Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = goose meat optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 21550 KB  
Article
UHPLC-MS/MS-Based Metabolomics Identifies Freshness Biomarkers and Temporal Spoilage Threshold in Refrigerated Goose Meat
by Wen Gao, Zhengfeng Cao, Qiang Bao, Qingping Tang, Zhu Bu, Guohong Chen, Bichun Li and Qi Xu
Foods 2025, 14(17), 2950; https://doi.org/10.3390/foods14172950 - 24 Aug 2025
Cited by 1 | Viewed by 1053
Abstract
The dynamic metabolic landscape underlying goose meat quality deterioration during refrigerated storage remains incompletely elucidated. Here, ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based widely targeted metabolomics was employed to characterize metabolic profiling in refrigerated goose meat. Orthogonal partial least squares discriminant analysis (OPLS-DA) [...] Read more.
The dynamic metabolic landscape underlying goose meat quality deterioration during refrigerated storage remains incompletely elucidated. Here, ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based widely targeted metabolomics was employed to characterize metabolic profiling in refrigerated goose meat. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed 211 differential metabolites, while random forest regression (RFR) identified 30 candidate biomarkers. Seven metabolites, including xanthine, oxidized glutathione, and inosine 5′-monophosphate, exhibited significant correlations with total volatile basic nitrogen (TVB-N). By integrating potential biomarkers, metabolic pathways involving purines, amino acids, and sugars were identified as underlying mechanisms of goose meat spoilage. Notably, through comprehensive analysis of time-dependent correlations between physicochemical properties and metabolic profiles, a temporal threshold for quality deterioration in refrigerated goose meat was identified as day 5. These findings deepen our understanding of metabolite variations in refrigerated goose meat and provide a basis for optimizing storage protocols. The identified biomarkers may enable rapid detection kits and smart packaging systems for poultry industry applications. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

22 pages, 8272 KB  
Article
Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization
by Arkadiusz Szpicer, Weronika Bińkowska, Adrian Stelmasiak, Magdalena Zalewska, Iwona Wojtasik-Kalinowska, Karol Piwowarski and Andrzej Półtorak
Appl. Sci. 2024, 14(13), 5567; https://doi.org/10.3390/app14135567 - 26 Jun 2024
Cited by 4 | Viewed by 2304
Abstract
This study aimed to calculate the optimal thermal processing parameters for goose meat using CFD simulation. CFD provides a precise determination of heat treatment conditions by predicting protein denaturation and mass loss, leading to higher quality and improved sensory experience and, thus, acceptance [...] Read more.
This study aimed to calculate the optimal thermal processing parameters for goose meat using CFD simulation. CFD provides a precise determination of heat treatment conditions by predicting protein denaturation and mass loss, leading to higher quality and improved sensory experience and, thus, acceptance of products. Accurate calculation of these conditions reduces energy losses and enhances process efficiency in the food industry. This study focused on the prediction of protein denaturation and cooking loss in goose breast meat during roasting. Specific CFD techniques, including conjugate heat transfer and phase change models, were utilized to ensure accuracy in protein denaturation prediction. These models accounted for variations in meat composition, such as fat and water content across different samples, which improved the accuracy of the predictions. Optimal conditions were determined using a mathematical model. These conditions were 164.65 °C, 63.58% humidity, and a fan rotation of 16.59 rpm for 2000 s. The myosin, collagen, and actin denaturation levels, as well as cooking loss, closely matched predicted values. The findings show that CFD is a valuable method for evaluating protein denaturation and cooking loss in goose breast meat, potentially improving product quality and consistency in gastronomy and the meat industry. This innovative optimization method enhances food production efficiency and elevates sensory characteristics, physicochemical properties, and nutritional value, contributing to consumer satisfaction and market competitiveness. The model proposed in this paper can be adapted to predict denaturation in other types of meat or food products with necessary modifications, offering broad applicability. Potential limitations of using CFD in protein denaturation prediction in complex food matrices include the need for detailed compositional data and computational resources, which can be addressed in future research. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

18 pages, 314 KB  
Article
The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat
by Monika Wereńska, Gabriela Haraf, Andrzej Okruszek, Weronika Marcinkowska and Janina Wołoszyn
Foods 2023, 12(1), 129; https://doi.org/10.3390/foods12010129 - 27 Dec 2022
Cited by 11 | Viewed by 4636
Abstract
Background: Heat treatment methods including frying (with and without fat or oil), deep frying, oven roasting, grilling, charcoal roasting, broiling, steaming, and microwave cooking promote a cascade of adverse changes in the functional properties of meat, including protein fraction, lipid oxidation, and loss [...] Read more.
Background: Heat treatment methods including frying (with and without fat or oil), deep frying, oven roasting, grilling, charcoal roasting, broiling, steaming, and microwave cooking promote a cascade of adverse changes in the functional properties of meat, including protein fraction, lipid oxidation, and loss of some vitamins and mineral compounds. The aim of this study was to evaluate the influence of three cooking methods (sous vide (SV), microwave (M) cooking, and stewing (S)) on the basic chemical composition, cholesterol content, energy value, mineral concentration, and retention coefficients in goose meat. Methods: Basic chemical composition and mineral analysis were determined using AOAC methods. Total cholesterol content was established using the HPLC method. Results: Both types of goose meat (without and with skin) and heat treatment had a significant effect on nutrient values, mineral concentration, and retention coefficients. The S meat was characterized by a higher protein content than M and SV meat, and had the lowest fat, protein, and cholesterol retention, among other methods. The M meat had lower total cholesterol content than SV and S meat. There were significant differences in energy value for SV, M, and S meats. The SV meat contained less P, Mg, Fe, Zn, and more Na and K than the M and S samples. The highest values of Zn, Mg, and Fe content and the lowest of K and Ca were recorded in S meat compared with the SV and M samples. The retention coefficients of P, Mg, Na, Ca, and K in S meat were lower than in the SV and M samples. The meat without skin was characterized by a lower energy value, fat content, retention of proteins, and cholesterol, but higher fat retention than skin samples. This meat contained more minerals such as P, Mg, Fe, K, Na, and less Ca than skin meat. Higher retention coefficients were observed for Zn, P, Mg, Ca, and lower were observed for Na, Fe, and K in meat without skin than in samples with skin. Conclusions: From a dietary point of view, the most beneficial were SV muscles without skin. Whereas, taking into account the protein, fat content, and retention coefficients of fat, cholesterol, Zn, and Na, the most optimal form of cooking for meat with skin seems to be stewing. These results may be used by consumers in making dietary choices by taking into account the type of goose meat and kind of heat treatment. Full article
(This article belongs to the Section Meat)
13 pages, 26254 KB  
Article
A Simple and Reliable Single Tube Septuple PCR Assay for Simultaneous Identification of Seven Meat Species
by Zhendong Cai, Song Zhou, Qianqian Liu, Hui Ma, Xinyi Yuan, Jiaqi Gao, Jinxuan Cao and Daodong Pan
Foods 2021, 10(5), 1083; https://doi.org/10.3390/foods10051083 - 13 May 2021
Cited by 17 | Viewed by 4171
Abstract
Multiplex PCR methods have been frequently used for authentication of meat product adulteration. Through screening of new species-specific primers designed based on the mitochondrial DNA sequences, a septuple PCR method is ultimately developed and optimized to simultaneously detect seven species including turkey (110 [...] Read more.
Multiplex PCR methods have been frequently used for authentication of meat product adulteration. Through screening of new species-specific primers designed based on the mitochondrial DNA sequences, a septuple PCR method is ultimately developed and optimized to simultaneously detect seven species including turkey (110 bp), goose (194 bp), pig (254 bp), sheep (329 bp), beef (473 bp), chicken (612 bp) and duck (718 bp) in one reaction. The proposed method has been validated to be specific, sensitive, robust and inexpensive. Taken together, the developed septuple PCR assay is reliable and efficient, not only to authenticate animal species in commercial meat products, but also easily feasible in a general laboratory without special infrastructures. Full article
Show Figures

Graphical abstract

13 pages, 2646 KB  
Article
Spermiogenesis, Stages of Seminiferous Epithelium and Variations in Seminiferous Tubules during Active States of Spermatogenesis in Yangzhou Goose Ganders
by Muhammad Faheem Akhtar, Ejaz Ahmad, Sheeraz Mustafa, Zhe Chen, Zhendan Shi and Fangxiong Shi
Animals 2020, 10(4), 570; https://doi.org/10.3390/ani10040570 - 28 Mar 2020
Cited by 25 | Viewed by 11599
Abstract
The past three decades revolutionized the goose industry in the world. China holds the world’s largest goose breeds stock by 95% of the global total. To optimize the goose industry and cope with ever increasing poultry meat and egg demands, there is a [...] Read more.
The past three decades revolutionized the goose industry in the world. China holds the world’s largest goose breeds stock by 95% of the global total. To optimize the goose industry and cope with ever increasing poultry meat and egg demands, there is a dire need to focus on reproduction, as most geese breeds exhibit poor reproductive performance. The present study was conducted with the aim to add a contribution in the goose industry and research by the histological visualizing step wise development of germ cells during spermatogenesis by microscopy and a histological technique. Yangzhou goose is a synthetic breed developed by using local goose germplasm resources of China. It is popular in the Chinese goose industry due to high productivity and adaptability. This research evaluated the steps of spermiogenesis and stages along with morphological changes in the seminiferous epithelium in Yangzhou goose ganders. For the assessment of various stages of the seminiferous epithelium cycle, testis sections were embedded in molten paraffin wax. The initial steps of spermiogenesis were depicted by changes in acrosomic granules, whereas further stages were identified by nuclear morphological changes. Ten steps of spermiogenesis and nine stages of seminiferous epithelium were identified. Four types of spermatogonia Ad, Ap1, Ap2 and B were recognized. The results depicted a clear variation in the diameter of seminiferous tubules (ST), epithelium height (EH), luminal tubular diameter (LD), number of seminiferous tubules per field and the Johnsen score. Microscopy indicated that the stages of seminiferous epithelium were similar to other birds and mammals and the ST diameter, EH, LD and Johnsen score are positively correlated while the number of seminiferous tubules per field is negatively correlated with the ST diameter, EH, LD and Johnsen score. Fertility in Yangzhou ganders can further be improved by visualizing the histological development of germs cells in testis tissues during spermatogenesis after onset of breeding season and maturity. Our results suggest that Yangzhou ganders reach complete sexual maturity at 227 days of age. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop