Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = green HPC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 16101 KiB  
Article
A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions
by Rubén Octavio Muñoz-García, Cesar Alexis Ruiz-Casillas, Diego Alberto Lomelí-Rosales, Jorge Alberto Cortés-Ortega, Juan Carlos Sánchez-Díaz and Luis Emilio Cruz-Barba
Gels 2025, 11(7), 560; https://doi.org/10.3390/gels11070560 - 21 Jul 2025
Viewed by 287
Abstract
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 [...] Read more.
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 to 5 g H2O/g) than homo PAA hydrogels synthesized in water as the solvent. They were swollen in a 0.1 M NaOH solution and subsequently used to remove Ni2+ ions from aqueous solutions with concentrations ranging from 1000 to 4000 ppm. The absorption capacity of these hydrogels ranged from 91 to 340 mg of Ni2+/g in a rapid 1 h process, and from 122 to 435 mg of Ni2+/g in a 24 h process, demonstrating an improvement in Ni2+ absorption compared to previously reported hydrogels. The colored 1000 and 2000 ppm Ni2+ solutions became clear after treatment, while the PAA-HPC hydrogels turned green due to the uptake of Ni2+ ions, which were partially chelated by carboxylate groups as nickel polyacrylate and partially precipitated as Ni(OH)2, resulting in an average absorption efficiency of 80%. The hydrogel was able to release the absorbed Ni2+ upon immersion in an HCl solution, with an average release percentage of 76.4%, indicating its potential for reuse. These findings support the use of PAA-HPC hydrogels for cleaning Ni2+-polluted water. The cost of producing 1 g of these hydrogels in laboratory conditions is approximately 0.2 USD. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

60 pages, 7032 KiB  
Review
Advances in Numerical Modeling for Heat Transfer and Thermal Management: A Review of Computational Approaches and Environmental Impacts
by Łukasz Łach and Dmytro Svyetlichnyy
Energies 2025, 18(5), 1302; https://doi.org/10.3390/en18051302 - 6 Mar 2025
Cited by 3 | Viewed by 3262
Abstract
Advances in numerical modeling are essential for heat-transfer applications in electronics cooling, renewable energy, and sustainable construction. This review explores key methods like Computational Fluid Dynamics (CFD), the Finite Element Method (FEM), the Finite Volume Method (FVM), and multiphysics modeling, alongside emerging strategies [...] Read more.
Advances in numerical modeling are essential for heat-transfer applications in electronics cooling, renewable energy, and sustainable construction. This review explores key methods like Computational Fluid Dynamics (CFD), the Finite Element Method (FEM), the Finite Volume Method (FVM), and multiphysics modeling, alongside emerging strategies such as Adaptive Mesh Refinement (AMR), machine learning (ML), reduced-order modeling (ROM), and high-performance computing (HPC). While these techniques improve accuracy and efficiency, they also increase computational energy demands, contributing to a growing carbon footprint and sustainability concerns. Sustainable computing practices, including energy-efficient algorithms and renewable-powered data centers, offer potential solutions. Additionally, the increasing energy consumption in numerical modeling highlights the need for optimization strategies to mitigate environmental impact. Future directions point to quantum computing, adaptive models, and green computing as pathways to sustainable thermal management modeling. This study systematically reviews the latest advancements in numerical heat-transfer modeling and, for the first time, provides an in-depth exploration of the roles of computational energy optimization and green computing in thermal management. This review outlines a roadmap for efficient, environmentally responsible heat-transfer models to meet evolving demands. Full article
(This article belongs to the Special Issue High-Performance Numerical Simulation in Heat Transfer)
Show Figures

Figure 1

22 pages, 2585 KiB  
Article
Investigation of Energy and Power Characteristics of Various Matrix Multiplication Algorithms
by Salem Alsari and Muhammad Al-Hashimi
Energies 2024, 17(9), 2225; https://doi.org/10.3390/en17092225 - 5 May 2024
Cited by 1 | Viewed by 1818
Abstract
This work studied the energy behavior of six matrix multiplication algorithms with various physical asset usage patterns. Two were variants of the straight inner product of rows and columns. The rest were variants of Strassen’s divide-and-conquer. Cases varied in ways that were expected [...] Read more.
This work studied the energy behavior of six matrix multiplication algorithms with various physical asset usage patterns. Two were variants of the straight inner product of rows and columns. The rest were variants of Strassen’s divide-and-conquer. Cases varied in ways that were expected to affect energy behavior. The study collected data for square matrix dimensions up to 4000. The research used reliable on-chip integrated voltage regulators embedded in a recent HPC-class AMD CPU for power measurements. Inner product methods used much less energy than the others for small to moderately large matrices. The advantage diminished for sufficiently large dimensions. The power draw of the inner product methods was less for small dimensions. After a point, the power advantage shifted significantly in favor of the divide-and-conquer group (average of 24% better), with the more block-optimized versions showing increased power efficiency (at least 8.3% better than the base method). The study explored the interplay between algorithm design, power efficiency, and computational resources. It aims to help advance the cause of power efficiency in HPC and other scenarios that rely on this vital computation. Full article
Show Figures

Figure 1

14 pages, 4910 KiB  
Article
Enhancing Thickness Uniformity of Nb2O5/SiO2 Multilayers Using Shadow Masks for Flexible Color-Filtering Applications
by Tzu-Chien Li, Dong-Lin Li, Jiashow Ho, Chih-Chiang Yu, Sheng-Shih Wang and Jyh-Jier Ho
Micromachines 2024, 15(4), 551; https://doi.org/10.3390/mi15040551 - 21 Apr 2024
Cited by 1 | Viewed by 2014
Abstract
Using a stainless shadow mask combined with a magnetron-ion-assisted deposition (IAD) sputtering system, we investigate the surface morphologies and optical properties of microfilms. Optimal color-filter (CF) coating microfilms with niobium pent-oxide (Nb2O5)/silicon dioxide (SiO2) multilayers on a [...] Read more.
Using a stainless shadow mask combined with a magnetron-ion-assisted deposition (IAD) sputtering system, we investigate the surface morphologies and optical properties of microfilms. Optimal color-filter (CF) coating microfilms with niobium pent-oxide (Nb2O5)/silicon dioxide (SiO2) multilayers on a hard polycarbonate (HPC) substrate, grown at 85 °C and 50 SCCM oxygen flow, can obtain a fairly uniform thickness (with an average roughness of 0.083 and 0.106 nm respectively for Nb2O5 and SiO2 films) through all positions. On a flexible HPC substrate with the Nb2O5/SiO2 microfilms, meanwhile, the peak transmittances measured in the visible range are 95.70% and 91.47%, respectively, for coatings with and without a shadow mask for this new-tech system. For the optimal CF application with a shadow mask, transmittance on each 100 nm band-pass wavelength is enhanced by 4.04% absolute (blue), 2.96% absolute (green), and 2.12% absolute (red). Moreover, the developed new-tech system not only enhances the quality of the films by achieving smoother and uniform surfaces but also reduces deposition time, thereby improving overall process efficiency. For the with-shadow-mask condition, there is little shift at 50% transmittance (T50%), and high transmittance (~97%) is maintained after high-temperature (200 °C) baking for 12 h. These results are well above the commercial CF standard (larger than 90%) and demonstrate reliability and good durability for flexible optical applications. Full article
Show Figures

Figure 1

11 pages, 3195 KiB  
Article
Green Synthesis of Hierarchically Porous Carbon Derived from Coal Tar Pitch for Enhanced Lithium Storage
by Mengdi Zhang, Meng Qu, Wenhan Yuan, Jiawei Mu, Zhengqiu He and Mingbo Wu
Batteries 2023, 9(9), 473; https://doi.org/10.3390/batteries9090473 - 19 Sep 2023
Cited by 6 | Viewed by 2625
Abstract
Coal tar pitch (CTP) is a high-quality raw material for producing functional carbon materials owing to its high carbon yield and high degree of condensation. The rational structure regulation of CTP-derived carbon materials is paramount for their special application. Herein, a green template [...] Read more.
Coal tar pitch (CTP) is a high-quality raw material for producing functional carbon materials owing to its high carbon yield and high degree of condensation. The rational structure regulation of CTP-derived carbon materials is paramount for their special application. Herein, a green template strategy is proposed to fabricate hierarchically porous carbon (HPC) and employ it as the anode material for lithium-ion batteries. It can be demonstrated that the mass ratio of the template (KHCO3) and carbon source (CTP) significantly influences the microstructure and electrochemical performances of HPC. HPC-3 synthesized by a mass ratio of 3:1 shows a coral-like lamellar nanostructure with high specific surface area, developed nanopores, and ample defects, enabling fast and high-flux lithium storage. Thus, the HPC-3 electrode achieves an excellent rate capacity of 219 mAh g−1 at 10 A g−1 and maintains a high discharge capacity of 660 mAh g−1 after 1400 cycles at 1 A g−1. This work takes a step towards the high-value-added and green utilization of CTP and offers a promising solution for the sustainable production of advanced carbon electrode materials. Full article
(This article belongs to the Special Issue Advanced Carbon-Based Materials for Batteries)
Show Figures

Graphical abstract

20 pages, 5523 KiB  
Article
Development and Performance Evaluation of UHPC and HPC Using Eco-Friendly Additions as Substitute Cementitious Materials with Low Cost
by Mohammed Qusay Abdul Sahib, Masood Farzam and Khalid A. Sukkar
Buildings 2023, 13(8), 2078; https://doi.org/10.3390/buildings13082078 - 16 Aug 2023
Cited by 7 | Viewed by 2825
Abstract
Ultra-high-performance concrete (UHPC) and high-performance concrete (HPC) are widely used in construction engineering applications. The quality and economy of this type of concrete are the main challenges in real construction systems due to their expensive cost. In the present investigation, the performances of [...] Read more.
Ultra-high-performance concrete (UHPC) and high-performance concrete (HPC) are widely used in construction engineering applications. The quality and economy of this type of concrete are the main challenges in real construction systems due to their expensive cost. In the present investigation, the performances of UHPC and HPC were improved using eco-friendly additives from natural sources or industrial wastes. Accordingly, different kinds of concrete mixtures were prepared with the addition of various eco-friendly materials, such as metakaolin (10, 15, and 20%), silica fume (2.5, 5, 10, and 15%), cement kiln dust (CKD) (0, 5, and 10%), and 1 vol.% of steel and polypropylene fibers. All of these materials were subjected to efficient treatment and purification processes. The results indicated that the prepared UHPC was characterized by high compression and flexural strengths. The prepared UHPC (sample CR-2) with metakaolin (10%), CKD (10%), and 1 vol.% of steel fibers provided the highest compressive strength of 135 MPa at 28 days. Moreover, the results showed that reducing the cement amounts to 750, 500, and 250 kg/m3 provided concrete with efficient structural requirements and specifications and can be characterized as UHPC and HPC. Also, the mixture (sample CM15) with a metakaolin addition of 15%, CKD of 100 kg/m3, and 1 vol.% of steel fibers showed the highest flexural strength of 19.14 MPa at 28 d. Moreover, the highest splitting tensile strength of the prepared UHPC cylinders was 9.6 MPa at 28 d for the MSS1000 sample, which consisted of 15% metakaolin, a cement content of 1000 kg/m3, silica fume of 10%, and steel fibers of 1% vol. The prepared UHPC mixtures will reduce the amount of consumed cement and the production cost, with a high performance in comparison to classical concrete. Finally, it was clear that the prepared UHPC and HPC concrete with green additions can serve efficiently in specific construction applications, with high performance, economic feasibility, and safe environmental impacts. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

44 pages, 1352 KiB  
Review
Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture
by Sardar Usman, Rashid Mehmood, Iyad Katib and Aiiad Albeshri
Electronics 2023, 12(1), 53; https://doi.org/10.3390/electronics12010053 - 23 Dec 2022
Cited by 17 | Viewed by 8027
Abstract
Big data has revolutionized science and technology leading to the transformation of our societies. High-performance computing (HPC) provides the necessary computational power for big data analysis using artificial intelligence and methods. Traditionally, HPC and big data had focused on different problem domains and [...] Read more.
Big data has revolutionized science and technology leading to the transformation of our societies. High-performance computing (HPC) provides the necessary computational power for big data analysis using artificial intelligence and methods. Traditionally, HPC and big data had focused on different problem domains and had grown into two different ecosystems. Efforts have been underway for the last few years on bringing the best of both paradigms into HPC and big converged architectures. Designing HPC and big data converged systems is a hard task requiring careful placement of data, analytics, and other computational tasks such that the desired performance is achieved with the least amount of resources. Energy efficiency has become the biggest hurdle in the realization of HPC, big data, and converged systems capable of delivering exascale and beyond performance. Data locality is a key parameter of HPDA system design as moving even a byte costs heavily both in time and energy with an increase in the size of the system. Performance in terms of time and energy are the most important factors for users, particularly energy, due to it being the major hurdle in high-performance system design and the increasing focus on green energy systems due to environmental sustainability. Data locality is a broad term that encapsulates different aspects including bringing computations to data, minimizing data movement by efficient exploitation of cache hierarchies, reducing intra- and inter-node communications, locality-aware process and thread mapping, and in situ and transit data analysis. This paper provides an extensive review of cutting-edge research on data locality in HPC, big data, and converged systems. We review the literature on data locality in HPC, big data, and converged environments and discuss challenges, opportunities, and future directions. Subsequently, using the knowledge gained from this extensive review, we propose a system architecture for future HPC and big data converged systems. To the best of our knowledge, there is no such review on data locality in converged HPC and big data systems. Full article
(This article belongs to the Special Issue Defining, Engineering, and Governing Green Artificial Intelligence)
Show Figures

Figure 1

17 pages, 2842 KiB  
Article
A Sustainable Hydroxypropyl Cellulose-Nanodiamond Composite for Flexible Electronic Applications
by Elena Palmieri, Francesca Pescosolido, Luca Montaina, Rocco Carcione, Greta Petrella, Daniel Oscar Cicero, Emanuela Tamburri, Silvia Battistoni and Silvia Orlanducci
Gels 2022, 8(12), 783; https://doi.org/10.3390/gels8120783 - 29 Nov 2022
Cited by 10 | Viewed by 2893
Abstract
Designing fully green materials for flexible electronics is an urgent need due to the growing awareness of an environmental crisis. With the aim of developing a sustainable, printable, and biocompatible material to be exploited in flexible electronics, the rheological, structural and charge transport [...] Read more.
Designing fully green materials for flexible electronics is an urgent need due to the growing awareness of an environmental crisis. With the aim of developing a sustainable, printable, and biocompatible material to be exploited in flexible electronics, the rheological, structural and charge transport properties of water-based hydroxypropyl cellulose (HPC)-detonation nanodiamond (DND) viscous dispersions are investigated. A rheological investigation disclosed that the presence of the DND affects the orientation and entanglement of cellulose chains in the aqueous medium. In line with rheological analyses, the NMR diffusion experiments pointed out that the presence of DND modifies the hydrodynamic behavior of the cellulose molecules. Despite the increased rigidity of the system, the presence of DND slightly enhances the ionic conductivity of the dispersion, suggesting a modification in the charge transport properties of the material. The electrochemical analyses, performed through Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS), revealed that the HPC-DND system is remarkably stable in the explored voltage range (−0.1 to +0.4 V) and characterized by a lowered bulk resistance with respect to HPC. Such features, coupled with the printability and filmability of the material, represent good requirements for the exploitation of such systems in flexible electronic applications. Full article
(This article belongs to the Special Issue Polymer Networks and Gels 2022)
Show Figures

Graphical abstract

9 pages, 2382 KiB  
Article
Early-Age Performance Analysis of Sludge Water Incorporation in High-Temperature Steam Cured Green High-Performance Concrete
by Beimeng Qi
Materials 2022, 15(5), 1912; https://doi.org/10.3390/ma15051912 - 4 Mar 2022
Viewed by 1604
Abstract
Sludge water (SW) with abundant sulfate ions (SO42−) was utilized in this work to replace freshwater (FW) to prepare green high performance concrete (GHPC). A comprehensive investigation was conducted to evaluate the early-age performance of GHPC specimen mixed with SW [...] Read more.
Sludge water (SW) with abundant sulfate ions (SO42−) was utilized in this work to replace freshwater (FW) to prepare green high performance concrete (GHPC). A comprehensive investigation was conducted to evaluate the early-age performance of GHPC specimen mixed with SW incorporation (GHPC-SW). High temperature steam curing (HTS) has been presented to prepare GHPC-SW specimens. The compressive strength of the GHPC-SW specimen cured by HTS curing for 2 days is 85.2 MPa, which is 34% higher than the compressive strength of the GHPC-SW specimen cured by 3 days standard curing as the reference. The mechanical property results reveal that the incorporation of SW makes no harmful effects on the strength formation of HPC specimens, compared with FW added specimens under the same curing methods. Moreover, XRD and TG analyses indicate that HTS curing can effectively improve the hydration degree of GHPC-SW specimens. MIP analysis has been conducted and the specimens cured by HTS curing exhibit a more refined pore structure with fewer harmful pores. This work lays a solid foundation for the utilization of SW in the concrete construction industry, which is resource saving and environmentally friendly. Full article
Show Figures

Figure 1

23 pages, 11756 KiB  
Article
Detection of Multidecadal Changes in Vegetation Dynamics and Association with Intra-Annual Climate Variability in the Columbia River Basin
by Andrew B. Whetten and Hannah J. Demler
Remote Sens. 2022, 14(3), 569; https://doi.org/10.3390/rs14030569 - 25 Jan 2022
Cited by 3 | Viewed by 3097
Abstract
Remotely-sensed Leaf Area Index (LAI) is a useful metric for assessing changes in vegetation cover and greeness over time and space. Satellite-derived LAI measurements can be used to assess these intra- and inter-annual vegetation dynamics and how they correlate with changing regional and [...] Read more.
Remotely-sensed Leaf Area Index (LAI) is a useful metric for assessing changes in vegetation cover and greeness over time and space. Satellite-derived LAI measurements can be used to assess these intra- and inter-annual vegetation dynamics and how they correlate with changing regional and local climate conditions. The detection of such changes at local and regional levels is challenged by the underlying continuity and extensive missing values of high-resolution spatio-temporal vegetation data. Here, the feasibility of functional data analysis methods was evaluated to improve the exploration of such data. In this paper, an investigation of multidecadal variation in LAI is conducted in the Columbia River Watershed, as detected by NOAA Advanced Very High-Resolution Radiometer (AVHRR) satellite imaging. The inter- and intra-annual correlation of LAI with temperature and precipitation were then investigated using data from the European Centre for Medium-Range Weather Forecasts global atmospheric re-analysis (ERA-Interim) in the period 1996–2017. A functional cluster analysis model was implemented to identify regions in the Columbia River Watershed that exhibit similar long-term greening trends. Across this region, a multidecadal trend toward earlier and higher annual LAI peaks was detected, and strong correlations were found between earlier and higher LAI peaks and warmer temperatures in late winter and early spring. Although strongly correlated to LAI, maximum temperature and precipitation do not demonstrate a similar strong multidecadal trend over the studied time period. The modeling approach is proficient for analyzing tens or hundreds of thousands of sampled sites without parallel processing or high-performance computing (HPC). Full article
Show Figures

Figure 1

17 pages, 2019 KiB  
Article
Dynamic Immune Response to Vibriosis in Pacific Oyster Crassostrea gigas Larvae during the Infection Process as Supported by Accurate Positioning of GFP-Tagged Vibrio Strains
by Dongdong Wang, Alfredo Loor, Lobke De Bels, Gilbert Van Stappen, Wim Van den Broeck and Nancy Nevejan
Microorganisms 2021, 9(7), 1523; https://doi.org/10.3390/microorganisms9071523 - 17 Jul 2021
Cited by 12 | Viewed by 3839
Abstract
As the immune system is not fully developed during the larval stage, hatchery culture of bivalve larvae is characterized by frequent mass mortality caused by bacterial pathogens, especially Vibrio spp. However, the knowledge is limited to the pathogenesis of vibriosis in oyster larvae, [...] Read more.
As the immune system is not fully developed during the larval stage, hatchery culture of bivalve larvae is characterized by frequent mass mortality caused by bacterial pathogens, especially Vibrio spp. However, the knowledge is limited to the pathogenesis of vibriosis in oyster larvae, while the immune response to pathogenic microorganisms in this early life stage is still far from being fully elucidated. In this study, we combined green fluorescent protein (GFP)-tagging, histological and transcriptomic analyses to clarify the pathogenesis of experimental vibriosis and the mechanisms used by the host Pacific oyster Crassostrea gigas larvae to resist infection. The Vibrio strains first colonized the digestive system and rapidly proliferated, while only the transcription level of IκB kinase (IKK) and nuclear factor κB (NF-κB) associated with signaling transduction were up-regulated in oyster at 18 h post challenge (hpc). The mRNA levels for integrin β-1, peroxinectin, and heat shock protein 70 (HSP70), which are associated with phagocytosis, cell adhesion, and cytoprotection, were not upregulated until 30 hpc when the necrosis already happened in the larval digestive system. This suggested that the immunity in the early stages of C. gigas is not strong enough to prevent vibriosis and future research may focus on the strengthening of the gastrointestinal immune ability to defend vibriosis in bivalve larvae. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

13 pages, 2482 KiB  
Article
Entomotoxic Activity of Prasiola crispa (Antarctic Algae) in Nauphoeta cinerea Cockroaches: Identification of Main Steroidal Compounds
by Graziela Holken Lorensi, Raquel Soares Oliveira, Allan P. Leal, Ana Paula Zanatta, Carlos Gabriel Moreira de Almeida, Yuri Correia Barreto, Maria Eduarda Rosa, Patrícia de Brum Vieira, Carlos José Brito Ramos, Filipe de Carvalho Victoria, Antônio Batista Pereira, Valéria LaneuvilleTeixeira and Cháriston André Dal Belo
Mar. Drugs 2019, 17(10), 573; https://doi.org/10.3390/md17100573 - 10 Oct 2019
Cited by 11 | Viewed by 4000
Abstract
Prasiola crispa is a macroscopic green algae found in abundance in Antarctica ice free areas. Prasiola crispan-hexaneextract (HPC) induced insecticidal activity in Nauphoeta cinerea cockroaches after 24 h of exposure. The chemical analysis of HPC revealed the presence of the followingphytosterols: β-sitosterol, [...] Read more.
Prasiola crispa is a macroscopic green algae found in abundance in Antarctica ice free areas. Prasiola crispan-hexaneextract (HPC) induced insecticidal activity in Nauphoeta cinerea cockroaches after 24 h of exposure. The chemical analysis of HPC revealed the presence of the followingphytosterols: β-sitosterol, campesterol and stigmasterol. The incubation of cockroach semi-isolated heart preparations with HPC caused a significant negative chronotropic activity in the heartbeats. HPC affected the insect neuromuscular function by inducing a complete inhibition of the cockroach leg-muscle twitch tension. When the isolated phytosterols were injected at in vivo cockroach neuromuscular preparations, there was a progressive inhibition of muscle twitches on the following order of potency: β-sitosterol > campesterol > stigmasterol. HPC also provoked significant behavioral alterations, characterized by the increase or decrease of cockroach grooming activity, depending on the dose assayed. Altogether, the results presented here corroborate the insecticide potential of Prasiola crispa Antarctic algae. They also revealed the presence of phytosterols and the involvement of these steroidal compounds in the entomotoxic activity of the algae, potentially by modulating octopaminergic-cholinergic pathways. Further phytochemical-combined bioguided analysis of the HPC will unveil novel bioactive compounds that might be an accessory to the insecticide activity of the algae. Full article
(This article belongs to the Special Issue Toxins as Marine-Based Drug Discovery)
Show Figures

Figure 1

Back to TopTop