urban tree. Globally, there is growing concern for preserving the genetic diversity of trees with high economic and ecological value. This study investigates the genetic [...] Read more.
Juglans regia L. is an edible fruit tree cultivated worldwide for its fruits and wood and as an urban tree. Globally, there is growing concern for preserving the genetic diversity of trees with high economic and ecological value. This study investigates the genetic diversity of J. regia in urban landscapes and assesses the quality of its walnut kernels as a local food product. An inventory of 150 trees from five populations in public green spaces in Lugoj, Caransebeș and Jupa, as well as two semi-natural hilly ecosystems in the Banat Region, was conducted. Molecular analyses showed that Directed Amplification of Minisatellite-region DNA (DAMD) markers were more effective than Start Codon Targeted (SCoT) markers, with a higher average polymorphism of 56.26%, compared to 49.44%. DAMD07 achieved 100% polymorphism and DAMD05 showed a strong balance between P.I.C. (0.35) and polymorphism (54.54%). Chemical analysis revealed the following contents in walnut kernels: protein (12.81% to 16.80%), lipids (60.39% to 69.08%), total polyphenols (5484.66 to 10,788.4 mg GAE/kg), copper (3.655 to 8.532 mg/kg), manganese (14.408 to 28.618 mg/kg), zinc (19.813 to 46.583 mg/kg), lead (1.204 to 2.27 mg/kg) and cadmium (0.03451 to 0.08065 mg/kg). These findings are critical for conservation efforts, urban forestry management and ensuring the quality and safety of walnut products derived from J. regia. Full article
Show Figures

Figure 1

22 pages, 7252 KiB  
Article
Research on Detection Algorithm of Green Walnut in Complex Environment
by Chenggui Yang, Zhengda Cai, Mingjie Wu, Lijun Yun, Zaiqing Chen and Yuelong Xia
Agriculture 2024, 14(9), 1441; https://doi.org/10.3390/agriculture14091441 - 24 Aug 2024
Cited by 2 | Viewed by 1324
Abstract
The growth environment of green walnuts is complex. In the actual picking and identification process, interference from near-background colors, occlusion by branches and leaves, and excessive model complexity pose higher demands on the performance of walnut detection algorithms. Therefore, a lightweight walnut detection [...] Read more.
The growth environment of green walnuts is complex. In the actual picking and identification process, interference from near-background colors, occlusion by branches and leaves, and excessive model complexity pose higher demands on the performance of walnut detection algorithms. Therefore, a lightweight walnut detection algorithm suitable for complex environments is proposed based on YOLOv5s. First, the backbone network is reconstructed using the lightweight GhostNet network, laying the foundation for a lightweight model architecture. Next, the C3 structure in the feature fusion layer is optimized by proposing a lightweight C3 structure to enhance the model’s focus on important walnut features. Finally, the loss function is improved to address the problems of target loss and gradient adaptability during training. To further reduce model complexity, the improved algorithm undergoes pruning and knowledge distillation operations, and is then deployed and tested on small edge devices. Experimental results show that compared to the original YOLOv5s model, the improved algorithm reduces the number of parameters by 72.9% and the amount of computation by 84.1%. The mAP0.5 increased by 1.1%, the precision increased by 0.7%, the recall increased by 0.3%, and the FPS is 179.6% of the original model, meeting the real-time detection needs for walnut recognition and providing a reference for walnut harvesting identification. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 348 KiB  
Review
An Anti-Inflammatory Diet and Its Potential Benefit for Individuals with Mental Disorders and Neurodegenerative Diseases—A Narrative Review
by Sophie M. van Zonneveld, Ellen J. van den Oever, Benno C. M. Haarman, Emmy L. Grandjean, Jasper O. Nuninga, Ondine van de Rest and Iris E. C. Sommer
Nutrients 2024, 16(16), 2646; https://doi.org/10.3390/nu16162646 - 10 Aug 2024
Cited by 17 | Viewed by 12841
Abstract
This narrative review synthesizes current evidence regarding anti-inflammatory dietary patterns and their potential benefits for individuals with mental disorders and neurodegenerative diseases. Chronic low-grade inflammation is increasingly recognized as a key factor in the etiology and progression of these conditions. The review examines [...] Read more.
This narrative review synthesizes current evidence regarding anti-inflammatory dietary patterns and their potential benefits for individuals with mental disorders and neurodegenerative diseases. Chronic low-grade inflammation is increasingly recognized as a key factor in the etiology and progression of these conditions. The review examines the evidence for the anti-inflammatory and neuroprotective properties of dietary components and food groups, focusing on whole foods rather than specific nutrients or supplements. Key dietary components showing potential benefits include fruits and vegetables (especially berries and leafy greens), whole grains, legumes, fatty fish rich in omega-3, nuts (particularly walnuts), olive oil, and fermented foods. These foods are generally rich in antioxidants, dietary fiber, and bioactive compounds that may help modulate inflammation, support gut health, and promote neuroprotection. Conversely, ultra-processed foods, red meat, and sugary beverages may be harmful. Based on this evidence, we designed the Brain Anti-Inflammatory Nutrition (BrAIN) diet. The mechanisms of this diet include the modulation of the gut microbiota and the gut–brain axis, the regulation of inflammatory pathways, a reduction in oxidative stress, and the promotion of neuroplasticity. The BrAIN diet shows promise as an aid to manage mental and neurodegenerative disorders. Full article
(This article belongs to the Special Issue Gastrointestinal Dysfunction and Nutritional Intervention)
Back to TopTop