Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = glycerol-3-phosphate acyltransferase (GPAT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4208 KiB  
Article
Transcriptome Analysis Reveals Metabolic Pathways and Key Genes Involved in Oleic Acid Formation of Sunflower (Helianthus annuus L.)
by Yingnan Mu, Ying Sun, Yang Wu, Liuxi Yi, Haifeng Yu and Shaoying Zhang
Int. J. Mol. Sci. 2025, 26(14), 6757; https://doi.org/10.3390/ijms26146757 - 15 Jul 2025
Viewed by 294
Abstract
Sunflower is one of the four most important oilseed crops in the world, and its edible oil is of high nutritional quality. However, the molecular regulatory mechanism of oil accumulation in sunflowers is still unclear. In this study, we selected two inbred lines [...] Read more.
Sunflower is one of the four most important oilseed crops in the world, and its edible oil is of high nutritional quality. However, the molecular regulatory mechanism of oil accumulation in sunflowers is still unclear. In this study, we selected two inbred lines with significant differences in oleic acid content and similar agronomic traits: the high oleic acid content (82.5%) inbred line 227 and the low oleic acid content (30.8%) inbred line 228. Sunflower seeds were selected for transcriptome experiments at 10, 20, and 30 days after full bloom (DAFB). There were 21, 225, and 632 differentially expressed genes (DEGs) identified at the three times, respectively. The Gene Ontology (GO) analysis showed that DEGs from two sunflower cultivars at three stages were significantly enriched in the activities of omega-6 fatty acid desaturase and glucosyltransferase. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that at 10, 20, and 30 DAFB, DEGs were significantly enriched in the unsaturated fatty acid synthesis pathway, glutathione metabolism pathway, and pyruvate metabolism pathway. Through mapping analysis of GO in the KEGG pathway, it was found that the omega-6 fatty acid desaturase gene FAD6/FAD2, diacylglyceroyltransferase gene DGAT, glycerol-3-phosphate acyltransferase gene GPAT, and long-chain acyl-CoA synthase gene LACS may play important roles in regulating sunflower oleic acid content. Our research provides candidate genes and a research basis for breeding high oleic sunflowers. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 3100 KiB  
Article
Genome-Wide Identification of the GPAT Family in Medicago sativa L. and Expression Profiling Under Abiotic Stress
by Jianzhi Ma, Mingyang Du, Huiyan Xiong and Ruijun Duan
Plants 2024, 13(23), 3392; https://doi.org/10.3390/plants13233392 - 3 Dec 2024
Cited by 1 | Viewed by 1335
Abstract
Glycerol-3-phosphate acyltransferase (GPAT), as a rate-limiting enzyme engaged in lipid synthesis pathways, exerts an important role in plant growth and development as well as environmental adaptation throughout diverse growth stages. Alfalfa (Medicago sativa L.) is one of the most significant leguminous forages [...] Read more.
Glycerol-3-phosphate acyltransferase (GPAT), as a rate-limiting enzyme engaged in lipid synthesis pathways, exerts an important role in plant growth and development as well as environmental adaptation throughout diverse growth stages. Alfalfa (Medicago sativa L.) is one of the most significant leguminous forages globally; however, its growth process is frequently exposed to environmental stress, giving rise to issues such as impeded growth and decreased yield. At present, the comprehension of the GPAT genes in alfalfa and their reactions to abiotic stresses is conspicuously deficient. This study identified 15 GPATs from the genome of “Zhongmu No. 1” alfalfa, which were phylogenetically categorized into three major groups (Groups I ~ III). Furthermore, Group III is further subdivided into three distinct subgroups. MsGPATs belonging to the same subfamily exhibited similar protein conserved motifs and gene structural characteristics, in which groups with simple conserved motifs had more complex gene structures. A multitude of regulatory cis-elements pertinent to hormones and responses to environmental stress were detected in their promoter regions. In addition, a spatial–temporal expression analysis showed that MsGPATs have significant tissue specificity. Furthermore, the transcriptomic analysis of ABA treatment and the qRT-PCR results under drought, salt, and cold stress demonstrated that the majority of MsGPATs respond to abiotic stress with pronounced timely characteristics. It was also ascertained that these GPAT genes might assume a crucial role in salt and drought stress. This research can further constitute a fundamental basis for the exploration of the alfalfa GPAT family, the screening of key GPATs, and the investigation of their functionalities. Full article
Show Figures

Figure 1

18 pages, 5596 KiB  
Article
Analysis of BnGPAT9 Gene Expression Patterns in Brassica napus and Its Impact on Seed Oil Content
by Man Xing, Bo Hong, Mengjie Lv, Xueyi Lan, Danhui Zhang, Chunlei Shu, Shucheng Qi, Zechuan Peng, Chunyun Guan, Xinghua Xiong and Luyao Huang
Agriculture 2024, 14(8), 1334; https://doi.org/10.3390/agriculture14081334 - 10 Aug 2024
Viewed by 1293
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) genes encode enzymes involved in the biosynthesis of plant oils. Rapeseed has four BnGPAT9 genes, but the expression patterns and functions of these four homologous copies in rapeseed for seed oil accumulation are not well understood. In this [...] Read more.
Glycerol-3-phosphate acyltransferase (GPAT) genes encode enzymes involved in the biosynthesis of plant oils. Rapeseed has four BnGPAT9 genes, but the expression patterns and functions of these four homologous copies in rapeseed for seed oil accumulation are not well understood. In this study, we cloned the four BnGPAT9 genes and their promoters from Brassica napus and found significant differences in the expression of BnGPAT9 genes among different rapeseed varieties. We confirmed that BnGPAT9-A01/C01 are highly conserved in rapeseed, with high expression levels in various tissues, especially during the late stages of silique development and seed maturation. All four BnGPAT9 genes (BnGPAT9-A01/C01/A10/C09) can promote seed oil accumulation, but BnGPAT9-A01/C01 have a greater effect. Overexpression in Arabidopsis and rapeseed increased seed oil content and altered fatty acid composition, significantly increasing linolenic acid content. Transcriptome analysis revealed that BnGPAT9 genes promote the upregulation of genes related to oil synthesis, particularly those in the Plant–pathogen interaction, alpha-Linolenic acid metabolism, MAPK signaling pathway—plant, and Glutathione metabolism pathways. In summary, these results indicate that the four BnGPAT9 genes in rapeseed have different expression patterns and roles in regulating seed oil accumulation, with BnGPAT9-A01/C01 contributing the most to promoting oil accumulation. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetic Improvement of Oilseed Crops)
Show Figures

Figure 1

19 pages, 6270 KiB  
Article
Genome-Wide Identification, Characterization, Evolutionary Analysis, and Expression Pattern of the GPAT Gene Family in Barley and Functional Analysis of HvGPAT18 under Abiotic Stress
by Chenglan Yang, Jianzhi Ma, Cunying Qi, Yinhua Ma, Huiyan Xiong and Ruijun Duan
Int. J. Mol. Sci. 2024, 25(11), 6101; https://doi.org/10.3390/ijms25116101 - 1 Jun 2024
Cited by 2 | Viewed by 1405
Abstract
Glycerol-3-phosphoacyltransferase (GPAT) is an important rate-limiting enzyme in the biosynthesis of triacylglycerol (TAG), which is of great significance for plant growth, development, and response to abiotic stress. Although the characteristics of GPAT have been studied in many model plants, little is known about [...] Read more.
Glycerol-3-phosphoacyltransferase (GPAT) is an important rate-limiting enzyme in the biosynthesis of triacylglycerol (TAG), which is of great significance for plant growth, development, and response to abiotic stress. Although the characteristics of GPAT have been studied in many model plants, little is known about its expression profile and function in barley, especially under abiotic stress. In this study, 22 GPAT genes were identified in the barley genome and divided into three groups (I, II, III), with the latter Group III subdivided further into three subgroups based on the phylogenetic analysis. The analyses of conserved motifs, gene structures, and the three-dimensional structure of HvGPAT proteins also support this classification. Through evolutionary analysis, we determined that HvGPATs in Group I were the earliest to diverge during 268.65 MYA, and the differentiation of other HvGPATs emerged during 86.83–169.84 MYA. The tissue expression profile showed that 22 HvGPAT genes were almost not expressed in INF1 (inflorescence 1). Many functional elements related to stress responses and hormones in cis-element analysis, as well as qRT-PCR results, confirm that these HvGPAT genes were involved in abiotic stress responses. The expression level of HvGPAT18 was significantly increased under abiotic stress and its subcellular localization indicated its function in the endoplasmic reticulum. Various physiological traits under abiotic stress were evaluated using transgenic Arabidopsis to gain further insight into the role of HvGPAT18, and it was found that transgenic seedlings have stronger resistance under abiotic stress than to the wild-type (WT) plants. Overall, our results provide new insights into the evolution and function of the barley GPAT gene family and enable us to explore the molecular mechanism of functional diversity behind the evolutionary history of these genes. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

16 pages, 22375 KiB  
Article
Identifying Residues for Substrate Recognition in Human GPAT4 by Molecular Dynamics Simulations
by Yulan Liu, Yunong Xu, Yinuo Xu, Zhihao Zhao, Gui-Juan Cheng, Ruobing Ren and Ying-Chih Chiang
Int. J. Mol. Sci. 2024, 25(7), 3729; https://doi.org/10.3390/ijms25073729 - 27 Mar 2024
Viewed by 1653
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A [...] Read more.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD). As no experimentally resolved GPAT4 structure is available, the AlphaFold model is employed to construct the GPAT4–substrate complex model. Using another isoform, GPAT1, we demonstrate that once the ligand binding is properly addressed, the AlphaFold complex model can deliver similar results to the experimentally resolved structure in MD simulations. Following the validated protocol of complex construction, we perform MD simulations using the GPAT4–substrate complex. Our simulations reveal that R427 is an important residue in recognizing G3P via a stable salt bridge, but its motion can bring the ligand to different binding hotspots on GPAT4. Such high flexibility can be attributed to the flexible region that exists only on GPAT4 and not on GPAT1. Our study reveals the substrate recognition mechanism of GPAT4 and hence paves the way towards designing GPAT4 inhibitors. Full article
Show Figures

Figure 1

14 pages, 4021 KiB  
Article
Glycerol-3-Phosphate Acyltransferase GPAT9 Enhanced Seed Oil Accumulation and Eukaryotic Galactolipid Synthesis in Brassica napus
by Wei Gong, Wenling Chen, Qiang Gao, Lei Qian, Xueyuan Yuan, Shaohua Tang and Yueyun Hong
Int. J. Mol. Sci. 2023, 24(22), 16111; https://doi.org/10.3390/ijms242216111 - 9 Nov 2023
Cited by 4 | Viewed by 1768
Abstract
Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by [...] Read more.
Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 5729 KiB  
Article
Genome-Wide Analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Family in Perilla frutescens and Functional Characterization of PfGPAT9 Crucial for Biosynthesis of Storage Oils Rich in High-Value Lipids
by Yali Zhou, Xusheng Huang, Ting Hu, Shuwei Chen, Yao Wang, Xianfei Shi, Miao Yin, Runzhi Li, Jiping Wang and Xiaoyun Jia
Int. J. Mol. Sci. 2023, 24(20), 15106; https://doi.org/10.3390/ijms242015106 - 12 Oct 2023
Cited by 9 | Viewed by 2490
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 [...] Read more.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops. Full article
Show Figures

Figure 1

22 pages, 8061 KiB  
Article
Oleic Acid Promotes the Biosynthesis of 10-Hydroxy-2-decenoic Acid via Species-Selective Remodeling of TAGs in Apis mellifera ligustica
by Xiyi Hu, Ying Wang, Xuepeng Chi, Hongfang Wang, Zhenguo Liu, Lanting Ma and Baohua Xu
Int. J. Mol. Sci. 2023, 24(17), 13361; https://doi.org/10.3390/ijms241713361 - 29 Aug 2023
Cited by 3 | Viewed by 2117
Abstract
This study aimed to assess the impact of oleic acid (OA) supplementation on the biosynthesis of 10-hydroxy-2-decenoic acid (10-HDA) in Apis mellifera ligustica. In experiment 1, varying concentrations of OA (2%, 4%, 6% and 8%) were added to an artificial diet for [...] Read more.
This study aimed to assess the impact of oleic acid (OA) supplementation on the biosynthesis of 10-hydroxy-2-decenoic acid (10-HDA) in Apis mellifera ligustica. In experiment 1, varying concentrations of OA (2%, 4%, 6% and 8%) were added to an artificial diet for newly emerged bees reared in cages. Analysis of 10-HDA content and gene expression in the mandibular gland (MG) revealed that the 8% OA treatment had the greatest impact on promoting the synthesis of 10-HDA. Subsequent investigations utilized RNA-seq and lipidomics to characterize the molecular signature in the MG after feeding the 8% OA diet. Phosphatidylcholine (PC) and triacylglycerol (TAG) were found to be the predominant lipids in the MG of worker bees. A total of 154 TAGs were identified, with TAG (18:1-18:1-18:1) exhibiting the highest abundance, which increased by 1.5 times. The major TAG species contained palmitic acid (16:0) and oleic acid (18:1) in their structure, which was associated with fatty acid composition of diet. The increase in abundance of main TAGs may be attributed to the upregulation of glycerol-3-phosphate acyltransferase (Gpat) and glycerol kinase (GK) gene expression at the transcriptional level. The upregulation of differentially expressed genes (DEGs) related to carbohydrate metabolism may contribute to meeting the heightened metabolic demands of the MGs in worker bees. Royal jelly (RJ) samples from bee colonies fed with the 8% OA diet exhibited higher 10-HDA level than RJ collected from bee colonies fed with the artificial diet. These results indicate that 8% OA addition in the diet enhanced biosynthesis of 10-HDA in the mandibular gland, which was accompanied by significant and highly species-selective remodeling of TAGs. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

37 pages, 4133 KiB  
Review
Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis
by Jan Korbecki, Mateusz Bosiacki, Izabela Gutowska, Dariusz Chlubek and Irena Baranowska-Bosiacka
Cancers 2023, 15(7), 2183; https://doi.org/10.3390/cancers15072183 - 6 Apr 2023
Cited by 14 | Viewed by 5134
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty [...] Read more.
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR). Full article
(This article belongs to the Special Issue Lipids and Small Metabolites in Cancer)
Show Figures

Graphical abstract

20 pages, 10614 KiB  
Article
Metabolic Composition and Quality Traits of Polygonatum cyrtonema Hua from Different Germplasms and Age Sections Based on Widely Targeted Metabolomics Analysis
by Qingshuang Wang, Jingjie Ban, Roudi Cai, Xueying Zhang, Chunwang Lai, Yan Chen, Xiaoli Li, Cuirong Chen, Yukun Chen, Zihao Zhang, Zhongxiong Lai and Yuling Lin
Int. J. Mol. Sci. 2023, 24(7), 6077; https://doi.org/10.3390/ijms24076077 - 23 Mar 2023
Cited by 15 | Viewed by 2488
Abstract
Polygonatum rhizomes are rich in various compounds with many biological activities and are widely used in functional foods and pharmaceutical products. In order to screen for superior Polygonatum cyrtonema Hua (P. cyrtonema) germplasm and also to elucidate the nutritional and medicinal values [...] Read more.
Polygonatum rhizomes are rich in various compounds with many biological activities and are widely used in functional foods and pharmaceutical products. In order to screen for superior Polygonatum cyrtonema Hua (P. cyrtonema) germplasm and also to elucidate the nutritional and medicinal values of rhizomes, the metabolic composition and quality traits of rhizomes from different germplasms and age sections of P. cyrtonema were analysed by widely targeted metabolomics, and the molecular mechanism of triacylglycerol synthesis was explored. The results showed that the different germplasms and age sections of P. cyrtonema were rich in different nutritional and medicinal components. Of these, the broad-leaved green stem (GK) germplasm is rich in polysaccharides, alkaloids, and lipids; the pointed-leaved green stem (JL) germplasm is rich in flavonoids, steroids, and amino acids, while the pointed-leaved purple stem (JZ) germplasm contains more phenolic acids. The one-year (AT) age section is rich in polysaccharides, steroids, organic acids, and lipids; the three years (CT) age section contains more flavonoids, alkaloids, and amino acid metabolites. Lipids were significantly enriched in the broad-leaved green stem germplasm and the one-year age section. Interestingly, the highest accumulation of triacylglycerols, an important component of lipids, was also found in the GK germplasm and the AT age section. Nineteen, 14, and 13 members of the glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAT), and diacylglycerol acyltransferase (DGAT) gene families, respectively, involved in triacylglycerol synthesis were also identified. The quantitative real-time PCR (qRT-PCR) results further suggested that the differentially expressed PcDGAT1, PcDGAT2.4, PcGPAT9.1, PcLPAT2.9, and PcLPAT4.3 genes may play important roles in triacylglycerol synthesis in P. cyrtonema. Therefore, this study provides a new theoretical reference for product development and the breeding of new varieties of Polygonatum species. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Graphical abstract

19 pages, 900 KiB  
Article
Effect of Zilpaterol Hydrochloride and Zinc Methionine on Growth, Carcass Traits, Meat Quality, Fatty Acid Profile and Gene Expression in Longissimus dorsi Muscle of Sheep in Intensive Fattening
by Manuel Guerrero-Bárcena, Ignacio Arturo Domínguez-Vara, Ernesto Morales-Almaraz, Juan Edrei Sánchez-Torres, José Luis Bórquez-Gastelum, Daniel Hernández-Ramírez, Daniel Trujillo-Gutiérrez, Miguel Angel. Rodríguez-Gaxiola, Juan Manuel Pinos-Rodríguez, Gisela Velázquez-Garduño and Fernando Grageola-Nuñez
Agriculture 2023, 13(3), 684; https://doi.org/10.3390/agriculture13030684 - 15 Mar 2023
Cited by 4 | Viewed by 3262
Abstract
Zilpaterol hydrochloride (ZH) redistributes ingested energy and improves feed efficiency by increasing muscle mass and reducing fat in sheep and cattle carcasses in fattening; however, by increasing lipolysis and reducing intramuscular fat (IMF), it can affect meat quality in terms of the attributes [...] Read more.
Zilpaterol hydrochloride (ZH) redistributes ingested energy and improves feed efficiency by increasing muscle mass and reducing fat in sheep and cattle carcasses in fattening; however, by increasing lipolysis and reducing intramuscular fat (IMF), it can affect meat quality in terms of the attributes of tenderness, juiciness, taste and color; in contrast, Zn methionine (ZM), due to its lipogenic effect, can improve meat marbling without affecting production efficiency. In the current study, 36 male Suffolk sheep were used (25 ± 0.58 kg live weight, LW) to evaluate the supply of ZH and ZM on growth, carcass traits, meat quality, fatty acid content and expression of genes which regulate the deposition of fatty acids (FA) in IMF. A completely randomized design was used, with factorial arrangement of 2 × 2 ZH (0 and 0.2 mg kg1 LW) and ZM (0 and 80 mg Zn kg1 dry matter, DM). The results showed that ZH increased (p < 0.05) carcass yield, compactness index and chop eye area and decreased greasing (p < 0.02). The content of ether extract in meat increased (p < 0.05) in sheep with ZM plus ZH, and in sheep with ZM (p < 0.01). ZH (p < 0.05) reduced (p < 0.02) the meat’s color index L*, a*, b*, C* and H*. The content in IMF of stearic (C18:0) and arachidic (C20:0) FA was reduced (p ≤ 0.05) by the effect of ZH, but the palmitoleic (C16:1), eicosatetraenoic (C20:4n6) and conjugated linoleic FA were increased (p ≤ 0.05) by the effect of ZH. ZM increased (p ≤ 0.05) palmitoleic (C16:1) and conjugated linoleic FA; the ZH interaction with ZM increased (p ≤ 0.05) linoleic (C18:2 c 9 c 12), linolenic (C18:3 c 9c12c15) and eicosatetraenoic (C20:4n6) FA. The ZH interaction with ZM influenced (p ≤ 0.05) the total saturated fatty acids (SFA), unsaturated fatty acids (UFA) and polyunsaturated fatty acids (PFA). ZH increased (p ≤ 0.05) the relative expression of mRNA from the enzymes lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), glycerol -3-phosphate acyltransferase (GPAT1) and diglyceride acyltransferase (DGAT1). ZM increased (p ≤ 0.05) the relative expression of mRNA from the enzyme gene acetyl-CoA carboxylase (ACC) and HSL, monoglyceride lipase (MGL). The ZM interaction with ZH increased (p ≤ 0.05) the relative expression of mRNA genes of the enzymes HSL and ACC. It was concluded that ZH improved feed conversion (FC), increased yield and reduced fat in carcasses; ZM increased IMF in Longissimus dorsi. ZH and ZM influenced the FA composition, reduced the SFA and increased the UFA and PFA; both additives also influenced the relative mRNA expression of genes involved in fatty acid metabolism. Full article
Show Figures

Figure 1

20 pages, 3446 KiB  
Article
Metabolomics and Transcriptomics Provide Insights into Lipid Biosynthesis in the Embryos of Walnut (Juglans regia L.)
by Manman Liang, Xuemei Zhang, Qinglong Dong, Han Li, Suping Guo, Haoan Luan, Peng Jia, Minsheng Yang and Guohui Qi
Plants 2023, 12(3), 538; https://doi.org/10.3390/plants12030538 - 24 Jan 2023
Cited by 6 | Viewed by 2912
Abstract
Walnut (Juglans regia L.) is an important woody oilseed tree species due to its commercial value. However, the regulation mechanism of walnut oil accumulation is still poorly understood, which restricted the breeding and genetic improvement of high-quality oil-bearing walnuts. In order to [...] Read more.
Walnut (Juglans regia L.) is an important woody oilseed tree species due to its commercial value. However, the regulation mechanism of walnut oil accumulation is still poorly understood, which restricted the breeding and genetic improvement of high-quality oil-bearing walnuts. In order to explore the metabolic mechanism that regulates the synthesis of walnut oil, we used transcriptome sequencing technology and metabolome technology to comprehensively analyze the key genes and metabolites involved in oil synthesis of the walnut embryo at 60, 90, and 120 days after pollination (DAP). The results showed that the oil and protein contents increased gradually during fruit development, comprising 69.61% and 18.32% of the fruit, respectively, during ripening. Conversely, the contents of soluble sugar and starch decreased gradually during fruit development, comprising 2.14% and 0.84%, respectively, during ripening. Transcriptome sequencing generated 40,631 unigenes across 9 cDNA libraries. We identified 51 and 25 candidate unigenes related to the biosynthesis of fatty acid and the biosynthesis of triacylglycerol (TAG), respectively. The expression levels of the genes encoding Acetyl-CoA carboxylase (ACCase), long-chain acyl-CoA synthetases (LACS), 3-oxoacyl-ACP synthase II (KASII), and glycerol-3-phosphate acyl transfer (GPAT) were upregulated at 60 DAP relative to the levels at 90 and 120 DAP, while the stearoyl-ACP-desaturase (SAD) and fatty acid desaturase 2 (FAD2) genes were highly abundantly expressed during all walnut developmental periods. We found that ABSCISIC ACID INSENSEITIVE3 (ABI3), WRINKLEDl (WRI1), LEAFY COTYLEDON1 (LEC1), and FUSCA3 (FUS3) may be key transcription factors involved in lipid synthesis. Additionally, the metabolomics analysis detected 706 metabolites derived from 18 samples, among which, 4 are implicated in the TAG synthesis, 2 in the glycolysis pathway, and 5 in the tricarboxylic acid cycle (TCA cycle) pathway. The combined analysis of the related genes and metabolites in TAG synthesis showed that phospholipid:diacylglycerol acyltransferase (PDAT) genes were highly abundantly expressed across walnut fruit developmental periods, and their downstream metabolite TAG gradually accumulated with the progression of fruit development. The FAD2 gene showed consistently higher expression during fruit development, and its downstream metabolites 18:2-PC and 18:3-PC gradually accumulated. The ACCase, LACS, SAD, FAD2, and PDAT genes may be crucial genes required for walnut oil synthesis. Our data will enrich public databases and provide new insights into functional genes related to lipid metabolism in walnut. Full article
(This article belongs to the Special Issue Formation Mechanism and Regulation of Fruit Quality)
Show Figures

Figure 1

19 pages, 10906 KiB  
Article
The Loss-Function of the Male Sterile Gene ZmMs33/ZmGPAT6 Results in Severely Oxidative Stress and Metabolic Disorder in Maize Anthers
by Ziwen Li, Shuangshuang Liu, Taotao Zhu, Xueli An, Xun Wei, Juan Zhang, Suowei Wu, Zhenying Dong, Yan Long and Xiangyuan Wan
Cells 2022, 11(15), 2318; https://doi.org/10.3390/cells11152318 - 27 Jul 2022
Cited by 9 | Viewed by 2698
Abstract
In plants, oxidative stress and metabolic reprogramming frequently induce male sterility, however our knowledge of the underlying molecular mechanism is far from complete. Here, a maize genic male-sterility (GMS) mutant (ms33-6038) with a loss-of-function of the ZmMs33 gene encoding glycerol-3-phosphate acyltransferase [...] Read more.
In plants, oxidative stress and metabolic reprogramming frequently induce male sterility, however our knowledge of the underlying molecular mechanism is far from complete. Here, a maize genic male-sterility (GMS) mutant (ms33-6038) with a loss-of-function of the ZmMs33 gene encoding glycerol-3-phosphate acyltransferase 6 (GPAT6) displayed severe deficiencies in the development of a four-layer anther wall and microspores and excessive reactive oxygen species (ROS) content in anthers. In ms33-6038 anthers, transcriptome analysis identified thousands of differentially expressed genes that were functionally enriched in stress response and primary metabolism pathways. Further investigation revealed that 64 genes involved in ROS production, scavenging, and signaling were specifically changed in expression levels in ms33-6038 anthers compared to the other five investigated GMS lines. The severe oxidative stress triggered premature tapetal autophagy and metabolic reprogramming mediated mainly by the activated SnRK1-bZIP pathway, as well as the TOR and PP2AC pathways, proven by transcriptome analysis. Furthermore, 20 reported maize GMS genes were altered in expression levels in ms33-6038 anthers. The excessive oxidative stress and the metabolic reprogramming resulted in severe phenotypic deficiencies in ms33-6038 anthers. These findings enrich our understanding of the molecular mechanisms by which ROS and metabolic homeostasis impair anther and pollen development in plants. Full article
(This article belongs to the Special Issue Pollen Development)
Show Figures

Figure 1

14 pages, 1717 KiB  
Article
Identification and Transcriptome Analysis of Genes Related to Membrane Lipid Regulation in Sweet Sorghum under Salt Stress
by Fenghui Wu, Zengting Chen, Fangning Zhang, Hongxiang Zheng, Simin Li, Yinping Gao, Jie Yang and Na Sui
Int. J. Mol. Sci. 2022, 23(10), 5465; https://doi.org/10.3390/ijms23105465 - 13 May 2022
Cited by 13 | Viewed by 2528
Abstract
Sweet sorghum has strong stress resistance and is considered a promising energy crop. In the present study, the effects of salt on the membrane lipid metabolism of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed. After treatment with 150 [...] Read more.
Sweet sorghum has strong stress resistance and is considered a promising energy crop. In the present study, the effects of salt on the membrane lipid metabolism of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed. After treatment with 150 mM NaCl, higher levels of fresh weight and chlorophyll fluorescence, as well as lower levels of malondialdehyde (MDA) were found in salt-tolerant M-81E. Concomitantly, 702 and 1339 differentially expression genes (DEGs) in M-81E and Roma were identified in response to salt stress. We determined that most DEGs were related to glycerophospholipid metabolism, glycerolipid metabolism, and other membrane lipid metabolisms. Under NaCl treatment, the expression of the membrane-associated phospholipase A1 was down-regulated at the transcriptional level, along with an increased content of phosphatidylcholine (PC) in both cultivars. The inhibition of triacylglycerol (TAG) mobilization in M-81E delayed salt-induced leaf senescence. Furthermore, enhanced levels of glycerol-3-phosphate acyltransferase (GPAT) expression contributed to improved salt resistance in M-81E. The results of this study demonstrate membrane the role of lipid regulation in mediating salt-defensive responses in sweet sorghum and expand our understanding of the relationship between changes in membrane lipid content and salt resistance. Full article
(This article belongs to the Special Issue Response to Environmental Stress in Plants)
Show Figures

Figure 1

18 pages, 2362 KiB  
Article
A GPAT1 Mutation in Arabidopsis Enhances Plant Height but Impairs Seed Oil Biosynthesis
by Yang Bai, Yue Shen, Zhiqiang Zhang, Qianru Jia, Mengyuan Xu, Ting Zhang, Hailing Fang, Xu Yu, Li Li, Dongmei Liu, Xiwu Qi, Zhide Chen, Shuang Wu, Qun Zhang and Chengyuan Liang
Int. J. Mol. Sci. 2021, 22(2), 785; https://doi.org/10.3390/ijms22020785 - 14 Jan 2021
Cited by 15 | Viewed by 3687
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of [...] Read more.
Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop