Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = grapevine black-foot disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2071 KiB  
Article
AMF Community Diversity Promotes Grapevine Growth Parameters under High Black Foot Disease Pressure
by Romy Moukarzel, Hayley J. Ridgway, Jing Liu, Alexis Guerin-Laguette and E. Eirian Jones
J. Fungi 2022, 8(3), 250; https://doi.org/10.3390/jof8030250 - 1 Mar 2022
Cited by 12 | Viewed by 3493
Abstract
Black foot disease is one of the main grapevine root diseases observed worldwide and is especially problematic in New Zealand. Arbuscular mycorrhizal fungi (AMF) have been shown to reduce infection and mitigate the effect of black foot disease on grapevine rootstocks. In contrast [...] Read more.
Black foot disease is one of the main grapevine root diseases observed worldwide and is especially problematic in New Zealand. Arbuscular mycorrhizal fungi (AMF) have been shown to reduce infection and mitigate the effect of black foot disease on grapevine rootstocks. In contrast to prior studies, which have limited their focus to the effect of one, two or a combination of only a small number of AMF species, this study used whole AMF communities identified from 101-14, 5C and Schwarzmann rootstocks sampled from New Zealand vineyards. The effect of AMF on black foot disease was investigated in a ‘home’ and ‘away’ experiment using three commercial grapevine rootstocks. The study produced some evidence that AMF treatments lowered disease incidence at 5 cm and disease severity in vines by 40% to 50% compared to the vines inoculated with the pathogen only. This work also showed that the presence of high disease incidence may have limited the potential disease protective effect of AMF community. However, despite the high disease incidence and severity, AMF inoculation increased vine growth parameters by 60% to 80% compared to the vines inoculated with the pathogen only. This study is the first to provide an understanding on how young grapevine rootstocks inoculated with their ‘home’ and ‘away’ AMF communities would respond to challenge with a black foot pathogen species mixture. Further research is required to understand the mechanistic effect of AMF colonization on the increase of grapevine growth parameters under high black foot disease pressure. Full article
(This article belongs to the Special Issue Biocontrol of Grapevine Diseases)
Show Figures

Figure 1

16 pages, 3367 KiB  
Article
Campylocarpon fasciculare (Nectriaceae, Sordariomycetes); Novel Emergence of Black-Foot Causing Pathogen on Young Grapevines in China
by Pranami D. Abeywickrama, Wei Zhang, Xinghong Li, Ruvishika S. Jayawardena, Kevin D. Hyde and Jiye Yan
Pathogens 2021, 10(12), 1555; https://doi.org/10.3390/pathogens10121555 - 29 Nov 2021
Cited by 9 | Viewed by 3302
Abstract
The black-foot disease of grapevine is one of the most destructive diseases in viticulture and it is caused by a complex of soil-borne fungi. This study aimed to identify the species associated with black-foot disease in young grapevines in vineyards of China. Fungal [...] Read more.
The black-foot disease of grapevine is one of the most destructive diseases in viticulture and it is caused by a complex of soil-borne fungi. This study aimed to identify the species associated with black-foot disease in young grapevines in vineyards of China. Fungal isolates were identified as Campylocarpon fasciculare, based on both morphological and multi-locus phylogenetic analysis of ITS, tef1–α and ß-tubulin sequence data. For the first time in China, we report Campylocarpon fasciculare associated with symptomatic young grapevines. Koch’s postulates were performed on Vitis vinifera cv. Summer Black (SB) in a greenhouse and to confirm the pathogenicity on grapevines. This work improves the knowledge of black-foot disease in Chinese vineyards and will be helpful to growers in their decisions regarding vinicultural practices, planting and disease management. Full article
(This article belongs to the Special Issue Filamentous Fungal Pathogens)
Show Figures

Figure 1

22 pages, 10857 KiB  
Article
Drought Influences Fungal Community Dynamics in the Grapevine Rhizosphere and Root Microbiome
by María Julia Carbone, Sandra Alaniz, Pedro Mondino, Matías Gelabert, Ales Eichmeier, Dorota Tekielska, Rebeca Bujanda and David Gramaje
J. Fungi 2021, 7(9), 686; https://doi.org/10.3390/jof7090686 - 25 Aug 2021
Cited by 43 | Viewed by 6665
Abstract
Plant roots support complex microbial communities that can influence nutrition, plant growth, and health. In grapevine, little is known about the impact of abiotic stresses on the belowground microbiome. In this study, we examined the drought-induced shifts in fungal composition in the root [...] Read more.
Plant roots support complex microbial communities that can influence nutrition, plant growth, and health. In grapevine, little is known about the impact of abiotic stresses on the belowground microbiome. In this study, we examined the drought-induced shifts in fungal composition in the root endosphere, the rhizosphere and bulk soil by internal transcribed spacer (ITS) high-throughput amplicon sequencing (HTAS). We imposed three irrigation regimes (100%, 50%, and 25% of the field capacity) to one-year old grapevine rootstock plants cv. SO4 when plants had developed 2–3 roots. Root endosphere, rhizosphere, and bulk soil samples were collected 6- and 12-months post-plantation. Drought significantly modified the overall fungal composition of all three compartments, with the root endosphere compartment showing the greatest divergence from well-watered control (100%). The overall response of the fungal microbiota associated with black-foot disease (Dactylonectria and “Cylindrocarpon” genera) and the potential biocontrol agent Trichoderma to drought stress was consistent across compartments, namely that their relative abundances were significantly higher at 50–100% than at 25% irrigation regime. We identified a significant enrichment in several fungal genera such as the arbuscular mycorrhizal fungus Funneliformis during drought at 25% watering regime within the roots. Our results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in the restructuring of grapevine root microbial communities, and suggest the possibility that members of the altered grapevine microbiota might contribute to plant survival under extreme environmental conditions. Full article
Show Figures

Figure 1

12 pages, 1018 KiB  
Article
Evaluation of Sown Cover Crops and Spontaneous Weed Flora as a Potential Reservoir of Black-Foot Pathogens in Organic Viticulture
by Maela León, Mónica Berbegal, Paloma Abad-Campos, Antonio Ramón-Albalat, Tito Caffi, Vittorio Rossi, Gultakin Hasanaliyeva, Pierre Antoine Noceto, Daniel Wipf, Saša Širca, Jaka Razinger, Anne-Laure Fragnière, Patrik Kehrli, Aurora Ranca, Anamaria Petrescu and Josep Armengol
Biology 2021, 10(6), 498; https://doi.org/10.3390/biology10060498 - 3 Jun 2021
Cited by 5 | Viewed by 3065
Abstract
(1) Background. An extensive survey of grapevine-sown cover crops and spontaneous weed flora was conducted from 2019 to 2020 in organic vineyards in six European countries (France, Italy, Romania, Slovenia, Spain, Switzerland). Our main objective was to detect and identify the presence of [...] Read more.
(1) Background. An extensive survey of grapevine-sown cover crops and spontaneous weed flora was conducted from 2019 to 2020 in organic vineyards in six European countries (France, Italy, Romania, Slovenia, Spain, Switzerland). Our main objective was to detect and identify the presence of Cylindrocarpon-like asexual morphs species associated with black-foot disease on their roots. (2) Methods. Fungal isolations from root fragments were performed on culture media. Cylindrocarpon-like asexual morph species were identified by analyzing the DNA sequence data of the histone H3 (his3) gene region. In all, 685 plants belonging to different botanical families and genera were analyzed. Cylindrocarpon-like asexual morphs were recovered from 68 plants (9.9% of the total) and approximately 0.97% of the plated root fragments. (3) Results. Three fungal species (Dactylonectria alcacerensis, Dactylonectria torresensis, Ilyonectria robusta) were identified. Dactylonectria torresensis was the most frequent, and was isolated from many cover crop species in all six countries. A principal component analysis with the vineyard variables showed that seasonal temperatures and organic matter soil content correlated positively with Cylindrocarpon-like asexual morphs incidence. (4) Conclusions. The presence of Cylindrocarpon-like asexual morphs on roots of cover crops suggests that they can potentially act as alternative hosts for long-term survival or to increase inoculum levels in vineyard soils. Full article
(This article belongs to the Special Issue Linking Soil Biology to Agro-Ecosystems Functional Sustainability)
Show Figures

Graphical abstract

34 pages, 2736 KiB  
Article
Mycobiota Associated with the Vascular Wilt of Poplar
by Hanna Kwaśna, Wojciech Szewczyk, Marlena Baranowska, Ewa Gallas, Milena Wiśniewska and Jolanta Behnke-Borowczyk
Plants 2021, 10(5), 892; https://doi.org/10.3390/plants10050892 - 28 Apr 2021
Cited by 18 | Viewed by 4812
Abstract
In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem [...] Read more.
In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1–2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees’ mycobiota were analysed using Illumina sequencing. A total of 69 467 and 70 218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees’ susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

12 pages, 617 KiB  
Article
Does Inoculation with Arbuscular Mycorrhizal Fungi Reduce Trunk Disease in Grapevine Rootstocks?
by Taylor Holland, Patricia Bowen, Vasilis Kokkoris, Jose Ramon Urbez-Torres and Miranda Hart
Horticulturae 2019, 5(3), 61; https://doi.org/10.3390/horticulturae5030061 - 28 Aug 2019
Cited by 16 | Viewed by 5558
Abstract
Ilyonectria is a weak pathogen known for causing black foot disease in young vines, infecting roots and vascular tissues at the basal end of the rootstock and restricting the movement of water and nutrients. This negatively impacts vine establishment during transplant into the [...] Read more.
Ilyonectria is a weak pathogen known for causing black foot disease in young vines, infecting roots and vascular tissues at the basal end of the rootstock and restricting the movement of water and nutrients. This negatively impacts vine establishment during transplant into the vineyard. Arbuscular mycorrhizal (AM) fungi are symbiotic fungi that associate with most plants and have been shown to mitigate the infection and effect of pathogens. This greenhouse study was designed to determine if the mycorrhizal fungi could mitigate Ilyonectria infection and whether this was dependent on inoculation timing. ‘Riparia gloire’ grapevine rootstocks (Vitis riparia) were infected with Ilyonectria either after AM fungi, at the same time as AM fungi, or to roots that were not inoculated by AM fungi. We measured the abundance using specific markers for both the pathogen and AM fungi. Colonization by AM fungi did not suppress Ilyonectria, but instead increased the abundance of Ilyonectria. Further, mycorrhizal rootstocks did not have enhanced growth effects on physiological parameters when compared to non-mycorrhizal rootstocks. These findings stand in contrast to the general perception that AM fungi provide protection against root pathogens. Full article
(This article belongs to the Special Issue Horticultural Crop Microbiomes)
Show Figures

Figure 1

37 pages, 7521 KiB  
Review
Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases
by Anna Andolfi, Laura Mugnai, Jordi Luque, Giuseppe Surico, Alessio Cimmino and Antonio Evidente
Toxins 2011, 3(12), 1569-1605; https://doi.org/10.3390/toxins3121569 - 20 Dec 2011
Cited by 178 | Viewed by 17315
Abstract
Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the [...] Read more.
Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed. Full article
Show Figures

Figure 1

Back to TopTop