Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = gob-side entry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3041 KiB  
Article
A Study on Dangerous Areas for Coal Spontaneous Combustion in Composite Goafs in Goaf-Side Entry Retaining in the Lower Layer of an Extra-Thick Coal Seam
by Ningfang Yue, Lei Wang, Jun Guo, Yin Liu, Changming Chen and Bo Gao
Fire 2025, 8(8), 298; https://doi.org/10.3390/fire8080298 - 28 Jul 2025
Viewed by 209
Abstract
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a [...] Read more.
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a multi-area composite goaf was constructed, and the distribution features of the dangerous area for coal spontaneous combustion in the lower layer of in goaf-side entry retaining were determined by means of the upper and lower layer composite superposition division method. The results show that at a floating coal thickness in the goaf of 1.9 m, the lower limit of oxygen concentration Cmin, upper limit of air leakage intensity, and corresponding seepage velocity are 6%, 0.282 cm−3·s−1·cm−2, and 11.28 × 10−3 m/s respectively. The dangerous area regarding residual coal on the intake side is 23~38 m away from the working face, while that on the return air side is concentrated amid the goaf at 23~75 m, and that on the flexible formwork wall is concentrated at 0~121 m. The research results are of crucial practical importance for the prevention and control of coal spontaneous combustion within a composite goaf. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires (2nd Edition))
Show Figures

Figure 1

22 pages, 48463 KiB  
Article
Study on the Evolution of Overlying Strata Fractures and Gas Control Technology of High Gas-Drainage Roadways Under Gob-Side Entry Retaining with Roadside Filling
by Yunfei Yang, Zetian Li, Anxiu Liu, Hongwei Liu, Zhangyang Li, Hongguang Guo and Zhigang Li
Appl. Sci. 2025, 15(13), 7445; https://doi.org/10.3390/app15137445 - 2 Jul 2025
Viewed by 274
Abstract
In order to examine the fracture development law of overlying strata in goafs and to reasonably lay out a high gas-drainage roadway under gob-side entry retaining with roadside filling, the 91–105 working face of the Wangzhuang Coal Mine was selected as the engineering [...] Read more.
In order to examine the fracture development law of overlying strata in goafs and to reasonably lay out a high gas-drainage roadway under gob-side entry retaining with roadside filling, the 91–105 working face of the Wangzhuang Coal Mine was selected as the engineering case study. The failure laws and fracture development characteristics of the overlying strata in both the strike and dip directions using gob-side entry retaining and roadside filling were studied through rock mechanic tests and PFC numerical simulations. The optimal layout of the high gas-drainage roadway was determined through theoretical analysis and coupled Fluent–PFC numerical simulations, and on-site monitoring was conducted to evaluate the extraction effects. The results indicate that the first weighting interval of the 91–105 working face was 40 m, while the periodic weighting interval was approximately 14 m. The height of the falling zone was 14.4 m, and the height of the gas-conducting fracture zone was 40.7 m. In the dip direction, compared with coal pillar retaining, gob-side entry retaining with roadside filling formed an inverted trapezoid secondary breaking zone above the retaining roadway. Using this method, the span of the separation zone increased to 30 m, and the collapse angle decreased to 52°, resulting in a shift in the separation zone—the primary space for gas migration—toward the goaf. It was determined that the optimal location of the high gas-drainage roadway was 28 m above the coal roof and 30 m horizontally from the return air roadway. Compared with the 8105 working face, this position was 10 m closer toward the goaf. On-site gas extraction monitoring data indicate that, at this optimized position, the gas concentration in the high gas-drainage roadway increased by 22%, and the net gas flow increased by 18%. Full article
Show Figures

Figure 1

13 pages, 4557 KiB  
Article
Study on the Ground Pressure Manifestation Patterns of Roof Cutting and Pressure Relief
by Runhu Zheng, Bingyuan Hao, Chaoyao Shi and Tongxi Li
Appl. Sci. 2025, 15(11), 6049; https://doi.org/10.3390/app15116049 - 28 May 2025
Cited by 1 | Viewed by 303
Abstract
Pillarless mining technology is of great significance for improving coal recovery rates, but the intense mining-induced stress disturbances on gob-side entries often lead to surrounding rock instability. In this study, we focused on the ground control challenges in the headgate of Panel 81308 [...] Read more.
Pillarless mining technology is of great significance for improving coal recovery rates, but the intense mining-induced stress disturbances on gob-side entries often lead to surrounding rock instability. In this study, we focused on the ground control challenges in the headgate of Panel 81308 at Huayang Mine No. 2. Comprehensive monitoring of roof–floor convergence, rib deformation, and support resistance revealed the gob-side entry retaining deformation mechanisms with roof-cutting pressure relief; the results show that this retaining deformation exhibits the following three phases of characteristics: the rapid, decelerated, and stable stages. The average roof–floor convergence (607 mm) was significantly greater than the average rib deformation (170 mm), with floor heave accounting for 72.6% of total convergence. The coal pillar side showed dominant deformation in rib movements. The mining influence zones can be divided, based on their distances behind the working face, into strong disturbance zones (0–88 m), weak disturbance zones (88–142 m), and stabilized zones (>178 m). The cable bolt support system demonstrated advanced response characteristics. Compared with conventional gob-side entry retaining, the roof-cutting pressure relief technique altered stress transmission paths, significantly reduced roof load transfer efficiency, and effectively controlled roadway convergence, providing technical guidance for safe production in both this panel and mines with similar geological conditions. Full article
Show Figures

Figure 1

16 pages, 5732 KiB  
Article
Research on the Deformation and Failure Mechanism of Flexible Formwork Walls in Gob-Side-Entry Retaining of Ultra-Long Isolated Mining Faces and Pressure Relief-Control Technology via Roof Cutting
by Heng Wang and Junqing Guo
Appl. Sci. 2025, 15(11), 5833; https://doi.org/10.3390/app15115833 - 22 May 2025
Viewed by 414
Abstract
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology [...] Read more.
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology incorporating pressure relief through roof cutting. Taking the 3203 ultra-long isolated mining face at Nanyang Coal Industry as the engineering case, an integrated methodology combining laboratory experiments, theoretical analysis, numerical simulations, and industrial-scale field trials was implemented. The deformation and failure mechanism of flexible formwork walls in gob-side-entry retaining and the fundamental principles of pressure relief via roof cutting were systematically examined. The vertical stress variations in the advanced reuse zone of the retained roadway before and after roof cutting were investigated, with specific focus on the strata pressure behavior of roadways and face-end hydraulic supports on both the wide coal-pillar side and the pillarless side following roof cutting. The key findings are as follows: ① Blast-induced roof cutting reduces the cantilever beam length adjacent to the flexible formwork wall, thereby decreasing the load per unit area on the flexible concrete wall. This reduction consequently alleviates lateral abutment stress and loading in the floor heave-affected zone, achieving effective control of roadway surrounding rock stability. ② Compared with non-roof cutting, the plastic zone damage area of surrounding rock in the gob-side entry retained by flexible formwork concrete wall is significantly reduced after roof cutting, and the vertical stress on the flexible formwork wall is also significantly decreased. ③ Distinct differences exist in the distribution patterns and magnitudes of working resistance for face-end hydraulic supports between the wide coal-pillar side and the pillarless gob-side-entry retaining side after roof cutting. As the interval resistance increases, the average working resistance of hydraulic supports on the wide pillar side demonstrates uniform distribution, whereas the pillarless side exhibits a declining frequency trend in average working resistance, with an average reduction of 30% compared to non-cutting conditions. ④ After roof cutting, the surrounding rock deformation control effectiveness of the track gateway on the gob-side-entry retaining side is comparable to that of the haulage gateway on the 50 m wide coal-pillar side, ensuring safe mining of the working face. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

25 pages, 9133 KiB  
Article
Analysis of Main Roof Mechanical State in Inclined Coal Seams with Roof Cutting and Gob-Side Entry Retaining
by Ji Li, Bo Yan, Jihui Dong, Xubo Qiang, Chaosen Chen, Guangyong Zhou and Yingjian Zheng
Symmetry 2025, 17(5), 723; https://doi.org/10.3390/sym17050723 - 9 May 2025
Viewed by 350
Abstract
The non-uniform deformation and failure phenomena encountered in steeply inclined coal seams during roof-cutting and gob-side entry retaining operations demand urgent resolution. Taking the haulage roadway of the 3131 working face in Longmenxia South Coal Mine as the research background, the theoretical analysis [...] Read more.
The non-uniform deformation and failure phenomena encountered in steeply inclined coal seams during roof-cutting and gob-side entry retaining operations demand urgent resolution. Taking the haulage roadway of the 3131 working face in Longmenxia South Coal Mine as the research background, the theoretical analysis method is adopted to explore the mechanical state of the main roof in inclined coal seams and the design of roadside support resistance. According to the structural evolution characteristics of the main roof, it is divided into four periods. Based on the elastic theory, corresponding mechanical models are established, and the mechanical expressions of the main roof stress and deflection are derived. The distribution characteristics of the main roof’s mechanical state in each zone and the influence law of the coal seam dip angle on the main roof’s mechanical state are studied. This study reveals a critical transition from symmetric to asymmetric mechanical behavior in the main roof structure due to the coal seam dip angle and roof structure evolution. The results show that, in the absence of roadside support, during the roadway retaining period, the upper surface of the main roof is in tension, and the lower surface is under compression. The stress value increases slowly from the high-sidewall side to the middle, while it increases sharply from the middle to the short-sidewall side. Under the inclined coal seam, as the dip angle of the coal and rock strata increases, the component load perpendicular to the roof direction decreases, and the roof deflection also decreases accordingly. On this basis, the design formula for the roadside support resistance of gob-side entry retaining with roof cutting in inclined coal seams is presented, and the roadside support resistance of the No. 3131 haulage roadway is designed. Building upon this foundation, a design formula for roadside support resistance in steeply inclined coal seams with roof-cutting and gob-side entry retaining has been developed. This formula was applied to the No. 3131 haulage roadway support design. Field engineering tests demonstrated that the maximum roof-to-floor deformation at the high sidewall decreased from 600 mm (unsupported condition) to 165 mm during the entry retaining period. During the advanced influence phase of secondary mining operations, the maximum deformation at the high sidewall was maintained at approximately 193 mm. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 7651 KiB  
Article
Investigation into the Fracture Evolution Law of Overlying Strata Roof in Shallowly Buried “Three-Soft” Coal Seam Fully Mechanized Mining Faces and Its Influence on the Feasibility of Gob-Side Entry Retaining
by Guoyou Hu, Yongkang Yang, Shuai Li and Konghao Zhu
Appl. Sci. 2025, 15(9), 4607; https://doi.org/10.3390/app15094607 - 22 Apr 2025
Viewed by 358
Abstract
To address the feasibility of gob-side entry retaining in the shallow-buried three-soft coal seam fully mechanized mining face (SB-TSCS FMMF) of Xindeng (Zhengzhou, China) Coal Industry, we established a mechanical model of post-mining roof–coal-rock interaction in shallow-buried three-soft coal seams. This study reveals [...] Read more.
To address the feasibility of gob-side entry retaining in the shallow-buried three-soft coal seam fully mechanized mining face (SB-TSCS FMMF) of Xindeng (Zhengzhou, China) Coal Industry, we established a mechanical model of post-mining roof–coal-rock interaction in shallow-buried three-soft coal seams. This study reveals the quantitative relationships between the fracture position of the main roof and parameters such as coal seam thickness and immediate roof elastic modulus, and determines the parameter conditions required for implementing gob-side entry retaining in SB-TSCS FMMF. Critical parameters for the main roof fracture under this geological condition were first identified through particle flow simulation. The results indicate that there exist quantitative relationships between the main roof fracture position and parameters of the coal seam and the immediate roof. The influence degree on the maximum force exerted by the main roof on underlying coal-rock strata decreases in descending order as follows: immediate roof elastic modulus, coal seam thickness, immediate roof thickness, and coal seam elastic modulus. Similarly, the influence degree on the maximum bending moment follows the same order: immediate roof elastic modulus, coal seam thickness, immediate roof thickness, and coal seam elastic modulus. Based on the roof fracture laws, parameter thresholds suitable for gob-side entry retaining in three-soft coal seams are proposed, such as coal seam thickness (≤4 m) and immediate roof thickness (≤8 m). It is found that the main roof fracture position in shallow-buried three-soft coal seams is concentrated within the 0.3–0.6 m stress-sensitive zone at the edge of the goaf, providing key parameter thresholds for the support design of gob-side entry retaining. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

20 pages, 22222 KiB  
Article
Mechanisms of Surrounding Rock Failure and Control Measures When Main Roof Fractures Directly Above Gob-Side Entry in Thick Coal Seam
by Dongdong Chen, Jingchen Chang, Jun Zou, Chunyang Tian, Shengrong Xie, Jie Ni, Fangfang Guo, Zhixuan Zhang, Wenkang Zhao, Xiangyu Yang and Shikun Xing
Appl. Sci. 2025, 15(8), 4284; https://doi.org/10.3390/app15084284 - 13 Apr 2025
Viewed by 380
Abstract
This study investigates the surrounding rock failure caused by the fracture line of the main roof above the gob-side roadway during fully mechanized top-coal caving mining in a 19 m thick coal seam. As mining progresses, stress concentration occurs in the roadway roof. [...] Read more.
This study investigates the surrounding rock failure caused by the fracture line of the main roof above the gob-side roadway during fully mechanized top-coal caving mining in a 19 m thick coal seam. As mining progresses, stress concentration occurs in the roadway roof. Furthermore, the fracture line of the main roof above the roadway poses a significant threat to the structural stability of the gob-side roadway, leading to the localized failure of the roof structure, which consequently affects the safe and efficient production of the mine. This study investigates the shear failure mechanism of the roadway top coal and analyzes the failure characteristics and stress evolution law of the surrounding rock when the main roof fracture line (MRFL) is located above the roadway through three integrated approaches: theoretical analysis, numerical simulation, and physical similarity modeling. To effectively mitigate damage to the top coal, it is proposed to implement a five-hole tray coupled with high-strength prestressed anchor cables for reinforcing the surrounding rock, while compact wooden piles in combination with single pillars are employed to strengthen the roadway support control measures. It is verified by field tests that these control methods significantly improve the stability of coal above the entry and greatly mitigate the likelihood of surrounding rock failure. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 7314 KiB  
Article
Stability Assessment of Gob Side Entry at the Steeply Inclined Mining Face
by Zhongcheng Qin, Yongle Liu, Feng Zhang and Nan Liu
Appl. Sci. 2025, 15(6), 3244; https://doi.org/10.3390/app15063244 - 17 Mar 2025
Viewed by 335
Abstract
This study aims to comprehensively analyze the stability of rock mass around the gob side driving roadway in a significant inclined mining face. By considering the geological parameters and engineering conditions of specific cases, we carefully explored many factors affecting the stability of [...] Read more.
This study aims to comprehensively analyze the stability of rock mass around the gob side driving roadway in a significant inclined mining face. By considering the geological parameters and engineering conditions of specific cases, we carefully explored many factors affecting the stability of the surrounding rock mass, such as the mechanical properties of rocks, formation inclination, and the existence of goaf. Based on this, we construct a numerical model for analyzing the stability of the rock mass around the gob side driving roadway. Subsequently, we made a detailed investigation of the stress distribution and the characteristics of the plastic zone. In addition, through the analysis of the destruction mode and stress distribution characteristics of the rock mass, we establish the appropriate width of the coal pillar and thus provide a scientific basis for the formulation of support countermeasures; finally, the support countermeasures proposed in this study have achieved remarkable results in practical application and verify the feasibility and practicability of the research method. This support scheme ensures the stability of the gob side entry over its service life. It is hoped that this scheme can be promoted in similar projects to help maintain mine safety. Full article
(This article belongs to the Special Issue Advances in Tunnel and Underground Engineering)
Show Figures

Figure 1

23 pages, 15641 KiB  
Article
Numerical and Experimental Study on Pressure Relief Mechanism of Roof Blasting Along Gob-Side Roadway
by Xiufeng Zhang, Zonglong Mu, Chunlong Jiang, Hao Wang, Yang Chen, Jiaxin Zhuang, Cao Man and Jinglong Cao
Appl. Sci. 2025, 15(6), 3168; https://doi.org/10.3390/app15063168 - 14 Mar 2025
Cited by 1 | Viewed by 491
Abstract
A combination of theoretical analysis, numerical simulation and physical model experiments is used to explore the mechanism of pressure relief and roof blasting effects along the gob-side roadway. The stress and displacement along the gob-side roadway before and after blasting were investigated using [...] Read more.
A combination of theoretical analysis, numerical simulation and physical model experiments is used to explore the mechanism of pressure relief and roof blasting effects along the gob-side roadway. The stress and displacement along the gob-side roadway before and after blasting were investigated using discrete unit code (UDEC) software. The results demonstrated that blasting can effectively decrease the peak stress of the coal seam along the gob-side roadway and transfer it to the depth. The maximum displacement of the roof of the gob-side roadway, the coal pillar and the solid coal was reduced from 9.5, 10.8 and 4 cm to 6.5, 2 and 3 cm, respectively, after roof blasting. The experimental results showed that the movement of the overburden strata showed obvious regional characteristics after blasting which included the height of the caving zone on the broken side being 3.3 times higher than that observed on the unbroken side, while the height of the fractured zone was 0.52 times higher. The field application of roof blasting was controlled by a drilling method, micro-seismic monitoring and stress monitoring. The results showed good application effects. This research provides valuable insights for managing the stability of gob-side entries. Full article
Show Figures

Figure 1

22 pages, 7746 KiB  
Article
Study on the Mechanism of Mechanical Properties and Wind Leakage Sealing Effect of KH570-Enhanced VAE/Cement Materials
by Qingsong Zhang, Huaqiang Sheng, Jinliang Li, Jinhu Li and Hao Zhang
Materials 2025, 18(6), 1205; https://doi.org/10.3390/ma18061205 - 7 Mar 2025
Viewed by 958
Abstract
In order to address the issue of wind leakage leading to spontaneous coal combustion in goafs during gob-side entry mining, a KH570 silane coupling agent (SCA)-modified vinyl acetate–ethylene (VAE)/cement-based flexible spraying sealing material was developed. The mechanical properties and wind leakage sealing performance [...] Read more.
In order to address the issue of wind leakage leading to spontaneous coal combustion in goafs during gob-side entry mining, a KH570 silane coupling agent (SCA)-modified vinyl acetate–ethylene (VAE)/cement-based flexible spraying sealing material was developed. The mechanical properties and wind leakage sealing performance of the material were evaluated using specialized testing equipment. Furthermore, molecular dynamics simulations and microstructural characterization techniques were utilized to assess and model the interface compatibility of the material. The experimental results demonstrate that KH570 significantly enhanced the material’s mechanical properties. Following modification, the material exhibited increases in the maximum tensile strength, compressive strength, and flexural strength by 53%, 38%, and 29%, respectively. KH570 not only promotes the formation of additional calcium silicate hydrate (C-S-H) gel through cement hydration, but also establishes Si-O-Si chemical bonds with cement hydration products and hydrogen bonds with the VAE emulsion. This functions as a “molecular bridge”, significantly enhancing the interface performance of the composite. The interaction between the organic and inorganic phases contributes to the formation of an interpenetrating network structure, imparting excellent compressive, flexural, and tensile deformation resistance to the material. The wind leakage of the spray-modified material was reduced by 2.7 times compared to the unmodified material, significantly improving its sealing performance under mining-induced pressure conditions. This enhancement effectively minimizes spontaneous combustion in mined-out coal areas caused by wind leakage, thereby ensuring safer mining operations. Full article
Show Figures

Figure 1

21 pages, 8995 KiB  
Article
Study of Reasonable Roof Cutting Parameters of Dense-Drilling Roof Cutting and Pressure Relief Self-Forming Roadway in Non-Pillar Mining
by Ding Lang, Shuaiming Chen, Hongping Yuan, Jiandong Yu, Yang Yu, Shenghu Luo, Bosheng Hu and Panshi Xie
Appl. Sci. 2025, 15(5), 2685; https://doi.org/10.3390/app15052685 - 3 Mar 2025
Cited by 2 | Viewed by 744
Abstract
Roof cutting by dense drilling is one of the main methods of gob-side entry retaining. Taking the 203 working face of the Ruineng Coal Mine as the engineering background, a mechanical model is established to clarify the roof breaking mechanism. Numerical simulation is [...] Read more.
Roof cutting by dense drilling is one of the main methods of gob-side entry retaining. Taking the 203 working face of the Ruineng Coal Mine as the engineering background, a mechanical model is established to clarify the roof breaking mechanism. Numerical simulation is conducted to analyze the roof cutting effects of different parameters, and reasonable roof cutting parameters are identified. The results show that: ① The increase in roof cutting height is beneficial to roof cutting, but excessive height will cause stress concentration of the ‘key structure’ on the side of the coal pillar. ② It is difficult to cut off the roof when the roof cutting angle is too small, and the cantilever length of the roof increases when the roof cutting angle is too large. ③ The larger the borehole spacing, the smaller the plastic penetration rate between boreholes. The optimal parameters of roof cutting are determined as follows: roof cutting height 8 m; roof cutting angle 15°; aperture size 48 mm; hole spacing at 200 mm. The deformation of the resulting roadway is controllable, indicating that the key parameter determination method is effective. Full article
Show Figures

Figure 1

18 pages, 24746 KiB  
Article
Research on Control Technology of Roof-Cutting and Roadway Protection for Narrow Pillar Beneath Close-Distance Goaf
by Gaolei Zhu, Chenyang Liu, Yiyi Wu, Hui Li and Hang Zou
Appl. Sci. 2025, 15(4), 2103; https://doi.org/10.3390/app15042103 - 17 Feb 2025
Viewed by 464
Abstract
Close-distance coal seams are common in underground mining, and their spacing is short, which produces strong mining disturbance. In instances where the upper seam has been mined and a goaf has formed, a notable issue arises during the lower seam’s mining, characterized by [...] Read more.
Close-distance coal seams are common in underground mining, and their spacing is short, which produces strong mining disturbance. In instances where the upper seam has been mined and a goaf has formed, a notable issue arises during the lower seam’s mining, characterized by substantial deformation of the roadway along the goaf. Field exploration and three-dimensional geological modeling have revealed that the fourth and sixth working faces and pillar of seam No. 5 are all under seam No. 2’s goaf, with an average distance of 16.70 m. Simultaneously, the double compression effect of the pillar, induced by the linkage rotation of key blocks of the lower and upper seams, is analyzed. The induction mechanism and path of the large deformation are expounded. It is thus proposed that the pillar’s width should be determined by gob-side entry, driving beneath the goaf, with the roof near the pillar being cut off in advance to realize the path of cutting off the compressed pillar. Through the simulation comparison of five kinds of pillar width combined with engineering practice, it has been determined that the best width is 8 m, and the abutment pressure is distributed in a double-peak saddle shape, with the result that the load-bearing ability is notably significant. Through the comparative simulation of roof-cutting, it was found that roof-cutting helps the roof to collapse near the pillar-side and decreases the vertical stress peak to 16.46 MPa, the shear stress peak to 5.93 MPa, and the J2 peak to 7.23 × 1013 Pa, which further alleviates the pressure on the pillar. In the field, the haulage roadway’s roof was cut by two-way shaped-charge blasting, and the sandy mudstone (5.90 m) was successfully cut off. Concurrently, anchor cable reinforcement was implemented on the roof and two ribs of the ventilation roadway in proximity to the pillar, thereby ensuring stabilization and mitigating the mining effect. The engineering research provides a case and scheme reference for the operation of gob-side entry driving beneath close-distance goafs worldwide. Full article
Show Figures

Figure 1

29 pages, 16857 KiB  
Article
Mechanism and Control Technology of Lateral Load-Bearing Behavior of a Support System Adjacent to Empty Roadways
by Yongjia Jing, Ying Xu, Jianbiao Bai, Yanhui Li and Jinliang Li
Appl. Sci. 2025, 15(3), 1200; https://doi.org/10.3390/app15031200 - 24 Jan 2025
Cited by 1 | Viewed by 764
Abstract
Currently, research on the stability of roadway-side supports in gob-side entry techniques primarily focuses on vertical stress, neglecting the lateral effects induced via roof collapse and waste rock compaction in the mined-out area. This paper systematically investigates the effect of roof rotation and [...] Read more.
Currently, research on the stability of roadway-side supports in gob-side entry techniques primarily focuses on vertical stress, neglecting the lateral effects induced via roof collapse and waste rock compaction in the mined-out area. This paper systematically investigates the effect of roof rotation and the compression of waste gangue on the lateral load-bearing behavior of the roadway-side support system, combining theoretical analysis with FLAC3D numerical simulations. The results indicate that the lateral load-bearing capacity of the support system is positively correlated with both mining height and the width of the roadway-side support. When the mining height or the support width is small, the lateral load-bearing capacity of the support system is weaker, making it more prone to sliding failure. Furthermore, lateral load control technology for the roadway-side support system is proposed, which includes “roof cutting + increasing width”. When the stress transfer path of the roof is blocked, as the support system width increases from 1 m to 2 m, the lateral load-bearing capacity of the roadway-side support significantly increases and then stabilizes. This results in different extents of expansion in the elastic region within the support system, providing valuable insights for the design of roadway-side supports. Full article
Show Figures

Figure 1

24 pages, 9657 KiB  
Article
Study on the Stability and Control of Gob-Side Entry Retaining in Paste Backfill Working Face
by Changtao Xu, Xiangyu Wang, Dingchao Chen, Guanghui Wang, Zhenpeng Niu and Huixing Lu
Appl. Sci. 2025, 15(2), 528; https://doi.org/10.3390/app15020528 - 8 Jan 2025
Cited by 2 | Viewed by 884
Abstract
Due to the poor stability of the roof and floor of the roadway in the 3-1 coal seam of Chahasu Coal Mine, traditional gob-side entry retaining (GER) methods fail to meet the production safety requirements. To address this, a GER technology using paste [...] Read more.
Due to the poor stability of the roof and floor of the roadway in the 3-1 coal seam of Chahasu Coal Mine, traditional gob-side entry retaining (GER) methods fail to meet the production safety requirements. To address this, a GER technology using paste backfill was proposed. This study reveals the stability mechanism of the surrounding rock in GER with paste backfill through theoretical analysis, numerical simulation, and industrial experiments. First, theoretical analysis was conducted to determine the overburden movement characteristics under varying backfill ratios. Uniaxial compressive tests on the paste material demonstrated that its bearing capacity reaches a relatively stable state after 14–28 days of curing. Second, numerical simulations were performed to study the deformation patterns of the surrounding rock and mine pressure characteristics under backfill ratios of 65%, 75%, 85%, and 95%. The Strain-Softening model was used to calibrate the backfill material parameters. The results showed that as the backfill ratio increased, the support provided by the backfill material improved, leading to enhanced bearing capacity of the overlying strata, reduced mine pressure intensity, significantly decreased deformation of the roadway, and substantially improved stability of the surrounding rock. Third, under a backfill ratio of 95%, the evolution of the abutment stress during face advancement was investigated. It was found that as the working face advanced, the backfill material and the overlying strata gradually formed a stable composite structure, with the abutment stress in the mining area stabilizing over time. Finally, to address the issue of insufficient initial strength and limited support capacity of the paste backfill material, a comprehensive control system for surrounding rock stability was proposed. This system integrates a basic bolt-mesh-cable support structure with localized reinforcement using portal hydraulic supports. Field industrial practices demonstrated that after applying this comprehensive control technology, the convergence of roof and floor was approximately 190 mm and the convergence of two ribs was about 140 mm, effectively ensuring the stability of surrounding rock in GER with paste backfill working face. Full article
Show Figures

Figure 1

18 pages, 12435 KiB  
Article
Reasonable Coal Pillar Width and Control Technology for Gob-Side Entry Driving in Deep Irregular Working Face
by Shuaifeng Yin, Xubo Zhao, En Wang, Yitao Yan, Kanglei Han, Jun Ma and Yibo Wang
Processes 2025, 13(1), 127; https://doi.org/10.3390/pr13010127 - 6 Jan 2025
Cited by 3 | Viewed by 762
Abstract
Aiming to address the challenges of determining the coal pillar’s width and managing the significant deformation of the surrounding rock in the deep gob-side entry driving, the limiting equilibrium zone theory, employing the operational area of Dongpang Mine 21110 as the engineering setting, [...] Read more.
Aiming to address the challenges of determining the coal pillar’s width and managing the significant deformation of the surrounding rock in the deep gob-side entry driving, the limiting equilibrium zone theory, employing the operational area of Dongpang Mine 21110 as the engineering setting, states that a coal pillar’s appropriate width in the gob-side entry driving falls between 7.9 and 9.8 m. The pattern of vertical stress distribution and the extent of the plastic zone in the roadway for coal pillar widths of 7.0 m, 8.0 m, 9.0 m, and 10.0 m are analyzed, respectively, investigated using the numerical simulation method of FLAC3D. The acceptable coal pillar width in the deep gob-side entry driving is 8.0 m. Combined with the roadway surrounding rock borehole inspection results, the fracture development condition of the roadway’s full-face surrounding rock is determined, and the asymmetric aberration characteristics, with significant surrounding rock damage depth at the coal pillar flank location, are obtained. Based on the theoretical calculations, an integrated proposal for a “non-symmetrical bolt and cable anchor” coupling support scheme for the surrounding rock in the gob-side entry driving is put forward. This was applied at the Dongpang coal mine site. Engineering practice shows that leaving an 8.0 m coal pillar width and adopting the “non-symmetrical bolt and cable anchor” support system design can control the deformation of the surrounding rock in the track entry at a reasonable range, which ensures the stability of the surrounding rock in the gob-side entry driving. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

Back to TopTop