Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = graphene oligomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2027 KiB  
Article
Development and Evaluation of a Novel Self-Etch Dental Adhesive Incorporating Graphene Oxide–Zirconia (GO-ZrO2) and Hydroxyapatite–Zinc (HA-Zn) for Enhanced Bond Strength, Biocompatibility, and Long-Term Stability
by Norbert Erich Serfözö, Marioara Moldovan, Doina Prodan and Nicoleta Ilie
Nanomaterials 2025, 15(11), 803; https://doi.org/10.3390/nano15110803 - 27 May 2025
Viewed by 503
Abstract
The aim of this study was to develop an experimental self-etch dental adhesive (SE) by synthesizing graphene oxide–functionalized zirconia (GO-ZrO2) and hydroxyapatite–functionalized zinc (HA-Zn) as inorganic powders together with bis-GMA (0–2) (bisphenol A-glycidyl methacrylate) oligomers as main components of the organic [...] Read more.
The aim of this study was to develop an experimental self-etch dental adhesive (SE) by synthesizing graphene oxide–functionalized zirconia (GO-ZrO2) and hydroxyapatite–functionalized zinc (HA-Zn) as inorganic powders together with bis-GMA (0–2) (bisphenol A-glycidyl methacrylate) oligomers as main components of the organic matrix. The adhesive was compared to the current gold standard adhesive Clearfill SE Bond 2 (CSE) using cytotoxicity assays, shear bond strength (SBS) tests, and resin–dentin interface analyses. Cytotoxicity assays with human gingival fibroblasts (HGF-1) revealed reduced cell viability at early time points but indicated favourable biocompatibility and potential cell proliferation at later stages. SBS values for the experimental adhesive were comparable to CSE after 24 h of storage while aging did not significantly affect its bond strength. However, SBS exhibited more consistent resin tag formation and higher Weibull modulus values post-aging. A scanning electron microscopy (SEM) analysis highlighted differences in resin tag formation, suggesting the experimental adhesive relies more on chemical bonding than micromechanical interaction. The experimental adhesive demonstrated promising potential clinical properties and bond durability due to the integration of GO-ZrO2 and HA-Zn fillers into the adhesive. Full article
Show Figures

Graphical abstract

37 pages, 19268 KiB  
Review
From Waste to Worth: Upcycling Plastic into High-Value Carbon-Based Nanomaterials
by Ahmed M. Abdelfatah, Mohamed Hosny, Ahmed S. Elbay, Nourhan El-Maghrabi and Manal Fawzy
Polymers 2025, 17(1), 63; https://doi.org/10.3390/polym17010063 - 30 Dec 2024
Cited by 6 | Viewed by 5478
Abstract
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most [...] Read more.
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060. This study explores innovative approaches to convert PW into high-value carbon nanomaterials (CNMs) such as graphene, carbon nanotubes (CNTs), and other advanced carbon structures. Various methods including pyrolysis, arc discharge, catalytic degradation, and laser ablation have been investigated in transforming PW into CNMs. However, four primary methodologies are discussed herein: thermal decomposition, chemical vapor deposition (CVD), flash joule heating (FJH), and stepwise conversion. The scalability of the pathways discussed for industrial applications varies significantly. Thermal decomposition, particularly pyrolysis, is highly scalable due to its straightforward setup and cost-effective operation, making it suitable for large-scale waste processing plants. It also produces fuel byproducts that can be used as an alternative energy source, promoting the concept of energy recovery and circular economy. CVD, while producing high-quality carbon materials, is less scalable due to the high cost and required complex equipment, catalyst, high temperature, and pressure, which limits its use to specialized applications. FJH offers rapid synthesis of high-quality graphene using an economically viable technique that can also generate valuable products such as green hydrogen, carbon oligomers, and light hydrocarbons. However, it still requires optimization for industrial throughput. Stepwise conversion, involving multiple stages, can be challenging to scale due to higher operational complexity and cost, but it offers precise control over material properties for niche applications. This research demonstrates the growing potential of upcycling PW into valuable materials that align with global sustainability goals including industry, innovation, and infrastructure (Goal 9), sustainable cities and communities (Goal 11), and responsible consumption and production (Goal 12). The findings underscore the need for enhanced recycling infrastructure and policy frameworks to support the shift toward a circular economy and mitigate the global plastic crisis. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

24 pages, 9019 KiB  
Article
The Synthesis, Characterization, and Theoretical Study of Ruthenium (II) Polypyridyl Oligomer Hybrid Structures with Reduced Graphene Oxide for Enhanced Optoelectronic Applications
by Alexander Schultheiss, Jamel White, Khoa Le, Nicole Boone, Ufana Riaz and Darlene K. Taylor
Int. J. Mol. Sci. 2024, 25(23), 12989; https://doi.org/10.3390/ijms252312989 - 3 Dec 2024
Viewed by 742
Abstract
π-conjugated polymers are arguably one of the most exciting classes of materials and have attracted substantial attention due to their unique optical and electronic properties. The introduction of transition metals into conjugated polymers tunes the optoelectronic properties of these metallopolymers, which may improve [...] Read more.
π-conjugated polymers are arguably one of the most exciting classes of materials and have attracted substantial attention due to their unique optical and electronic properties. The introduction of transition metals into conjugated polymers tunes the optoelectronic properties of these metallopolymers, which may improve their performance in device applications. Graphene and reduced graphene oxide (RGO) derivatives are interesting materials with a unique structure and outstanding properties. The present work reports an investigation of three hybrid RGO and π-conjugated oligomers that contain ruthenium polypyridyl chromophores serving as models to provide molecular-level insight for the corresponding transition-metal-containing conjugated polymers. Full article
Show Figures

Graphical abstract

12 pages, 1784 KiB  
Article
Stability and Electronic Properties of 1D and 2D Ca@C60 Oligomers and Polymers
by Yabei Wu, Zhonghao Zhou and Zhiyong Wang
Inorganics 2024, 12(2), 45; https://doi.org/10.3390/inorganics12020045 - 29 Jan 2024
Cited by 1 | Viewed by 2386
Abstract
The polymerization of fullerenes is a significant method for obtaining fullerene-based materials that possess intriguing properties. Metallofullerenes, as a notable type of fullerene derivatives, are also capable of undergoing polymerization, potentially resulting in the creation of metallofullerene polymers. However, there is currently limited [...] Read more.
The polymerization of fullerenes is a significant method for obtaining fullerene-based materials that possess intriguing properties. Metallofullerenes, as a notable type of fullerene derivatives, are also capable of undergoing polymerization, potentially resulting in the creation of metallofullerene polymers. However, there is currently limited knowledge regarding the polymerization process of metallofullerenes. In this study, we have selected Ca@C 60 as a representative compound to investigate the polymerization process of metallofullerenes. The objective of this research is to determine whether the polymerization process is energetically favorable and to examine how the electronic properties of the metallofullerene are altered throughout the polymerization process. Ca@C 60 is a unique metallofullerene molecule that exhibits insolubility in common fullerene solvents like toluene and carbon disulfide but is soluble in aniline. This behavior suggests a potential tendency for Ca@C 60 to form oligomers and polymers that resist dissolution. However, the structures and properties of polymerized Ca@C 60 remain unknown. We employed density functional theory calculations to investigate the stability and electronic properties of one-dimensional and two-dimensional Ca@C 60 oligomers and polymers. Our findings indicate that the coalescence of Ca@C 60 monomers is energetically favorable, with a significant contribution from van der Waals interactions between the fullerene cages. The polymerization process of Ca@C 60 also involves the formation of covalent linkages, including four-atom rings and C-C single bonds. The increase in the number of the Ca@C 60 units to three and four in the oligomer leads to a significant decrease in the HOMO-LUMO gap. In the two-dimensional polymerized Ca@C 60, the organization of the monomers closely resembles the spatial configuration of carbon atoms in graphene. With a direct bandgap of 0.22 eV, the polymerized Ca@C 60 holds potential for utilization in optoelectronic devices. Full article
(This article belongs to the Special Issue Research on Metallofullerenes)
Show Figures

Graphical abstract

17 pages, 5217 KiB  
Article
Effects of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) on Green-Emitting Conjugated Copolymer’s Optical and Laser Properties Using Simulation and Experimental Studies
by Saradh Prasad, Raya H. Alhandel, Nassar N. Asemi and Mohamad S. AlSalhi
Polymers 2023, 15(23), 4572; https://doi.org/10.3390/polym15234572 - 29 Nov 2023
Cited by 5 | Viewed by 2000
Abstract
The properties of a conjugated copolymer (CP), poly[(9,9-Dioctyl-2,7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene) (PDVF-co-MEH-PV), were investigated in the presence of graphene oxide (GO) and reduced graphene oxide (rGO) using absorption, fluorescence, laser, and time-resolved spectroscopy. CPs are usually dissolved in low-polar solvents. Although GO does not dissolve well, [...] Read more.
The properties of a conjugated copolymer (CP), poly[(9,9-Dioctyl-2,7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene) (PDVF-co-MEH-PV), were investigated in the presence of graphene oxide (GO) and reduced graphene oxide (rGO) using absorption, fluorescence, laser, and time-resolved spectroscopy. CPs are usually dissolved in low-polar solvents. Although GO does not dissolve well, rGO and PDVF-co-MEH-PV dissolve in chloroform due to their oxygen acceptor sites. Hence, we studied rGO/PDVF-co-MEH-PV (CP/rGO), performing all experiments and simulations in chloroform. We performed simulations on PDVF-co-MEH-PV, approximate GO, and rGO using time-dependent density-functional theory calculations to comprehend the molecular dynamics and interactions at the molecular level. The simulation polymer used a tail-truncated oligomer model with up to three monomer units. The simulation and experimental results were in agreement. Further, the PDVF-co-MEH-PV exhibited fluorescence, laser quenching, rGO-mediated laser blinking, and spectral broadening effects when GO and rGO concentrations increased. The experimental and simulation results were compared to provide a plausible mechanism of interaction between PDVF-co-MEH-PV and rGO. We observed that for lower concentrations of rGO, the interaction did not considerably decrease the amplified spontaneous emissions of PDVF-co-MEH-PV. However, the fluorescence of PDVF-co-MEH-PV was considerably quenched at higher concentrations of rGO. These results could be helpful for future applications, such as in sensors, solar cells, and optoelectronic device design. To demonstrate the sensor capability of these composites, a paper-based sensor was designed to detect ethanol and nitrotoluene. An instrumentation setup was proposed that is cheap, reusable, and multifunctional. Full article
(This article belongs to the Special Issue Novel Copolymers: Preparation, Characterization, and Applications)
Show Figures

Graphical abstract

22 pages, 7404 KiB  
Article
Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties
by Olga Solomakha, Mariia Stepanova, Iosif Gofman, Yulia Nashchekina, Maxim Rabchinskii, Alexey Nashchekin, Antonina Lavrentieva and Evgenia Korzhikova-Vlakh
Polymers 2023, 15(12), 2714; https://doi.org/10.3390/polym15122714 - 17 Jun 2023
Cited by 4 | Viewed by 2121
Abstract
The development of new biodegradable biomaterials with osteoconductive properties for bone tissue regeneration is one of the urgent tasks of modern medicine. In this study, we proposed the pathway for graphene oxide (GO) modification with oligo/poly(glutamic acid) (oligo/poly(Glu)) possessing osteoconductive properties. The modification [...] Read more.
The development of new biodegradable biomaterials with osteoconductive properties for bone tissue regeneration is one of the urgent tasks of modern medicine. In this study, we proposed the pathway for graphene oxide (GO) modification with oligo/poly(glutamic acid) (oligo/poly(Glu)) possessing osteoconductive properties. The modification was confirmed by a number of methods such as Fourier-transform infrared spectroscopy, quantitative amino acid HPLC analysis, thermogravimetric analysis, scanning electron microscopy, and dynamic and electrophoretic light scattering. Modified GO was used as a filler for poly(ε-caprolactone) (PCL) in the fabrication of composite films. The mechanical properties of the biocomposites were compared with those obtained for the PCL/GO composites. An 18–27% increase in elastic modulus was found for all composites containing modified GO. No significant cytotoxicity of the GO and its derivatives in human osteosarcoma cells (MG-63) was revealed. Moreover, the developed composites stimulated the proliferation of human mesenchymal stem cells (hMSCs) adhered to the surface of the films in comparison with unfilled PCL material. The osteoconductive properties of the PCL-based composites filled with GO modified with oligo/poly(Glu) were confirmed via alkaline phosphatase assay as well as calcein and alizarin red S staining after osteogenic differentiation of hMSC in vitro. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites II)
Show Figures

Graphical abstract

12 pages, 2709 KiB  
Proceeding Paper
MD Average of Vibrational Spectra of Nucleotides in a SERS Sensor Simulation with Varying Number of Au Nanoparticles
by Tatiana Zolotoukhina and Kota Maruyama
Eng. Proc. 2023, 35(1), 37; https://doi.org/10.3390/IECB2023-14568 - 8 May 2023
Viewed by 1233
Abstract
Applying the surface-enhanced Raman scattering (SERS) method to detect bioactive molecules such as DNA, proteins, and drugs has significant potential for structure-sensitive nondestructive chemical analysis. The SERS discrimination of single-molecule oligomers in DNA, microRNA, and proteins has attracted wide attention due to the [...] Read more.
Applying the surface-enhanced Raman scattering (SERS) method to detect bioactive molecules such as DNA, proteins, and drugs has significant potential for structure-sensitive nondestructive chemical analysis. The SERS discrimination of single-molecule oligomers in DNA, microRNA, and proteins has attracted wide attention due to the possibility of developing new sensing technology. The collected signal’s sensitivity has the level of detection of single oligomers, which can be compared with the simulation results corresponding to the sensor structure. We investigate the averaging method of the individual bond spectra for DNA nucleotides in the ring part of the pyrimidine (6-ring) and purine (6–5-ring) bases to form vibrational spectra obtained by molecular dynamics (MD) simulation. The system consists of the Au nanoparticles (from 1 to 4 NP assay) attached to a graphene sheet at the edge of the nanopore that localizes in the nanopore nucleotide interaction and spectral enhancement. The nucleotide translocation velocity set at 0.025 m/s compares with the experimental range. The vibrational spectra ring average has been tested for adenine and guanine with close correspondence (in the 500–1700 cm−1 range) to the experimental Raman and SERS spectra and extended to cytosine and thymine nucleotides. We also modified the number of the Au nanoparticles from one NP to four identical NPs to evaluate the influence of the interaction on the MD transient spectra. The variations of mode frequencies and amplitudes due to the number of Au NPs in bond spectra, as well as ring averages, mark the corresponding Au–nucleotide interactions and are considered for use as training sets for machine learning methods. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

12 pages, 4183 KiB  
Article
Thermal Stability and Vibrational Properties of the 6,6,12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal
by Ekaterina S. Dolina, Pavel A. Kulyamin, Anastasiya A. Grekova, Alexey I. Kochaev, Mikhail M. Maslov and Konstantin P. Katin
Materials 2023, 16(5), 1964; https://doi.org/10.3390/ma16051964 - 27 Feb 2023
Cited by 4 | Viewed by 2143
Abstract
We report the geometry, kinetic energy, and some optical properties of the 6,6,12-graphyne-based systems. We obtained the values of their binding energies and structural characteristics such as bond lengths and valence angles. Moreover, using nonorthogonal tight-binding molecular dynamics, we carried out a comparative [...] Read more.
We report the geometry, kinetic energy, and some optical properties of the 6,6,12-graphyne-based systems. We obtained the values of their binding energies and structural characteristics such as bond lengths and valence angles. Moreover, using nonorthogonal tight-binding molecular dynamics, we carried out a comparative analysis of the thermal stability of 6,6,12-graphyne-based isolated fragments (oligomer) and two-dimensional crystals constructed on its basis in a wide temperature range from 2500 to 4000 K. We found the temperature dependence of the lifetime for the finite graphyne-based oligomer as well as for the 6,6,12-graphyne crystal using a numerical experiment. From these temperature dependencies, we obtained the activation energies and frequency factors in the Arrhenius equation that determine the thermal stability of the considered systems. The calculated activation energies are fairly high: 1.64 eV for the 6,6,12-graphyne-based oligomer and 2.79 eV for the crystal. It was confirmed that the thermal stability of the 6,6,12-graphyne crystal concedes only to traditional graphene. At the same time, it is more stable than graphene derivatives such as graphane and graphone. In addition, we present data on the Raman and IR spectra of the 6,6,12-graphyne, which will help distinguish it from the other carbon low-dimensional allotropes in the experiment. Full article
Show Figures

Figure 1

7 pages, 1671 KiB  
Article
Thermomechanical Properties of Carbon Nanocomposites PEGDA Photopolymers
by Panagiotis Loginos, Anastasios Patsidis, Katerina Vrettos, George Sotiriadis, Georgios C. Psarras, Vassilis Kostopoulos and Vasilios Georgakilas
Molecules 2022, 27(20), 6996; https://doi.org/10.3390/molecules27206996 - 18 Oct 2022
Cited by 4 | Viewed by 2300
Abstract
In this work, UV-curable resin poly (ethylene glycol) diacrylate (PEGDA) was reinforced with three different types of nanofillers: pristine graphene (G), multiwalled carbon nanotubes (MWNTs), and a hybrid of MWNTs and graphene 70/30 in mass ratio (Hyb). PEGDA was mixed homogenously with the [...] Read more.
In this work, UV-curable resin poly (ethylene glycol) diacrylate (PEGDA) was reinforced with three different types of nanofillers: pristine graphene (G), multiwalled carbon nanotubes (MWNTs), and a hybrid of MWNTs and graphene 70/30 in mass ratio (Hyb). PEGDA was mixed homogenously with the nanofiller oligomer by shear mixing and then photopolymerized, affording thin, stable films. The thermomechanical properties of the afforded nanocomposites indicated the superior reinforcing ability of pristine graphene compared with MWNTs and an intermediate behavior of the hybrid. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

17 pages, 5523 KiB  
Article
Aminated Graphene-Graft-Oligo(Glutamic Acid) /Poly(ε-Caprolactone) Composites: Preparation, Characterization and Biological Evaluation
by Mariia Stepanova, Olga Solomakha, Maxim Rabchinskii, Ilia Averianov, Iosif Gofman, Yuliya Nashchekina, Grigorii Antonov, Aleksey Smirnov, Boris Ber, Aleksey Nashchekin and Evgenia Korzhikova-Vlakh
Polymers 2021, 13(16), 2628; https://doi.org/10.3390/polym13162628 - 7 Aug 2021
Cited by 11 | Viewed by 2856
Abstract
Biodegradable and biocompatible composites are of great interest as biomedical materials for various regeneration processes such as the regeneration of bones, cartilage and soft tissues. Modification of the filler surface can improve its compatibility with the polymer matrix, and, as a result, the [...] Read more.
Biodegradable and biocompatible composites are of great interest as biomedical materials for various regeneration processes such as the regeneration of bones, cartilage and soft tissues. Modification of the filler surface can improve its compatibility with the polymer matrix, and, as a result, the characteristics and properties of composite materials. This work is devoted to the synthesis and modification of aminated graphene with oligomers of glutamic acid and their use for the preparation of composite materials based on poly(ε-caprolactone). Ring-opening polymerization of N-carboxyanhydride of glutamic acid γ-benzyl ester was used to graft oligomers of glutamic acid from the surface of aminated graphene. The success of the modification was confirmed by Fourier-transform infrared and X-ray photoelectron spectroscopy as well as thermogravimetric analysis. In addition, the dispersions of neat and modified aminated graphene were analyzed by dynamic and electrophoretic light scattering to monitor changes in the characteristics due to modification. The poly(ε-caprolactone) films filled with neat and modified aminated graphene were manufactured and carefully characterized for their mechanical and biological properties. Grafting of glutamic acid oligomers from the surface of aminated graphene improved the distribution of the filler in the polymer matrix that, in turn, positively affected the mechanical properties of composite materials in comparison to ones containing the unmodified filler. Moreover, the modification improved the biocompatibility of the filler with human MG-63 osteoblast-like cells. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites)
Show Figures

Graphical abstract

14 pages, 3774 KiB  
Article
Molecular Mechanisms on the Selectivity Enhancement of Ascorbic Acid, Dopamine, and Uric Acid by Serine Oligomers Decoration on Graphene Oxide: A Molecular Dynamics Study
by Threrawee Sanglaow, Pattanan Oungkanitanon, Piyapong Asanithi and Thana Sutthibutpong
Molecules 2021, 26(10), 2876; https://doi.org/10.3390/molecules26102876 - 13 May 2021
Cited by 5 | Viewed by 2942
Abstract
The selectivity in the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) has been an open problem in the biosensing field. Many surface modification methods were carried out for glassy carbon electrodes (GCE), including the use of graphene oxide [...] Read more.
The selectivity in the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) has been an open problem in the biosensing field. Many surface modification methods were carried out for glassy carbon electrodes (GCE), including the use of graphene oxide and amino acids as a selective layer. In this work, molecular dynamics (MD) simulations were performed to investigate the role of serine oligomers on the selectivity of the AA, DA, and UA analytes. Our models consisted of a graphene oxide (GO) sheet under a solvent environment. Serine tetramers were added into the simulation box and were adsorbed on the GO surface. Then, the adsorption of each analyte on the mixed surface was monitored from MD trajectories. It was found that the adsorption of AA was preferred by serine oligomers due to the largest number of hydrogen-bond forming functional groups of AA, causing a 10-fold increase of hydrogen bonds by the tetraserine adsorption layer. UA was the least preferred due to its highest aromaticity. Finally, the role of hydrogen bonds on the electron transfer selectivity of biosensors was discussed with some previous studies. AA radicals received electrons from serine through hydrogen bonds that promoted oxidation reaction and caused the negative shifts and separation of the oxidation potential in experiments, as DA and UA were less affected by serine. Agreement of the in vitro and in silico results could lead to other in silico designs of selective layers to detect other types of analyte molecules. Full article
(This article belongs to the Special Issue Molecular Sensitivity and Weak Interactions)
Show Figures

Figure 1

18 pages, 3762 KiB  
Article
A Unique Synthesis of Macroporous N-Doped Carbon Composite Catalyst for Oxygen Reduction Reaction
by Ramesh Karunagaran, Diana Tran, Tran Thanh Tung, Cameron Shearer and Dusan Losic
Nanomaterials 2021, 11(1), 43; https://doi.org/10.3390/nano11010043 - 26 Dec 2020
Cited by 5 | Viewed by 3011
Abstract
Macroporous carbon materials (MCMs) are used extensively for many electrocatalytic applications, particularly as catalysts for oxygen reduction reactions (ORRs)—for example, in fuel cells. However, complex processes are currently required for synthesis of MCMs. We present a rapid and facile synthetic approach to produce [...] Read more.
Macroporous carbon materials (MCMs) are used extensively for many electrocatalytic applications, particularly as catalysts for oxygen reduction reactions (ORRs)—for example, in fuel cells. However, complex processes are currently required for synthesis of MCMs. We present a rapid and facile synthetic approach to produce tailored MCMs efficiently via pyrolysis of sulfonated aniline oligomers (SAOs). Thermal decomposition of SAO releases SO2 gas which acts as a blowing agent to form the macroporous structures. This process was used to synthesise three specifically tailored nitrogen (N)-doped MCM catalysts: N-SAO, N-SAO (phenol formaldehyde) (PF) and N-SAO-reduced graphene oxide (rGO). Analysis using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the formation of macropores (100–350 µm). Investigation of ORR efficacy showed that N-SAOPF performed with the highest onset potential of 0.98 V (vs. RHE) and N-SAOrGO showed the highest limiting current density of 7.89 mAcm−2. The macroporous structure and ORR efficacy of the MCM catalysts synthesised using this novel process suggest that this method can be used to streamline MCM production while enabling the formation of composite materials that can be tailored for greater efficiency in many applications. Full article
Show Figures

Figure 1

20 pages, 3816 KiB  
Article
Properties of Graphene-Related Materials Controlling the Thermal Conductivity of Their Polymer Nanocomposites
by Samuele Colonna, Daniele Battegazzore, Matteo Eleuteri, Rossella Arrigo and Alberto Fina
Nanomaterials 2020, 10(11), 2167; https://doi.org/10.3390/nano10112167 - 30 Oct 2020
Cited by 25 | Viewed by 4072
Abstract
Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the [...] Read more.
Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature. However, detailed correlations between GRM-based nanocomposites features, including nanoplatelets thickness and size, defectiveness, composition and dispersion, with their thermal conductivity remain mostly undefined. In the present paper, the thermal conductivity of GRM-based polymer nanocomposites, prepared by melt polymerization of cyclic polybutylene terephtalate oligomers and exploiting 13 different GRM grades, was investigated. The selected GRM, covering a wide range of specific surface area, size and defectiveness, secure a sound basis for the understanding of the effect of GRM properties on the thermal conductivity of their relevant polymer nanocomposites. Indeed, the obtained thermal conductivity appeares to depend on the interplay between the above GRM feature. In particular, the combination of low GRM defectiveness and high filler percolation density was found to maximize the thermal conductivity of nanocomposites. Full article
(This article belongs to the Special Issue Thermal Transport in Nanostructures and Nanomaterials)
Show Figures

Graphical abstract

24 pages, 21574 KiB  
Article
Stacking Interactions of Poly Para-Phenylene Vinylene Oligomers with Graphene and Single-Walled Carbon Nanotubes: A Molecular Dynamics Approach
by Nii Amah Dagadu, Shahram Ajori, Yaw Delali Bensah, Kwabena Kan-Dapaah, Stephen Kofi Armah, Boateng Onwona-Agyeman and Abu Yaya
Molecules 2020, 25(20), 4812; https://doi.org/10.3390/molecules25204812 - 20 Oct 2020
Viewed by 2845
Abstract
This study is meant to address the understanding of the interactions between poly para-phenylene vinylene (PPV) oligomers, graphene and single-walled carbon nanotubes (SWCNT). To this end, the binding energies of the PPV oligomers with graphene and SWCNTs were investigated. Calculations are performed and [...] Read more.
This study is meant to address the understanding of the interactions between poly para-phenylene vinylene (PPV) oligomers, graphene and single-walled carbon nanotubes (SWCNT). To this end, the binding energies of the PPV oligomers with graphene and SWCNTs were investigated. Calculations are performed and the parameters related to van der Waal vdW interactions are discussed to achieve and confirm the crystallization of oligomers of PPV into herringbone (HB) structure arrangement, which is known to be the most stable conformation at 300 K. Finally, the interfacial interactions between crystal PPV, graphene and SWCNT are carried out. According to the results, the intramolecular potential energies of PPV chains are found to increase linearly with each extending PPV monomer unit by approximately 50 kcal/mol. Moreover, the interfacial interaction properties analysis using radial distribution functions (RDFs) for PPV-graphene and PPV-SWCNT show significant disordering of the arrangement of molecules, which is more pronounced for PPV-SWCNT than that in PPV-graphene. The radius of gyration (Rg) profiles show a net decrease of 0.8, for PPV-graphene with different surface coverage, and, a net increase of +0.6, for PPV-SWCNT; meaning that, the binding between PPV-graphene is much stronger than with PPV-SWCNT. Full article
(This article belongs to the Special Issue Fullerenes, Graphenes and Carbon Nanotubes Nanocomposites)
Show Figures

Figure 1

11 pages, 2726 KiB  
Article
α-Synuclein Oligomer Detection with Aptamer Switch on Reduced Graphene Oxide Electrode
by Seung Joo Jang, Chang-Seuk Lee and Tae Hyun Kim
Nanomaterials 2020, 10(5), 832; https://doi.org/10.3390/nano10050832 - 27 Apr 2020
Cited by 46 | Viewed by 4513
Abstract
Protein aggregation of alpha-synuclein (α-Syn) is implicated in Parkinson’s disease (PD), and, thus, α-Syn aggregates are a potentially promising candidate biomarker for PD diagnosis. Here, we describe a simple and sensitive electrochemical sensor to monitor the aggregation of α-Syn for early PD diagnosis. [...] Read more.
Protein aggregation of alpha-synuclein (α-Syn) is implicated in Parkinson’s disease (PD), and, thus, α-Syn aggregates are a potentially promising candidate biomarker for PD diagnosis. Here, we describe a simple and sensitive electrochemical sensor to monitor the aggregation of α-Syn for early PD diagnosis. The sensor utilizes methylene blue (MB)-tagged aptamer (Apt) adsorbed on electrochemically reduced graphene oxide (ERGO) by π–π stacking. The binding of α-Syn oligomer to the Apt induces desorption of the Apt from the ERGO surface, which leads to the electrochemical signal change. The resulting sensor allowed the highly sensitive and selective detection of α-Syn oligomer according to the voltammetric change. Under optimized conditions, the linear range of detection was observed to be from 1 fM to 1 nM of the α-Syn oligomer and the limit of detection (LOD) was estimated to be 0.64 fM based on S/N = 3. The sensor also showed good reproducibility and stability, enabling real sample analysis of the α-Syn oligomer in human blood serum. With its ultrasensitivity and good performance for α-Syn oligomer detection, the sensor provides one promising tool for the early diagnosis of PD. Full article
Show Figures

Figure 1

Back to TopTop