Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = glutenase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1977 KiB  
Article
Computational Screening and Experimental Evaluation of Wheat Proteases for Use in the Enzymatic Therapy of Gluten-Related Disorders
by Lyudmila V. Savvateeva, Olga E. Chepikova, Alena D. Solonkina, Artemiy A. Sakharov, Neonila V. Gorokhovets, Andrey V. Golovin and Andrey A. Zamyatnin
Pharmaceuticals 2025, 18(4), 592; https://doi.org/10.3390/ph18040592 - 18 Apr 2025
Viewed by 600
Abstract
Background: Gluten-related disorders, particularly celiac disease, are triggered in susceptible individuals by the toxic effects of gluten, the major storage protein of wheat grains. This toxicity can be reduced by wheat glutenases. Members of the papain-like cysteine protease family, which can act in [...] Read more.
Background: Gluten-related disorders, particularly celiac disease, are triggered in susceptible individuals by the toxic effects of gluten, the major storage protein of wheat grains. This toxicity can be reduced by wheat glutenases. Members of the papain-like cysteine protease family, which can act in the human gastrointestinal tract, are promising candidates for the enzymatic treatment of celiac disease. Methods: Two wheat proteases were selected using AlphaFold2, produced in recombinant forms, and characterized. Their glutenase potentials under acidic or slightly acidic conditions were evaluated and compared with the properties of the previously characterized wheat glutenase Triticain-α. Results: All enzymes tested, Ta-P7, Ta-V6, and Triticain-α, were able to hydrolyze the model substrate (α-gliadin-derived epitope) in the pH range of 3.6–7.5. Nevertheless, Triticain-α performs the most efficient hydrolysis of the peptide substrate under the conditions of the gastrointestinal tract, according to its kinetic characteristics. In the wheat gluten degradation experiment at pH 4.6 and 37 °C, both Ta-P7 and Triticain-α cleaved the mixture almost completely within 5 min. In addition, Triticain-α and Ta-P7 significantly reduced the levels of toxic peptides compared to both intact gluten and gluten treated with pepsin-trypsin digestion as tested by the Ridascreen Gliadin Kit. Conclusions: Novel wheat proteases under investigation possess the expected glutenase activity to varying degrees; however, Triticain-α is a primary candidate for potential use in the enzymatic therapy of gluten-related disorders. Full article
(This article belongs to the Special Issue Plant-Based Bioactive Products for Pharmaceutical Applications)
Show Figures

Graphical abstract

18 pages, 7811 KiB  
Article
Specificity Enhancement of Glutenase Bga1903 toward Celiac Disease-Eliciting Pro-Immunogenic Peptides via Active-Site Modification
by Yu-You Liu, Rui-Ling Ye and Menghsiao Meng
Int. J. Mol. Sci. 2024, 25(1), 505; https://doi.org/10.3390/ijms25010505 - 29 Dec 2023
Cited by 1 | Viewed by 1895
Abstract
Celiac disease is an autoimmune disease triggered by oral ingestion of gluten, with certain gluten residues resistant to digestive tract enzymes. Within the duodenum, the remaining peptides incite immunogenic responses, including the generation of autoantibodies and inflammation, leading to irreversible damage. Our previous [...] Read more.
Celiac disease is an autoimmune disease triggered by oral ingestion of gluten, with certain gluten residues resistant to digestive tract enzymes. Within the duodenum, the remaining peptides incite immunogenic responses, including the generation of autoantibodies and inflammation, leading to irreversible damage. Our previous exploration unveiled a glutenase called Bga1903 derived from the Gram-negative bacterium Burkholderia gladioli. The cleavage pattern of Bga1903 indicates its moderate ability to mitigate the toxicity of pro-immunogenic peptides. The crystal structure of Bga1903, along with the identification of subsites within its active site, was determined. To improve its substrate specificity toward prevalent motifs like QPQ within gluten peptides, the active site of Bga1903 underwent site-directed mutagenesis according to structural insights and enzymatic kinetics. Among the double-site mutants, E380Q/S387L exhibits an approximately 34-fold increase in its specificity constant toward the QPQ sequence, favoring glutamines at the P1 and P3 positions compared to the wild type. The increased specificity of E380Q/S387L not only enhances its ability to break down pro-immunogenic peptides but also positions this enzyme variant as a promising candidate for oral therapy for celiac disease. Full article
(This article belongs to the Special Issue Recent Advances in Gluten-Related Disorders)
Show Figures

Figure 1

14 pages, 2407 KiB  
Article
Fighting Celiac Disease: Improvement of pH Stability of Cathepsin L In Vitro by Computational Design
by Anton O. Chugunov, Elena A. Dvoryakova, Maria A. Dyuzheva, Tatyana R. Simonyan, Valeria F. Tereshchenkova, Irina Yu. Filippova, Roman G. Efremov and Elena N. Elpidina
Int. J. Mol. Sci. 2023, 24(15), 12369; https://doi.org/10.3390/ijms241512369 - 2 Aug 2023
Cited by 1 | Viewed by 1898
Abstract
Roughly 1% of the global population is susceptible to celiac disease (CD)—inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, [...] Read more.
Roughly 1% of the global population is susceptible to celiac disease (CD)—inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine. In previous research, we have established that the major digestive peptidase of an insect Tribolium castaneum—cathepsin L—hydrolyzes immunogenic prolamins after Gln residues but is unstable in the extremely acidic environment (pH 2–4) of the human stomach and cannot be used as a digestive aid. In this work, using molecular dynamics simulations, we discover the probable cause of the pH instability of cathepsin L—loss of the catalytically competent rotameric state of one of the active site residues, His 275. To “fix” the correct orientation of this residue, we designed a V277A mutant variant, which extends the range of stability of the peptidase in the acidic environment while retaining most of its activity. We suggest this protein as a lead glutenase for the development of oral medical preparation that fights CD and gluten intolerance in susceptible people. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

19 pages, 2361 KiB  
Article
Hydrolase Activities of Sourdough Microorganisms
by Ingrid Teixeira Akamine, Felipe R. P. Mansoldo, Verônica S. Cardoso, Edilma Paraguai de Souza Dias and Alane Beatriz Vermelho
Fermentation 2023, 9(8), 703; https://doi.org/10.3390/fermentation9080703 - 26 Jul 2023
Cited by 7 | Viewed by 3400
Abstract
Sourdough is renowned for improving bakery products’ nutritional and quality characteristics through the enzymes produced by its microbiota. Among the enzymatic framework present in sourdough fermentation, amylase, cellulase, and peptidase are responsible for many of the properties valued in sourdough products. Furthermore, there [...] Read more.
Sourdough is renowned for improving bakery products’ nutritional and quality characteristics through the enzymes produced by its microbiota. Among the enzymatic framework present in sourdough fermentation, amylase, cellulase, and peptidase are responsible for many of the properties valued in sourdough products. Furthermore, there is an increasing concern regarding the allergenic potential of gluten, which motivates the investigation of enzymatic gluten hydrolysis. This study aimed to select probiotics, isolate and identify microorganisms from sourdough, and assess their amylase, cellulase, and peptidase profiles. Additionally, a rapid screening method was developed for gluten and wheat flour hydrolysis, and gluten zymography and enzymography were performed. As a result, 18 microorganisms were isolated from sourdough and identified. The probiotic Bacillus licheniformis LMG-S 28935, and three microorganisms isolated from sourdough, the Limosilactobacillus fermentum, Pediococcus pentosaceus, and Saccharomyces cerevisiae, completed the profile of analyzed hydrolases and presented the capacity to hydrolyze gluten. These findings contribute to a better understanding of sourdough microorganisms’ hydrolase activities in the bakery science and technology field. In addition, an efficient, fast, and economical method for screening extracellular glutenase, produced by microorganisms, was applied. To our knowledge, it was the first time that amylase, cellulase, and peptidase activities were assessed from sourdough microorganisms. Full article
(This article belongs to the Special Issue Bacillus Species and Enzymes)
Show Figures

Figure 1

19 pages, 379 KiB  
Review
Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses
by Sandip K. Wagh, Karen M. Lammers, Manohar V. Padul, Alfonso Rodriguez-Herrera and Veronica I. Dodero
Int. J. Mol. Sci. 2022, 23(19), 11748; https://doi.org/10.3390/ijms231911748 - 4 Oct 2022
Cited by 16 | Viewed by 8398
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable [...] Read more.
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD. Full article
(This article belongs to the Special Issue Pro-inflammatory Nutrients: Focus on Gliadin and Celiac Disease 2.0)
Show Figures

Graphical abstract

14 pages, 28548 KiB  
Article
Characterization of Bacillus cereus AFA01 Capable of Degrading Gluten and Celiac-Immunotoxic Peptides
by Jun Lu, Yong Wu, Juanli Yuan, Jin Yuan, Zhongliang Wang, Jinyan Gao and Hongbing Chen
Foods 2021, 10(8), 1725; https://doi.org/10.3390/foods10081725 - 26 Jul 2021
Cited by 11 | Viewed by 3290
Abstract
Wheat gluten elicits a pro-inflammatory immune response in patients with celiac disease. The only effective therapy for this disease is a life-long gluten-free diet. Gluten detoxification using glutenases is an alternative approach. A key step is to identify useful glutenases or glutenase-producing organisms. [...] Read more.
Wheat gluten elicits a pro-inflammatory immune response in patients with celiac disease. The only effective therapy for this disease is a life-long gluten-free diet. Gluten detoxification using glutenases is an alternative approach. A key step is to identify useful glutenases or glutenase-producing organisms. This study investigated the gluten-degrading activity of three Bacillus cereus strains using gluten, gliadin, and highly immunotoxic 33- and 13-mer gliadin peptides. The strain AFA01 was grown on four culture media for obtaining the optimum gluten degradation. Complete genome sequencing was performed to predict genes of enzymes with potential glutenase activity. The results showed that the three B. cereus strains can hydrolyze gluten, immunotoxic peptides, and gliadin even at pH 2.0. AFA01 was the most effective strain in degrading the 33-mer peptide into fractions containing less than nine amino acid residues, the minimum peptide to induce celiac responses. Moreover, growth on starch casein broth promoted AFA01 to degrade immunotoxic peptides. PepP, PepX, and PepI may be responsible for the hydrolysis of immunotoxic peptides. On the basis of the potential of gluten degradation, AFA01 or its derived enzymes may be the best option for further research regarding the elimination of gluten toxicity. Full article
Show Figures

Graphical abstract

11 pages, 1556 KiB  
Article
The Human Digestive Tract Is Capable of Degrading Gluten from Birth
by Silvia Fernández-Pérez, Jenifer Pérez-Andrés, Sergio Gutiérrez, Nicolás Navasa, Honorina Martínez-Blanco, Miguel Ángel Ferrero, Santiago Vivas, Luis Vaquero, Cristina Iglesias, Javier Casqueiro and Leandro B. Rodríguez-Aparicio
Int. J. Mol. Sci. 2020, 21(20), 7696; https://doi.org/10.3390/ijms21207696 - 18 Oct 2020
Cited by 4 | Viewed by 3431
Abstract
The human gastrointestinal system has the capacity to metabolize dietary gluten. The capacity to degrade gliadin-derived peptide is present in humans from birth and increases during the first stages of life (up to 6–12 months of age). Fecal samples from 151 new-born and [...] Read more.
The human gastrointestinal system has the capacity to metabolize dietary gluten. The capacity to degrade gliadin-derived peptide is present in humans from birth and increases during the first stages of life (up to 6–12 months of age). Fecal samples from 151 new-born and adult non-celiac disease (NCD) volunteers were collected, and glutenase and glianidase activities were evaluated. The capacity of total fecal proteins to metabolize 33-mer, 19-mer, and 13-mer gliadin peptides was also evaluated by high-performance liquid chromatography (HPLC). Feces from new-borns (meconium) showed glutenase and gliadinase activities, and peptidase activity against all three gliadin peptides. Maximal gluten degradative activity was observed in fecal samples from the youngest volunteers (0–12 months old). After the age of nine months, the gluten digestive capacity of gastrointestinal tract decreases and, from ±8 years old, individuals lose the ability to completely degrade toxic peptides. The gastrointestinal proteases involved in gluten digestion: elastase 2A, elastase 3B, and carboxipeptidase A1 are present from earlier stages of life. The human digestive tract contains the proteins capable of metabolizing gluten from birth, even before starting gluten intake. Humans are born with the ability to digest gluten and to completely degrade the potentially toxic gliadin-derived peptides (33-, 19-, and 13-mer). Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1514 KiB  
Review
Gluten Degrading Enzymes for Treatment of Celiac Disease
by Guoxian Wei, Eva J. Helmerhorst, Ghassan Darwish, Gabriel Blumenkranz and Detlef Schuppan
Nutrients 2020, 12(7), 2095; https://doi.org/10.3390/nu12072095 - 15 Jul 2020
Cited by 73 | Viewed by 19407
Abstract
Celiac disease (CeD) affects about 1% of most world populations. It presents a wide spectrum of clinical manifestations, ranging from minor symptoms to mild or severe malabsorption, and it may be associated with a wide variety of autoimmune diseases. CeD is triggered and [...] Read more.
Celiac disease (CeD) affects about 1% of most world populations. It presents a wide spectrum of clinical manifestations, ranging from minor symptoms to mild or severe malabsorption, and it may be associated with a wide variety of autoimmune diseases. CeD is triggered and maintained by the ingestion of gluten proteins from wheat and related grains. Gluten peptides that resist gastrointestinal digestion are antigenically presented to gluten specific T cells in the intestinal mucosa via HLA-DQ2 or HLA-DQ8, the necessary genetic predisposition for CeD. To date, there is no effective or approved treatment for CeD other than a strict adherence to a gluten-free diet, which is difficult to maintain in professional or social environments. Moreover, many patients with CeD have active disease despite diet adherence due to a high sensitivity to traces of gluten. Therefore, safe pharmacological treatments that complement the gluten-free diet are urgently needed. Oral enzyme therapy, employing gluten-degrading enzymes, is a promising therapeutic approach. A prerequisite is that such enzymes are active under gastro-duodenal conditions, quickly neutralize the T cell activating gluten peptides and are safe for human consumption. Several enzymes including prolyl endopeptidases, cysteine proteases and subtilisins can cleave the human digestion-resistant gluten peptides in vitro and in vivo. Examples are several prolyl endopeptidases from bacterial sources, subtilisins from Rothia bacteria that are natural oral colonizers and synthetic enzymes with optimized gluten-degrading activities. Without exception, these enzymes must cleave the otherwise unusual glutamine and proline-rich domains characteristic of antigenic gluten peptides. Moreover, they should be stable and active in both the acidic environment of the stomach and under near neutral pH in the duodenum. This review focuses on those enzymes that have been characterized and evaluated for the treatment of CeD, discussing their origin and activities, their clinical evaluation and challenges for therapeutic application. Novel developments include strategies like enteric coating and genetic modification to increase enzyme stability in the digestive tract. Full article
(This article belongs to the Special Issue Grain Intake and Human Health)
Show Figures

Figure 1

13 pages, 4065 KiB  
Article
Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques
by Karol Sestak, Hazel Thwin, Jason Dufour, David X. Liu, Xavier Alvarez, David Laine, Adam Clarke, Anthony Doyle, Pyone P. Aye, James Blanchard and Charles P. Moehs
Nutrients 2016, 8(7), 401; https://doi.org/10.3390/nu8070401 - 28 Jun 2016
Cited by 10 | Viewed by 7055
Abstract
Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and [...] Read more.
Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement—but not remission—of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm—by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea—all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches. Full article
Show Figures

Figure 1

Back to TopTop