Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = gravity filtration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2122 KiB  
Article
Operation of a Novel, Gravity-Powered, Small-Scale, Surface Water Treatment Plant and Performance Comparison with a Conventional Mechanized Treatment Plant
by Marcin Sawczuk, Przemysław Kowal and Ruth E. Richardson
Appl. Sci. 2025, 15(12), 6668; https://doi.org/10.3390/app15126668 - 13 Jun 2025
Viewed by 502
Abstract
This paper presents a novel small-scale system for drinking water treatment from surface waters, designed to rely on gravity as the only source of energy driving the treatment process. The pilot-scale setup, designed for a flow rate of 0.5 L/s, was tested at [...] Read more.
This paper presents a novel small-scale system for drinking water treatment from surface waters, designed to rely on gravity as the only source of energy driving the treatment process. The pilot-scale setup, designed for a flow rate of 0.5 L/s, was tested at the Cornell University Water Filtration Plant (CWFP) for a total period of 5 months of operation. The experiments evaluated the influence of selected process parameters on system performance. The identified best operation practices were used to complete a comparative study against CWFP’s full-scale treatment process and to conduct a performance assessment in the context of various legislative landscapes. The objective of the work was to determine both the advantages and disadvantages of the proposed technology over established solutions. Over the study period, the average turbidity of the produced water was equal to 0.54 NTU. The pilot complied with the United States Environmental Protection Agency (US EPA) turbidity standard of <0.3 NTU 47.1% of the time and <1 NTU for 89.9% of the time, thus falling short of the standard of <0.3 NTU 95% of the time and <1 NTU 100% of the time. For 99.5% of the time, it complied with the World Health Organization turbidity guideline of <5 NTU for chlorination treatment. The benchmark conventional system outperformed the tested prototype, complying with the US EPA standards for the entire duration of the study. The tested process also generated a waste stream, which accounted on average for more than 10% of the total raw water volume. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

29 pages, 1499 KiB  
Review
Frontiers in Innovative Materials and Technologies for Oil–Water Separation
by Jikun Jiang, Shunda Wan, Cheng Wen, Li Tang and Ning Xu
Polymers 2025, 17(12), 1635; https://doi.org/10.3390/polym17121635 - 12 Jun 2025
Viewed by 2010
Abstract
Oil-contaminated wastewater represents a major source of industrial pollution, posing significant risks to both the environment and human health. Traditional oil–water separation methods, including gravity separation, centrifugal separation, and air flotation, are limited by their processing efficiency and scope of applicability. In recent [...] Read more.
Oil-contaminated wastewater represents a major source of industrial pollution, posing significant risks to both the environment and human health. Traditional oil–water separation methods, including gravity separation, centrifugal separation, and air flotation, are limited by their processing efficiency and scope of applicability. In recent years, innovative oil–water separation technologies have gained considerable attention, particularly those utilizing adsorption, filtration, and membrane separation, owing to their high efficiency and environmental sustainability. Separation materials derived from biomass substrates—such as cellulose, chitosan, and lignin—along with metal-based membranes and polymeric filters, have shown remarkable performance. This is especially true for superhydrophobic/superoleophilic and stimuli-responsive materials, which excel in separating complex emulsified oil systems. This paper provides a comprehensive overview of the strengths and limitations of current separation technologies and explores the potential applications of multifunctional materials in treating oil-contaminated wastewater, offering both theoretical insights and practical guidance for advancing green, efficient oil–water separation solutions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 11328 KiB  
Article
Balsam-Pear-Skin-Like-Structure Polyvinylidene Fluoride/Ethylene–Vinyl Alcohol Fibrous Membrane for Highly Efficient Oil/Water Separation Through One-Step Electrospinning
by Qijiao Jiang, Jinpeng Mo, Shaobo Han, Xi Liu, Baoliu Qu, Juan Xie, Xianfeng Wang and Jing Zhao
Polymers 2025, 17(10), 1389; https://doi.org/10.3390/polym17101389 - 18 May 2025
Viewed by 433
Abstract
The rapid growth of industrial activities has significantly increased oil demand, leading to wastewater contamination with oil and causing severe environmental pollution. Traditional oil–water separation techniques, such as gravity separation, filtration, and chemical treatments, are hindered by low efficiency, high energy consumption, and [...] Read more.
The rapid growth of industrial activities has significantly increased oil demand, leading to wastewater contamination with oil and causing severe environmental pollution. Traditional oil–water separation techniques, such as gravity separation, filtration, and chemical treatments, are hindered by low efficiency, high energy consumption, and secondary pollution. Membrane separation technology has emerged as a promising solution due to its simplicity, low energy consumption, and high efficiency. In this study, we report the fabrication of a novel polyvinylidene fluoride/ethylene–vinyl alcohol (PVDF/EVOH) nanofibrous membrane (NFM) with a unique balsam-pear-skin-like structure using a one-step electrospinning process. The membrane’s superhydrophobicity and superoleophilicity were achieved via water vapor-induced phase separation (WVIPS), by optimizing the rheological properties and mixing ratio of EVOH and PVDF precursor solutions. The resulting PVDF/EVOH (PE12-3) NFM exhibits exceptional properties, achieving separation efficiencies of 99.4% for heavy oil and 98.9% for light oil, with a heavy oil flux of 18,020 L m−2 h−1—significantly surpassing previously reported performances. Additionally, the membrane shows excellent recyclability, making it ideal for large-scale oil–water separation in wastewater treatment and environmental remediation. This one-step fabrication strategy offers an efficient and scalable approach for developing high-performance membranes to tackle oil pollution in water. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

15 pages, 1717 KiB  
Article
Enhanced Biosorption and Recovery of Copper and Zinc from Acetic Acid-Extracted Livestock Wastewater Sludge Using Baker’s Yeast
by Jung-Jeng Su, Kuang-Wei Yen and Wei-Chen Chen
Animals 2025, 15(6), 794; https://doi.org/10.3390/ani15060794 - 11 Mar 2025
Viewed by 946
Abstract
This study aims to develop a novel use of baker’s yeast in biosorption as a sustainable metal recovery process for cost-effective and practical applications in recovering copper and zinc from waste gravity-thickened sludge generated at livestock wastewater treatment facilities. The supernatant of the [...] Read more.
This study aims to develop a novel use of baker’s yeast in biosorption as a sustainable metal recovery process for cost-effective and practical applications in recovering copper and zinc from waste gravity-thickened sludge generated at livestock wastewater treatment facilities. The supernatant of the acid-extracted product was separated from the residues through centrifugation. To ensure cost efficiency, the supernatant was treated with 2N acetic acid for 24 h, with the addition of hydrogen peroxide, and used for the biosorption experiments. The filtrated supernatant was adjusted to various pH values (4.5, 5.0, and 5.5) to explore the effects of acidity on the subsequent biosorption of extracted zinc and copper by baker’s yeast. A diluted molasses solution was added to the filtrate as a carbon source to support yeast growth during the 4 h biosorption experiments. The results revealed that the removal efficiency of zinc from the filtrate by baker’s yeast was 97.3%, while the removal efficiency for copper was about 48.8% at pH 5.5 with a reaction time of 4 h. In summary, this combined approach is expected to reduce and recycle heavy metals in livestock sludge. Acetic acid with hydrogen peroxide can extract copper and zinc from the sludge, and baker’s yeast can absorb both metals from the filtrate at pH 5.5 in a 4 h reaction time. This technological innovation has the potential to transform waste management practices in the livestock industry, contributing to resource recovery and environmental sustainability. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Graphical abstract

16 pages, 4171 KiB  
Article
Study on the Impact of Seepage Filtration Under Wet–Dry Cycles on the Stability of Mudstone Limestone Slopes
by Rui Li, Puyi Wang, Xiang Lu, Wei Zhou, Yihan Guo, Rongbo Lei, Zixiong Zhao, Ziyu Liu and Yu Tian
Water 2025, 17(4), 592; https://doi.org/10.3390/w17040592 - 18 Feb 2025
Viewed by 689
Abstract
Open-pit mining often exposes weak rock layers, the strength of which significantly affects the stability of slopes. If these rock layers are also prone to disintegration and expansion, cyclic rainfall can exacerbate instability. Rainfall-induced changes in the seepage field also indirectly threaten the [...] Read more.
Open-pit mining often exposes weak rock layers, the strength of which significantly affects the stability of slopes. If these rock layers are also prone to disintegration and expansion, cyclic rainfall can exacerbate instability. Rainfall-induced changes in the seepage field also indirectly threaten the stability of slopes. Therefore, investigating the characteristics of mudstone limestone and the impact of the seepage field on slope instability under different wet–dry cycles is of great significance for the safe mining of open-pit mines. This paper takes the mudstone limestone slope of a certain open-pit mine in the southwest as the starting point and conducts experiments on saturated density, water absorption rate, permeability coefficient, compressive strength, and variable angle shear strength. Combined with scanning electron microscopy and phase analysis of X-ray diffraction analysis, the macroscopic and microscopic characteristics of the samples are comprehensively analyzed. FLAC3D software is used to explore the changes in the seepage field and the mechanism of instability. Our research found that for the preparation of mudstone limestone samples, a particle size of less than 1 mm and a drying temperature of 50 °C are optimal, with specific values for initial natural and saturated density, and natural water content. As the number of wet–dry cycles increases, the saturated density of mudstone limestone increases; the water absorption rate first rises sharply and then rises slowly; the permeability coefficient first rises sharply and then stabilizes, finally dropping sharply; the compressive and shear strength decreases slowly, and the internal friction angle changes little; frequent cycles also lead to mudification and seepage filtration. At the microscopic level, pores become larger and more regular, and the distribution is more concentrated; changes in mineral content weaken the strength. Combined with numerical simulation, the changes in the seepage field at the bottom of the slope exceed those at the slope surface and top, the transient saturated area expands, and the overall and local slope stability coefficients gradually decrease. During the third cycle, the local stability is lower than the overall stability, and the landslide trend shifts. In conclusion, wet–dry cycles change the pores and mineral content, affecting the physical and mechanical properties, leading to the deterioration of the transient saturated area, a decrease in matrix suction, and an increase in surface gravity, eventually causing slope instability. Full article
Show Figures

Figure 1

14 pages, 3242 KiB  
Article
Effect of Sodium Hypochlorite Disinfection on Polyvinylidene Fluoride Membranes in Microplastic Ultrafiltration
by Guanghua Wang, Tongyu Li, Wenxuan Yin, Jianhua Zhou and Dongwei Lu
Water 2025, 17(1), 99; https://doi.org/10.3390/w17010099 - 2 Jan 2025
Cited by 2 | Viewed by 2197
Abstract
With the widespread use of plastic products, microplastic (MP) pollution has become an important factor threatening the water environment and human health. Ultrafiltration (UF) technology, based on organic polymer membranes, is a common method to remove MPs in water treatment processes, offering high [...] Read more.
With the widespread use of plastic products, microplastic (MP) pollution has become an important factor threatening the water environment and human health. Ultrafiltration (UF) technology, based on organic polymer membranes, is a common method to remove MPs in water treatment processes, offering high removal efficiency and scalability. However, in water treatment plants (WTPs), oxidation pretreatment is often applied before UF, and the presence of oxidants can affect membrane performance. In this study, we constructed a polyvinylidene fluoride (PVDF) ultrafiltration membrane for a gravity filtration system to investigate the impact of sodium hypochlorite oxidation pretreatment on the removal of polystyrene (PS) MPs under gravity filtration. As a result, pre-chlorination reduced PS microplastic deposition on membranes by improving flux stability (15.1%) but significantly decreased the removal rate (from 36.6% to 22.6%). Pre-oxidation facilitated a shift in fouling behavior toward intermediate blocking while reducing standard blocking and enhancing irreversible fouling recovery. However, continuous chlorine exposure increased membrane porosity and pore size, substituted fluorine with chlorine, and led to organic carbon leaching, indicating pre-oxidation jeopardizes membrane stability and separation performance. These findings provide insights into the development of novel strategies aimed at enhancing the efficiency and sustainability of membrane treatment processes in WTPs. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

12 pages, 4079 KiB  
Article
Freeze-Casting of Mining Wastes for Developing Sustainable Self-Supporting Ceramic Membranes
by Deyse Celestte S. Pereira, Vanderlane C. Silva, Josenildo I. Santos Filho, Juliana M. Cartaxo, Ieda Maria G. Santos, Lisiane N. L. Santana, Gelmires A. Neves and Romualdo R. Menezes
Sustainability 2024, 16(24), 11227; https://doi.org/10.3390/su162411227 - 21 Dec 2024
Viewed by 1000
Abstract
In this work, kaolin processing waste (KW) and columbite–tantalite waste (CTW) from mining activities were used to manufacture sustainable self-supporting ceramic membranes using the freeze-casting technique. The wastes were characterized, and formulations using only wastes were developed. Gelatin was used in the freeze-casting [...] Read more.
In this work, kaolin processing waste (KW) and columbite–tantalite waste (CTW) from mining activities were used to manufacture sustainable self-supporting ceramic membranes using the freeze-casting technique. The wastes were characterized, and formulations using only wastes were developed. Gelatin was used in the freeze-casting as a processing aid to avoid dendritic or lamellar pores. The membranes were sintered at different temperatures (1100 °C, 1200 °C and 1300 °C) and analyzed by X-ray diffraction, scanning electron microscopy, flexural strength measurement, and mercury porosimetry. The flux through the membranes was measured using a gravity-driven dead-end filtration system. The membranes containing 80% KW and 20% CTW sintered at 1200 °C showed high porosity (59%), a water permeate flux of 126.5 L/hm2, and a mechanical strength of 1.5 MPa. Filtration tests demonstrated effective turbidity removal (>99%) for synthetic water consisting of tap water and bentonite, reaching 0.1 NTU. The use of mining waste has shown considerable promise for the development of sustainable and affordable membranes for water treatment applications. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Graphical abstract

17 pages, 4293 KiB  
Article
A Gravity-Driven Membrane Bioreactor in Treating Real Fruit Juice Wastewater: Response Relationship Between Filtration Behavior and Microbial Community Evolution
by Dan Song, Haiyao Du, Shichun Chen, Xiaodie Han, Lu Wang, Yonggang Li, Caihong Liu, Wenjuan Zhang and Jun Ma
Membranes 2024, 14(12), 260; https://doi.org/10.3390/membranes14120260 - 6 Dec 2024
Viewed by 1231
Abstract
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from [...] Read more.
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.01 to 0.04 MPa without requiring backwashing or chemical cleaning, with the aim of investigating flux development and contaminant removal under low-energy conditions. The results demonstrate an initial decrease in flux followed by stabilization during long-term filtration. Moreover, the stabilized flux level achieved with the GDMBR at pressures of 0.01 and 0.02 MPa was observed to surpass that obtained at 0.04 MPa, ranging from 4 to 4.5 L/m−2 h−1. The stability of flux was positively associated with the low membrane fouling resistance observed in the GDMBR system. Additionally, the GDMBR system provided remarkable efficiencies in removing the chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia (NH4+-N), and total nitrogen (TN), with average removal rates of 82%, 80%, 83%, and 79%, respectively. The high biological activity and microbial community diversity within the sludge and biofilm are expected to enhance its biodegradation potential, thereby contributing to the efficient removal of contaminants. Notably, a portion of total phosphorus (TP) can be effectively retained in the reactor, which highlighted the promising application of the GDMBR process for actual fruit juice wastewater based on these findings. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 4097 KiB  
Article
The Influence of Fibers from Domestic Laundry Wastewater on the Clogging Process of a Filter
by Jakub Nieć, Natalia Walczak, Marcin Spychała and Zbigniew Walczak
Water 2024, 16(21), 3137; https://doi.org/10.3390/w16213137 - 2 Nov 2024
Viewed by 1287
Abstract
This study presents the impact of the size and shape of particles in laundry wastewater on the clogging process of a porous material. Clogging can be defined as a mechanical limitation of flow through porous media. The process of mechanical clogging was investigated [...] Read more.
This study presents the impact of the size and shape of particles in laundry wastewater on the clogging process of a porous material. Clogging can be defined as a mechanical limitation of flow through porous media. The process of mechanical clogging was investigated in this study. The research was conducted in laboratory conditions in a filter column filled with glass beads whose diameter corresponded to coarse sand. The results reveal the influence of graywater quality on filter hydraulic conductivity and bed clogging, showing the impact of fiber particles in wastewater (sewage from home laundry) on the clogging process in soil. The results confirm that fiber particles significantly reduce filter permeability, particularly due to the formation of a filter cake. As analyzed in this paper, the distribution of quantitative data on particles of different sizes found in laundry wastewater indicates that they mainly accumulate in the upper layer, where particles with fiber lengths ranging from 0 to 1600 µm can be found. The average length of the fibers decreased with increasing depth. At a depth of approximately 10 cm, fibers with dimensions in the range of 0 to 100 μm were predominantly observed. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

14 pages, 3006 KiB  
Article
Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water
by Jiaoying Luo, Yaru Zhang, Hailin Chang, Chenghai Lin, Yating Hu, Haochun Wang, Yanrui Wang and Xiaobin Tang
Water 2024, 16(17), 2374; https://doi.org/10.3390/w16172374 - 23 Aug 2024
Cited by 3 | Viewed by 1464
Abstract
Manganese pollution in surface water has been a new concern in decentralized drinking water treatment. The dissolved manganese cannot be effectively removed by the traditional ultrafiltration (UF) process, but will cause severe membrane fouling. To address such issues, an innovative gravity-driven membrane (GDM) [...] Read more.
Manganese pollution in surface water has been a new concern in decentralized drinking water treatment. The dissolved manganese cannot be effectively removed by the traditional ultrafiltration (UF) process, but will cause severe membrane fouling. To address such issues, an innovative gravity-driven membrane (GDM) coupled with a dynamic manganese oxide (MnOx) film on the membrane surface was proposed, with hopes of enhancing manganese removal and alleviating membrane fouling. The results demonstrated that pre-coating a dynamic MnOx film on the membrane surface of a GDM system would effectively reduce start-up time for removing iron and manganese pollutants, without affecting the flux stabilization of the GDM. Effective manganese removal (~80%) primarily depended on the adsorption and auto-catalytic oxidation facilitated by the pre-coating of MnOx. Furthermore, the MnOx film notably enhanced organic pollutant removal efficiency. Additionally, the MnOx coated on the membrane surface acted as a skeleton, promoting the gradual formation of a biocake layer with a heterogeneous and porous structure, which benefited the flux stabilization of the GDM. In particular, the fine and homogeneous MnOx-M derived from the backflushing water of the mature manganese sand filter exhibited precise and uniform coating on the membrane surface, effectively mitigating the irreversible pore plugging caused by organic matter penetration and thereby enhancing stable flux by ~16.3% compared to the control. This study offered a novel strategy to enhance the purification efficiency of GDM system treating manganese pollution and was expected to contribute to the technological advancement of decentralized water supply scenarios. Full article
(This article belongs to the Special Issue Application of Membrane-Based Technology in Water Treatment)
Show Figures

Figure 1

14 pages, 2152 KiB  
Article
The Influence of the Biofiltration Method on the Efficiency of Ammonium Nitrogen Removal from Water in Combined Sorption and Nitrification Processes
by Dorota Papciak, Andżelika Domoń and Monika Zdeb
Water 2024, 16(5), 722; https://doi.org/10.3390/w16050722 - 28 Feb 2024
Cited by 5 | Viewed by 2075
Abstract
This study assessed the impact of the method of conducting the biofiltration process on the efficiency of ammonium nitrogen removal from water in combined sorption and nitrification processes. The research was carried out on diatomite deposits using biofiltration with gravity and counter-gravity flow. [...] Read more.
This study assessed the impact of the method of conducting the biofiltration process on the efficiency of ammonium nitrogen removal from water in combined sorption and nitrification processes. The research was carried out on diatomite deposits using biofiltration with gravity and counter-gravity flow. The following physicochemical water parameters were controlled during the research, including ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, and dissolved oxygen. Unconventional flow turned out to be more beneficial because it allows for optimal use of the entire bed surface, natural regulation of the biofilm thickness, and maintaining constant microbiological activity of the biofilm. The automatic regulation of the biofilm thickness during water flow prevented excessive growth of dead organic matter and limited the development of heterotrophic bacteria. Biofiltration with counter-gravity flow also resulted in reduced oxygen consumption. Regardless of the flow direction used, water after the single-stage biofiltration process was characterized by an increased content of nitrite nitrogen. The introduction of the second stage of filtration made it possible to obtain water that meets the requirements for water intended for human consumption. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 5274 KiB  
Article
Development of Drug Efficacy Testing Platform for Glomerulonephritis
by Eun-Jeong Kwon, Yunyeong Choi, Shin Young Kim, Seokwoo Park, Giae Yun, Sei Hong Min and Sejoong Kim
Micromachines 2024, 15(3), 317; https://doi.org/10.3390/mi15030317 - 24 Feb 2024
Cited by 1 | Viewed by 1634
Abstract
We developed a 3D glomeruli tissue chip for glomerulonephritis (GN) testing, featuring a gravity-driven glomerular filtration barrier (GFB) with human podocytes and endothelial cells with a bidirectional flow in the bottom channel. Using puromycin-induced GN, we observed decreased cell viability, increased albumin permeability, [...] Read more.
We developed a 3D glomeruli tissue chip for glomerulonephritis (GN) testing, featuring a gravity-driven glomerular filtration barrier (GFB) with human podocytes and endothelial cells with a bidirectional flow in the bottom channel. Using puromycin-induced GN, we observed decreased cell viability, increased albumin permeability, and reduced WT1 and nephrin compared to the normal GFB. Tacrolimus restored cell viability, reduced albumin permeability, and increased WT1 expression. Using serum from five membranous nephropathy (MN) patients, we created MN models using a GFB-mimicking chip. A notable decline in cell viability was observed in the serum-induced MN1 and MN2 models. However, tacrolimus restored it. Albumin permeability was reduced in the MN1, MN2, and MN5 models by tacrolimus treatment. MN1 displayed the best clinical response to tacrolimus, exhibiting increased expression of WT1 in chip-based evaluations after tacrolimus treatment. We successfully evaluated the efficacy of tacrolimus using puromycin-induced and serum-induced GN models on a chip that mimicked the structure and function of the GFB. The GFB-mimicking chip holds promise as a personalized platform for assessing drug efficacy using patient serum samples. Full article
(This article belongs to the Special Issue Microfluidic Systems for Biomedical Analysis, Detection and Diagnosis)
Show Figures

Figure 1

20 pages, 14216 KiB  
Article
Purification and Recovery of Hot-Dip Galvanizing Slag via Supergravity-Induced Cake-Mode Filtration
by Shuai Zhang, Zhe Wang, Xi Lan, Lei Shi and Zhancheng Guo
Metals 2024, 14(1), 100; https://doi.org/10.3390/met14010100 - 14 Jan 2024
Cited by 2 | Viewed by 2049
Abstract
The elimination and retrieval of slag produced during the hot-dip galvanizing process are crucial in reducing plating defects and enhancing economic efficiency. Hot-dip galvanizing slag can be separated and purified efficiently by using graphite carbon felt filtration in a supergravity field. The effects [...] Read more.
The elimination and retrieval of slag produced during the hot-dip galvanizing process are crucial in reducing plating defects and enhancing economic efficiency. Hot-dip galvanizing slag can be separated and purified efficiently by using graphite carbon felt filtration in a supergravity field. The effects of the gravity coefficient (G), separation temperature (T), and separation time (t) on the separation efficiency were investigated. Under the optimal conditions as G = 300, T = 460 °C, and t = 120 s, these conditions yielded filtered zinc with 0.022 wt% Fe and 1.097 wt% Al. The separation efficiencies achieved were 87% for the acquisition ratio of filtered zinc (AZn), 93.67% for the recovery ratio of zinc (RZn), and 96.01% for the loss ratio of iron (LFe). Based on these laboratory findings, an amplified centrifugal separation apparatus was conceptually designed for future online separation and recycle of zinc slag on an engineering scale. The filtered zinc obtained from this apparatus contained 0.027 wt% Fe and 1.844 wt% Al, while the recovery ratio of zinc (RZn) and the loss ratio of iron (LFe) achieved 85.97% and 95.47%, respectively. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 3538 KiB  
Article
Optimization of Critical Factors Affecting Dynamic Membrane Formation in a Gravity-Driven Self-Forming Dynamic Membrane Bioreactor towards Low-Cost and Low-Maintenance Wastewater Treatment
by Luhe Tang, Jingyu Zhang, Lulu Zha, Yisong Hu, Yiming Yang, Yunsheng Zhao, Xinglong Dong, Zhanjiu Wang, Weihang Deng and Yuan Yang
Water 2023, 15(22), 3963; https://doi.org/10.3390/w15223963 - 15 Nov 2023
Cited by 1 | Viewed by 1845
Abstract
Self-forming dynamic membrane (SFDM) formation is affected by a variety of operating conditions. However, previous studies have only focused on individual influencing factors and a systematic analysis of important factors is lacking. In this study, an aerobic self-forming dynamic membrane bioreactor (SFDMBR) was [...] Read more.
Self-forming dynamic membrane (SFDM) formation is affected by a variety of operating conditions. However, previous studies have only focused on individual influencing factors and a systematic analysis of important factors is lacking. In this study, an aerobic self-forming dynamic membrane bioreactor (SFDMBR) was developed for the treatment of domestic wastewater with the critical factors that affect the effective formation of SFDM optimized, and the operational performances under optimized formation conditions confirmed. The results indicated that SFDM could be formed within 5 min using 48 μm stainless-steel mesh as the supporting material at a sludge concentration of 5–6 g/L and a gravity waterhead of 15 cm. And the SFDM formed could maintain a stable flux of 30–50 LMH, and the removals of COD, SCOD, and NH4+-N were 93.28%, 82.85%, and 95.46%, respectively. Furthermore, the cake layer resistance (reversible fouling) contributed to 95.93% of the total filtration resistance, thus a simple physical cleaning can effectively restore the flux indicating a low-maintenance requirement. This study provides valuable insights into the optimization and application of the SFDMBR process. Full article
(This article belongs to the Special Issue Innovative Membrane Processes in Low-Carbon Wastewater Treatment)
Show Figures

Figure 1

14 pages, 8513 KiB  
Article
Effect of Low Gravity Solids on Weak Gel Structure and the Performance of Oil-Based Drilling Fluids
by Haokun Shen, Jinsheng Sun, Kaihe Lv, Meichun Li, Yuan Geng, Zheng Yang, Xianbin Huang, Hongyan Du and Muhammad Arqam Khan
Gels 2023, 9(9), 729; https://doi.org/10.3390/gels9090729 - 8 Sep 2023
Cited by 6 | Viewed by 2783
Abstract
Drilling cuttings from the rock formation generated during the drilling process are generally smashed to fine particles through hydraulic cutting and grinding using a drilling tool, and then are mixed with the drilling fluid during circulation. However, some of these particles are too [...] Read more.
Drilling cuttings from the rock formation generated during the drilling process are generally smashed to fine particles through hydraulic cutting and grinding using a drilling tool, and then are mixed with the drilling fluid during circulation. However, some of these particles are too small and light to be effectively removed from the drilling fluid via solids-control equipment. These small and light solids are referred to as low gravity solids (LGSs). This work aimed to investigate the effect of LGSs on the performance of oil-based drilling fluid (OBDF), such as the rheological properties, high-temperature and high-pressure filtration loss, emulsion stability, and filter cake quality. The results show that when the content of LGSs reached or even exceeded the solid capacity limit of the OBDF, the rheological parameters including the plastic viscosity, gel strength, and thixotropy of OBDF increased significantly. Furthermore, the filtration of OBDF increases, the filter cake becomes thicker, the friction resistance becomes larger, and the stability of emulsion of OBDF also decreases significantly when the concentration of LGSs reached the solid capacity limit of OBDF (6–9 wt% commonly). It was also found that LGSs with a smaller particle size had a more pronounced negative impact on the drilling fluid performance. This work provides guidance for understanding the impact mechanism of LGSs on drilling fluid performance and regulating the performance of OBDF. Full article
(This article belongs to the Special Issue Gel for Oil-Based Drilling Fluid)
Show Figures

Graphical abstract

Back to TopTop