Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = glutathione S-transferase alpha 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3487 KiB  
Article
Effect of Synthetic Peptides Identified in the Bullfrog Skin on Inflammation and Oxidative Stress Control: An In Vitro Analysis
by Silvânia Mól Pelinsari, Patricia da Silva Mattosinhos, Manoela Maciel dos Santos Dias, Rosinéa Aparecida de Paula, Romulo Dias Novaes, Emerson Ferreira Vilela, Giuseppe Valacchi and Reggiani Vilela Gonçalves
Molecules 2025, 30(10), 2223; https://doi.org/10.3390/molecules30102223 - 20 May 2025
Cited by 1 | Viewed by 686
Abstract
(1) Background: This study evaluated the potential of a synthetic peptide (SGHPGAMGPVGPR), identified in the bullfrog (Lithobates catesbeianus) skin, in regulating inflammation and oxidative stress using RAW 264.7 macrophages; (2) Methods: Molecular docking determined its optimal interaction with cyclooxygenase (COX-2) an [...] Read more.
(1) Background: This study evaluated the potential of a synthetic peptide (SGHPGAMGPVGPR), identified in the bullfrog (Lithobates catesbeianus) skin, in regulating inflammation and oxidative stress using RAW 264.7 macrophages; (2) Methods: Molecular docking determined its optimal interaction with cyclooxygenase (COX-2) an enzyme related to the production of prostaglandins, which play a crucial essential role in the inflammatory response. The peptide was commercially synthesized company, and its antioxidant capacity was assessed using DPPH and FRAP assays. Cell viability, nitric oxide (NO) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione s-transferase (GST) activity, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) gene expression and cell production were additionally quantified. (3) Results: The peptide SGHPGAMGPVGPR, designated as P1, exhibited remarkable free radical scavenging capacity, antioxidant, and anti-inflammatory activities. No significant difference was observed in SOD and CAT activity in P1-treated macrophages, likely due to downregulation in the Nrf2/HO-1 pathway. Reduced GST activity was observed in these cells, which was potentially associated with TNF-α downregulation; (4) Conclusions: These findings suggest that P1 modulates the antioxidant response through pathways independent of classical antioxidant enzymes. Furthermore, decreased IL-6, COX2, and nuclear factor kappa B (NF-κB) expression was observed, indicating the involvement of a key pathway in the regulation of the OxInflammation process. Full article
(This article belongs to the Special Issue Exploring the Therapeutic Potential of Natural Antioxidants)
Show Figures

Graphical abstract

22 pages, 1009 KiB  
Article
Tetraselmis chuii Supplementation Increases Skeletal Muscle Nuclear Factor Erythroid 2-Related Factor 2 and Antioxidant Enzyme Gene Expression, and Peak Oxygen Uptake in Healthy Adults: A Randomised Crossover Trial
by Stuart P. Cocksedge, Carlos Infante, Sonia Torres, Carmen Lama, Lalia Mantecón, Manuel Manchado, Jarred P. Acton, Nehal S. Alsharif, Tom Clifford, Alex J. Wadley, Richard A. Ferguson, Nicolette C. Bishop, Neil R. W. Martin and Stephen J. Bailey
Antioxidants 2025, 14(4), 435; https://doi.org/10.3390/antiox14040435 - 3 Apr 2025
Cited by 1 | Viewed by 772
Abstract
Superoxide dismutase-rich Tetraselmis chuii (T. chuii) is derived from marine microalgae and has been reported to increase gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and related antioxidant enzymes in myoblast tissue culture models. Human research has indicated that [...] Read more.
Superoxide dismutase-rich Tetraselmis chuii (T. chuii) is derived from marine microalgae and has been reported to increase gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and related antioxidant enzymes in myoblast tissue culture models. Human research has indicated that T. chuii supplementation can improve recovery from exercise-induced muscle damage, but its effects on endurance exercise performance and the molecular bases that may underlie any ergogenic effects are unclear. Healthy participants underwent 14 days of supplementation with 25 mg·day−1T. chuii and placebo in a randomized, double-blind, crossover experimental design. Prior to and following each supplementation period, participants completed a high-intensity cycling test to assess time to exhaustion and peak oxygen uptake (V˙O2peak). A resting skeletal muscle biopsy was collected after both supplementation periods to assess gene expression changes. Compared to pre-supplementation values, V˙O2peak was increased following T. chuii (p = 0.013) but not placebo (p = 0.66). Fold-change in glutathione peroxidase 7 [(GPX7) 1.26 ± 1.37], glutathione-disulfide reductase [(GSR) 1.22 ± 1.41], glutathione S-transferase Mu 3 [(GSTM3) 1.34 ± 1.49], peroxiredoxin 6 [(PRDX6) 1.36 ± 1.57], extracellular signal-regulated kinase 3 [(ERK3) 1.92 ± 2.42], NRF2 (1.62 ± 2.16), p38 alpha [(p38a) 1.33 ± 1.58] and sirtuin 1 [(SIRT1) 1.73 ± 2.25] gene expression were higher after T. chuii compared to placebo supplementation (p < 0.05). Short-term T. chuii supplementation increased V˙O2peak and skeletal muscle gene expression of key enzymatic antioxidants (GPX7, GSR, GSTM3, and PRDX6), signalling kinases (ERK3 and p38a), post-translational regulators (SIRT1), and transcription factors (NRF2) that may protect against cellular stress insults. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

15 pages, 3208 KiB  
Article
Safety Profile of Solanum tuberosum-Derived Exosomes: Evidence from In Vitro Experiments and Human Skin Tests
by Yeji Lee, Radwa Wahid Mohamed and Sanghwa Yang
Pharmaceuticals 2025, 18(4), 458; https://doi.org/10.3390/ph18040458 - 24 Mar 2025
Viewed by 1536
Abstract
Background/Objectives: Potato (Solanum tuberosum)-derived exosomes (SDEs) are extracellular vesicles (66 nm in diameter) with therapeutic potential. SDEs suppress matrix metallopeptidases (MMPs) 1, 2, and 9, tumor necrosis factor (TNF), and interleukin 6 (IL6), while exhibiting [...] Read more.
Background/Objectives: Potato (Solanum tuberosum)-derived exosomes (SDEs) are extracellular vesicles (66 nm in diameter) with therapeutic potential. SDEs suppress matrix metallopeptidases (MMPs) 1, 2, and 9, tumor necrosis factor (TNF), and interleukin 6 (IL6), while exhibiting radical-scavenging activity against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro and mitigating hydrogen peroxide (H2O2)-induced oxidative stress in HaCaT cells. SDEs upregulate the antioxidant gene glutathione S-transferase alpha 4 (GSTA4), prevent UVB damage, and regenerate photodamaged HaCaT cells. This study evaluates SDEs’ safety and skin-enhancing properties to improve their beauty-related and medical applications. Methods: The SDEs purified via ultracentrifugation were tested for their cytotoxic effects on HaCaT cell viability in scratch wound healing assays and for skin barrier gene modulation in HaCaT keratinocytes and Detroit 551 fibroblasts. A reverse transcription–polymerase chain reaction (RT-PCR) was used to analyze the changes in skin barrier gene expression following the SDE treatment. Cosmetic prototypes containing SDEs were assessed for skin irritation, cooling effects, periorbital wrinkle reduction, elasticity, and whitening properties. Results: The cytotoxicity and human topical tests confirmed the safety of SDE application. The SDEs accelerated wound closure, elevated the skin barrier gene expression level, and improved the clinical parameters, including wrinkle reduction, elasticity enhancement, and whitening. No irritation or side effects were observed. Conclusions: This study identified natural, edible potato-derived exosomes (SDEs) as highly safe agents that significantly enhance wound healing and promote skin barrier-related gene expression. Their multifunctional anti-aging efficacy—reducing wrinkles, enhancing elasticity, and promoting whitening without irritation—positions them as promising candidates for cosmetic and dermatological innovations. These findings warrant further exploration of SDEs for therapeutic applications, including inflammatory skin disorders and drug delivery systems. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

10 pages, 2895 KiB  
Case Report
Management of Busulfan-Induced Lung Injury in Pediatric Patients with High-Risk Neuroblastoma
by Sveva Castelli, Anne Thorwarth, Claudia van Schewick, Anke Wendt, Kathy Astrahantseff, Annabell Szymansky, Marco Lodrini, Simon Veldhoen, Alexander Gratopp, Marcus A. Mall, Angelika Eggert and Hedwig E. Deubzer
J. Clin. Med. 2024, 13(19), 5995; https://doi.org/10.3390/jcm13195995 - 8 Oct 2024
Cited by 2 | Viewed by 2205
Abstract
Background/Objectives: Integrating the cytotoxic drug busulfan into a high-dose chemotherapy regimen prior to autologous hematopoietic stem cell rescue in patients with high-risk neuroblastoma has improved the survival of children battling this deadly disease. Busulfan-induced toxicities can, however, be severe. Here, we describe [...] Read more.
Background/Objectives: Integrating the cytotoxic drug busulfan into a high-dose chemotherapy regimen prior to autologous hematopoietic stem cell rescue in patients with high-risk neuroblastoma has improved the survival of children battling this deadly disease. Busulfan-induced toxicities can, however, be severe. Here, we describe the diagnosis and successful treatment of acute pulmonary injury by total-body-weight-adjusted busulfan therapy in two children with high-risk neuroblastoma. Case series: Patient 1 developed life-threatening biphasic acute respiratory failure on days +60 and +100 after busulfan therapy, requiring intubation and invasive mechanical ventilation. Despite intensive anti-inflammatory and immunomodulatory therapy, including systemic corticosteroids, topical inhalation regimens, azithromycin, nintedanib and extracorporal photopheresis, patient 1 required extended intensive care measures and non-invasive respiratory support for a total of 20 months. High-resolution computed tomography showed diffuse intra-alveolar and interstitial patterns. Patient 2 developed partial respiratory failure with insufficient oxygen saturation and dyspnea on day +52 after busulfan therapy. Symptoms were resolved after 6 months of systemic corticosteroids, topical inhalation regimens and azithromycin. High-resolution computed tomography showed atypical pneumonic changes with ground-glass opacities. While both patients fully recovered without evidence of pulmonary fibrosis, cancer therapy had to be paused and then modified until full recovery from busulfan-induced lung injury. Conclusions: Busulfan-induced lung injury requires prompt diagnosis and intervention. Symptoms and signs are nonspecific and difficult to differentiate from other causes. Therapeutic busulfan drug level monitoring and the identification of patients at risk for drug overdosing through promoter polymorphisms in the glutathione S-transferase alpha 1 gene encoding the main enzyme in busulfan metabolism are expected to reduce the risk of busulfan-induced toxicities. Full article
(This article belongs to the Special Issue High-Risk Neuroblastoma: New Clinical Insights and Challenges)
Show Figures

Figure 1

19 pages, 5144 KiB  
Article
Upregulation of Hepatic Glutathione S-Transferase Alpha 1 Ameliorates Metabolic Dysfunction-Associated Steatosis by Degrading Fatty Acid Binding Protein 1
by Jing Jiang, Hu Li, Mei Tang, Lei Lei, Hong-Ying Li, Biao Dong, Jian-Rui Li, Xue-Kai Wang, Han Sun, Jia-Yu Li, Jing-Chen Xu, Yue Gong, Jian-Dong Jiang and Zong-Gen Peng
Int. J. Mol. Sci. 2024, 25(10), 5086; https://doi.org/10.3390/ijms25105086 - 7 May 2024
Cited by 4 | Viewed by 2296
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD. Full article
Show Figures

Figure 1

13 pages, 3352 KiB  
Article
Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway
by Min Zhu, En-Qing Lu, Yong-Xia Fang, Guo-Wei Liu, Yu-Jie Cheng, Ke Huang, E Xu, Yi-Yu Zhang and Xiao-Jing Wang
Molecules 2024, 29(4), 855; https://doi.org/10.3390/molecules29040855 - 14 Feb 2024
Cited by 2 | Viewed by 1816
Abstract
Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine [...] Read more.
Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine intestinal epithelial cells (IPEC-J2 cells) and the underlying mechanism. The results showed that PIC promotes IPEC-J2 cell proliferation in a dose-dependent manner. Moreover, it not only significantly relieved DON-induced decreases in cell viability and proliferation but also reduced intracellular reactive oxygen species (ROS) production. Further studies demonstrated that PIC alleviated DON-induced oxidative stress damage by increasing the protein expression levels of the antioxidant factors NAD(P)H quinone oxidoreductase-1 (NQO1) and glutamate–cysteine ligase modifier subunit (GCLM), and the mRNA expression of catalase (CAT), Superoxide Dismutase 1 (SOD1), peroxiredoxin 3 (PRX3), and glutathione S-transferase alpha 4 (GSTα4). In addition, PIC inhibited the activation of the nuclear factor-B (NF-κB) pathway, downregulated the mRNA expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) to attenuate DON-induced inflammatory responses, and further mitigated DON-induced cellular intestinal barrier injury by regulating the protein expression of Occludin. These findings indicated that PIC had a significant protective effect against DON-induced damage. This study provides more understanding to support PIC as a feed additive for pig production. Full article
Show Figures

Figure 1

16 pages, 2476 KiB  
Article
The Impact of UFP-512 in Mice with Osteoarthritis Pain: The Role of Hydrogen Sulfide
by Gerard Batallé, Xue Bai, Gianfranco Balboni and Olga Pol
Antioxidants 2023, 12(12), 2085; https://doi.org/10.3390/antiox12122085 - 7 Dec 2023
Cited by 3 | Viewed by 2043
Abstract
The pain-relieving properties of opioids in inflammatory and neuropathic pain are heightened by hydrogen sulfide (H2S). However, whether allodynia and functional and/or emotional impairments related to osteoarthritis (OA) could be reduced by activating δ-opioid receptors (DOR) and the plausible influence of [...] Read more.
The pain-relieving properties of opioids in inflammatory and neuropathic pain are heightened by hydrogen sulfide (H2S). However, whether allodynia and functional and/or emotional impairments related to osteoarthritis (OA) could be reduced by activating δ-opioid receptors (DOR) and the plausible influence of H2S on these actions has not been completely established. In female C57BL/6J mice with OA pain generated via monosodium acetate (MIA), we analyze: (i) the effects of UFP-512 (a DOR agonist), given alone and co-administered with two H2S donors, on the symptoms of allodynia, loss of grip strength (GS), and anxiodepressive-like comportment; (ii) the reversion of UFP-512 actions with naltrindole (a DOR antagonist), and (iii) the impact of UFP-512 on the expression of phosphorylated NF-kB inhibitor alpha (p-IKBα) and the antioxidant enzymes superoxide dismutase 1 (SOD-1) and glutathione sulfur transferase M1 (GSTM1); and the effects of H2S on DOR levels in the dorsal root ganglia (DRG), amygdala (AMG), and hippocampus (HIP) of MIA-injected animals. Results showed that systemic and local administration of UFP-512 dose-dependently diminished the allodynia and loss of GS caused by MIA, whose effects were potentiated by H2S and reversed by naltrindole. UFP-512 also inhibited anxiodepressive-like behaviors, normalized the overexpression of p-IKBα in DRG and HIP, and enhanced the expression of SOD-1 and GSTM1 in DRG, HIP, and/or AMG. Moreover, the increased expression of DOR triggered by H2S might support the improved analgesic actions of UFP-512 co-administered with H2S donors. This study proposes the use of DOR agonists, alone or combined with H2S donors, as a new treatment for OA pain. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

14 pages, 1731 KiB  
Article
Dietary Supplementation with Mono-Lactate Glyceride Enhances Intestinal Function of Weaned Piglets
by Hanbo Li, Yanyan Zhang, Jiaqian Xie, Chao Wang, Dan Yi, Tao Wu, Lei Wang, Di Zhao and Yongqing Hou
Animals 2023, 13(8), 1303; https://doi.org/10.3390/ani13081303 - 11 Apr 2023
Cited by 3 | Viewed by 2202
Abstract
Mono-lactate glyceride (LG) is a short-chain fatty acid ester. It has been shown that short-chain fatty acid esters play an important role in maintaining intestinal structure and function. The aim of this study is to investigate the effects of mono-lactate glyceride on growth [...] Read more.
Mono-lactate glyceride (LG) is a short-chain fatty acid ester. It has been shown that short-chain fatty acid esters play an important role in maintaining intestinal structure and function. The aim of this study is to investigate the effects of mono-lactate glyceride on growth performance and intestinal morphology and function in weaned piglets. Sixteen 21-day-old weaned piglets of similar weight were distributed arbitrarily to two treatments: The control group (basal diet) and the LG group (basal diet + 0.6% mono-lactate glyceride). The experiment lasted for 21 days. On day 21 of the trial, piglets were weighed, and blood and intestinal samples were collected for further analysis. Results showed that dietary supplementation with 0.6% mono-lactate glyceride decreased (p < 0.05) the diarrhea rate and the contents of malondialdehyde and hydrogen peroxide in the ileum and jejunum and increased (p < 0.05) the expression of intestinal tight junction protein (Occludin) and the activities of superoxide dismutase and catalase in the ileum and colon. In addition, mono-lactate glyceride supplementation could enhance intestinal mucosal growth by increasing (p < 0.05) the mRNA levels of extracellular regulated protein kinases, promote intestinal mucosal water and nutrient transport and lipid metabolism by increasing (p < 0.05) the mRNA levels of b0,+ amino acid transporter, aquaporin 3, aquaporin 10, gap junction protein alpha 1, intestinal fatty acid-binding protein, and lipoprotein lipase, enhance antiviral and immune function by increasing (p < 0.05) the mRNA levels of nuclear factor kappa-B, interferon-β, mucovirus resistance protein II, 2’-5’-oligoadenylate synthetase-like, interferon-γ, C-C motif chemokine ligand 2, and toll-like receptor 4, and enhance antioxidant capacity by increasing (p < 0.05) the mRNA levels of NF-E2-related factor 2 and glutathione S-transferase omega 2 and decreasing (p < 0.05) the mRNA level of NADPH oxidase 2. These results suggested that dietary supplementation with mono-lactate glyceride could decrease the diarrhea rate by improving intestinal antioxidant capacity, intestinal mucosal barrier, intestinal immune defense function, and intestinal mucosal water and nutrient transport. Collectively, dietary supplementation with 0.6% mono-lactate glyceride improved the intestinal function of weaned piglets. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

16 pages, 1846 KiB  
Article
The Effect of Carnosine on UVA-Induced Changes in Intracellular Signaling of Human Skin Fibroblast Spheroids
by Gilda Aiello, Francesca Rescigno, Marisa Meloni, Beatrice Zoanni, Giancarlo Aldini, Marina Carini and Alfonsina D’Amato
Antioxidants 2023, 12(2), 300; https://doi.org/10.3390/antiox12020300 - 28 Jan 2023
Cited by 4 | Viewed by 3384
Abstract
Dermis fibroblasts are very sensitive to penetrating UVA radiation and induce photo-damage. To protect skin cells against this environmental damage, there is an urgent need for effective compounds, specifically targeting UVA-induced mitochondrial injury. This study aimed to analyze the effect of carnosine on [...] Read more.
Dermis fibroblasts are very sensitive to penetrating UVA radiation and induce photo-damage. To protect skin cells against this environmental damage, there is an urgent need for effective compounds, specifically targeting UVA-induced mitochondrial injury. This study aimed to analyze the effect of carnosine on the proteome of UVA-irradiated human skin fibroblast, cultured in a three-dimensional (3D) biological system recapitulating dermal compartment as a test system to investigate the altered cellular pathways after 48 h and 7 days of culture with or without carnosine treatment. The obtained results indicate that UVA dysregulates Oxidative Phosphorylation, the Fibrosis Signaling Pathway, Glycolysis I and Nrf2-mediated Oxidative Stress Response. Carnosine exercises provide a protective function against the harmful effects of UVA radiation by activating the Nrf2 pathway with the upregulations of some ROS-detoxifying enzymes such as the glutathione S-transferase (GST) protein family. Additionally, carnosine regulates the activation of the Epithelial Adherens Junction and Wound Healing Signaling Pathway by mediating the activation of structural proteins such as vinculin and zyxin as well as fibronectin 1 and collagen type XVIII alpha 1 chain against UVA-induced changes. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Cosmetics)
Show Figures

Figure 1

15 pages, 3169 KiB  
Article
Differentially Expressed Genes and Signalling Pathways Regulated by High Selenium Involved in Antioxidant and Immune Functions of Goats Based on Transcriptome Sequencing
by Xu Wang, Chao Ban, Jia-Xuan Li, Qing-Yuan Luo, Ji-Xiao Qin, Yi-Qing Xu, Qi Lu and Xing-Zhou Tian
Int. J. Mol. Sci. 2023, 24(2), 1124; https://doi.org/10.3390/ijms24021124 - 6 Jan 2023
Cited by 4 | Viewed by 2727
Abstract
The objective of this study is to observe the effect of high selenium on the antioxidant and immune functions of growing goats based on transcriptome sequencing. Eighteen goats were randomly divided into three groups: (1) the control (CON) group was fed a basal [...] Read more.
The objective of this study is to observe the effect of high selenium on the antioxidant and immune functions of growing goats based on transcriptome sequencing. Eighteen goats were randomly divided into three groups: (1) the control (CON) group was fed a basal diet, and (2) the treatment 1 group (LS) and treatment 2 group (HS) were fed a basal diet with 2.4 and 4.8 mg/kg selenium-yeast (SY), respectively. The results indicate that HS treatment significantly (p < 0.05) increased the apparent digestibility of either extract and significantly increased (p < 0.05) total antioxidant capacity, whereas it significantly (p < 0.05) decreased plasma aspartate aminotransferase and malondialdehyde relative to the control group. The LS treatment had significantly (p < 0.05) increased glutathione S-transferase and catalase compared to CON. A total of 532 differentially expressed genes (DEGs) between the CON and HS were obtained using transcriptome sequencing. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated (p < 0.05) DEGs mainly related to vascular smooth muscle contraction, alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, the VEGF signalling pathway, and proteoglycans in cancer; downregulated (p < 0.05) DEGs mainly related to the NOD-like receptor signalling pathway, influenza A, cytokine-cytokine receptor interaction, haematopoietic cell lineage, and African trypanosomiasis. Ontology analyses of the top genes show that the identified DEGs are mainly involved in the regulation of granulocyte macrophage colony-stimulating factor production for biological processes, the external side of the plasma membrane for cellular components, and carbohydrate derivative binding for molecular functions. Seven genes are considered potential candidate genes for regulating antioxidant activity, including selenoprotein W, 1, glutathione peroxidase 1, glutathione S-transferase A1, tumour necrosis factor, tumour necrosis factor superfamily member 10, tumour necrosis factor superfamily member 8, and tumour necrosis factor superfamily member 13b. The experimental observations indicate that dietary supplementation with 4.8 mg/kg SY can enhance antioxidant and immune functions by improving muscle immunity, reducing the concentrations of inflammatory molecules, and modulating antioxidant and inflammatory signalling pathways in growing goats. Full article
Show Figures

Figure 1

24 pages, 4040 KiB  
Article
The Shared Proteome of the Apomictic Fern Dryopteris affinis ssp. affinis and Its Sexual Relative Dryopteris oreades
by Sara Ojosnegros, José Manuel Alvarez, Jonas Grossmann, Valeria Gagliardini, Luis G. Quintanilla, Ueli Grossniklaus and Helena Fernández
Int. J. Mol. Sci. 2022, 23(22), 14027; https://doi.org/10.3390/ijms232214027 - 14 Nov 2022
Cited by 3 | Viewed by 2683
Abstract
Ferns are a diverse evolutionary lineage, sister to the seed plants, which is of great ecological importance and has a high biotechnological potential. Fern gametophytes represent one of the simplest autotrophic, multicellular plant forms and show several experimental advantages, including a simple and [...] Read more.
Ferns are a diverse evolutionary lineage, sister to the seed plants, which is of great ecological importance and has a high biotechnological potential. Fern gametophytes represent one of the simplest autotrophic, multicellular plant forms and show several experimental advantages, including a simple and space-efficient in vitro culture system. However, the molecular basis of fern growth and development has hardly been studied. Here, we report on a proteomic study that identified 417 proteins shared by gametophytes of the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. Most proteins are predicted to localize to the cytoplasm, the chloroplast, or the nucleus, and are linked to enzymatic, binding, and structural activities. A subset of 145 proteins are involved in growth, reproduction, phytohormone signaling and biosynthesis, and gene expression, including homologs of SHEPHERD (SHD), HEAT SHOCK PROTEIN 90-5 (CR88), TRP4, BOBBER 1 (BOB1), FLAVONE 3’-O-METHYLTRANSFERASE 1 (OMT1), ZEAXANTHIN EPOXIDASE (ABA1), GLUTAMATE DESCARBOXYLASE 1 (GAD), and dsRNA-BINDING DOMAIN-LIKE SUPERFAMILY PROTEIN (HLY1). Nearly 25% of the annotated proteins are associated with responses to biotic and abiotic stimuli. As for biotic stress, the proteins PROTEIN SGT1 HOMOLOG B (SGT1B), SUPPRESSOR OF SA INSENSITIVE2 (SSI2), PHOSPHOLIPASE D ALPHA 1 (PLDALPHA1), SERINE/THREONINE-PROTEIN KINASE SRK2E (OST1), ACYL CARRIER PROTEIN 4 (ACP4), and NONHOST RESISTANCE TO P. S. PHASEOLICOLA1 (GLPK) are worth mentioning. Regarding abiotic stimuli, we found proteins associated with oxidative stress: SUPEROXIDE DISMUTASE[CU-ZN] 1 (CSD1), and GLUTATHIONE S-TRANSFERASE U19 (GSTU19), light intensity SERINE HYDROXYMETHYLTRANSFERASE 1 (SHM1) and UBIQUITIN-CONJUGATING ENZYME E2 35 (UBC35), salt and heavy metal stress included MITOCHONDRIAL PHOSPHATE CARRIER PROTEIN 3 (PHT3;1), as well as drought and thermotolerance: LEA7, DEAD-BOX ATP-DEPENDENT RNA HELICASE 38 (LOS4), and abundant heat-shock proteins and other chaperones. In addition, we identified interactomes using the STRING platform, revealing protein–protein associations obtained from co-expression, co-occurrence, text mining, homology, databases, and experimental datasets. By focusing on ferns, this proteomic study increases our knowledge on plant development and evolution, and may inspire future applications in crop species. Full article
(This article belongs to the Special Issue Molecular Approach to Fern Development)
Show Figures

Figure 1

20 pages, 1435 KiB  
Article
The Effects of Matcha and Decaffeinated Matcha on Learning, Memory and Proteomics of Hippocampus in Senescence-Accelerated (SAMP8) Mice
by Kiharu Igarashi, Makiko Takagi and Yoichi Fukushima
Nutrients 2022, 14(6), 1197; https://doi.org/10.3390/nu14061197 - 11 Mar 2022
Cited by 9 | Viewed by 4374
Abstract
Although the benefits of the consumption of green tea and its components, including catechins and theanine, regarding aging, memory impairment and age-related cognitive decline have been investigated in senescence-accelerated prone mice (SAMP8), studies that simultaneously measured the kinds of proteins that vary in [...] Read more.
Although the benefits of the consumption of green tea and its components, including catechins and theanine, regarding aging, memory impairment and age-related cognitive decline have been investigated in senescence-accelerated prone mice (SAMP8), studies that simultaneously measured the kinds of proteins that vary in their expression due to the administration of green tea and its extracts were not found. In this study, the effect of dietary and decaffeinated matcha on protein expression in the hippocampus of SAMP 8 was examined comprehensively, mainly using proteomics. Although improvements in memory and the hair appearance of the back coat were limited upon administering the samples, the following regulations were observed in some of the proteins involved in neuron degeneration, Parkinson’s and Alzheimer’s diseases, synapse transmission and nerve cell plasticity, antioxidation, glutamate transport and metabolism, GABA (γ-amino butyric acid) formation and transport and excitatory amino acid transporters: proteins downregulated upon sample intake (p < 0.05): brain acid-soluble protein 1, microtubule-associated protein tau, synapsin-2, sodium- and chloride-dependent GABA transporter; proteins that tended to decrease upon sample intake (0.05 < p < 0.10): Parkinson’s disease (autosomal recessive and early-onset) 7 and synapsin-1; proteins upregulated upon sample intake (p > 0.95): glutathione S-transferase Mu 1, tubulin alpha-1A chain, dynamin-2, calcium/calmodulin-dependent protein kinase type II subunit gamma and tyrosine 3-monooxygenase/tyrosine 5-monooxygenase activation protein epsilon polypeptide; proteins that tended to increase upon sample intake (0.95 > p > 0.90): glutathione S-transferase Mu7 and soluble carrier family 1 (glial high-affinity glutamate transporter); proteins that tended to decrease: sodium- and chloride-dependent GABA transporter 3. These results indicate that matcha and decaffeinated matcha could reduce aging and cognitive impairment by regulating the expression of these proteins. Furthermore, these proteins could be used as markers for the evaluation of food and its available components for reducing aging and cognitive impairment. Full article
(This article belongs to the Special Issue Polyphenols and Polyphenol-Rich Foods in Neurodegenerative Disorders)
Show Figures

Figure 1

20 pages, 3676 KiB  
Article
L-Plastin Phosphorylation: Possible Regulation by a TNFR1 Signaling Cascade in Osteoclasts
by Meenakshi A. Chellaiah
Cells 2021, 10(9), 2432; https://doi.org/10.3390/cells10092432 - 15 Sep 2021
Cited by 5 | Viewed by 3534
Abstract
Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the [...] Read more.
Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvβ3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss. Full article
(This article belongs to the Special Issue Cellular Mechanisms of Bone Regeneration)
Show Figures

Figure 1

13 pages, 6441 KiB  
Article
Effects of Dietary Supplementation of Algae-Derived Polysaccharides on Morphology, Tight Junctions, Antioxidant Capacity and Immune Response of Duodenum in Broilers under Heat Stress
by Wen-Chao Liu, Yan-Ru Zhu, Zhi-Hui Zhao, Ping Jiang and Fu-Quan Yin
Animals 2021, 11(8), 2279; https://doi.org/10.3390/ani11082279 - 2 Aug 2021
Cited by 49 | Viewed by 4961
Abstract
To evaluate the ameliorative effect of algae-derived polysaccharide (ADP) supplementation on duodenal injury caused by heat stress (HS) in broilers, a total of 144 male yellow-feathered broilers (56-day-old) were randomly allocated into three groups: The TN group (thermoneutral zone, broilers were raised at [...] Read more.
To evaluate the ameliorative effect of algae-derived polysaccharide (ADP) supplementation on duodenal injury caused by heat stress (HS) in broilers, a total of 144 male yellow-feathered broilers (56-day-old) were randomly allocated into three groups: The TN group (thermoneutral zone, broilers were raised at 23.6 ± 1.8 °C); HS group (heat stress, broilers were exposed to 33.2 ± 1.5 °C 10 h/day, 8:00 a.m.–18:00 p.m., the temperature in the remaining period was consistent with the TN group); HSA group (heat-stressed broilers were fed with ADP supplemented diet at 1000 mg/kg). There were six replications in each treatment, and eight broilers in each replication. The feeding trial lasted four weeks. The results showed that dietary ADP supplementation tended to increase the villus height (p = 0.077) and villus width (p = 0.062), and decrease the apoptosis rate (p = 0.081) in the duodenum of broilers under HS. Furthermore, dietary ADP increased the relative mRNA and protein (based on immunofluorescence) expression levels of occludin and zonula occludens-1 (ZO-1) in the duodenum of broilers under HS (p < 0.05). In addition, dietary ADP enhanced the total antioxidation capacity (T-AOC) and activity of glutathione-S transferase (GST), while reducing the malondialdehyde (MDA) concentration of the duodenum in broilers under HS (p < 0.05). Moreover, dietary ADP supplementation upregulated the duodenal nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), glutathione peroxidase 1 (GPx1) and glutathione S-transferase theta 1 (GSTT1) mRNA expression levels in heat-stressed broilers (p < 0.05). Furthermore, compared with the HS group, broilers fed with an ADP supplemented diet had a higher relative mRNA expression of inhibitor kappa B alpha (IκBα) (p < 0.05) and a lower relative mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the duodenum (p < 0.05). In summary, dietary ADP supplementation had an ameliorative effect on HS-induced impairment of tight junctions, antioxidant capacity and the immune response of the duodenum in broilers. These beneficial effects might be related to the modulation of Nrf2 and NF-κB signaling pathways. Full article
Show Figures

Figure 1

12 pages, 946 KiB  
Article
Methionine and Arginine Supply Alters Abundance of Amino Acid, Insulin Signaling, and Glutathione Metabolism-Related Proteins in Bovine Subcutaneous Adipose Explants Challenged with N-Acetyl-d-sphingosine
by Yusheng Liang, Nana Ma, Danielle N. Coleman, Fang Liu, Yu Li, Hongyan Ding, Fabiana F. Cardoso, Claudia Parys, Felipe C. Cardoso and Juan J. Loor
Animals 2021, 11(7), 2114; https://doi.org/10.3390/ani11072114 - 16 Jul 2021
Cited by 7 | Viewed by 4463
Abstract
The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from [...] Read more.
The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from four lactating Holstein cows was incubated with one of the following media: ideal profile of amino acid as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased Met (incMet; Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (Lys:Met 2.5:1 Lys:Arg 1:1) with or without 100 μM exogenous cell-permeable Ce (N-Acetyl-d-sphingosine). Ceramide stimulation downregulated the overall abundance of phosphorylated (p) protein kinase B (AKT), p-mechanistic target of rapamycin (mTOR), and p-eukaryotic elongation factor 2 (eEF2). Without Ce stimulation, increased Met, Arg, or Met + Arg resulted in lower p-mTOR. Compared with control SAT stimulated with Ce, increased Met, Arg, or Met + Arg resulted in greater activation of mTOR (p-mTOR/total mTOR) and AKT (p-AKT/total AKT), with a more pronounced response due to Arg. The greatest protein abundance of glutathione S-transferase Mu 1 (GSTM1) was detected in response to increased Met supply during Ce stimulation. Ceramide stimulation decreased the overall protein abundance of the Na-coupled neutral amino acid transporter SLC38A1 and branched-chain alpha-ketoacid dehydrogenase kinase (BCKDK). However, compared with controls, increased Met or Arg supply attenuated the downregulation of BCKDK induced by Ce. Circulating ceramides might affect amino acid, insulin signaling, and glutathione metabolism in dairy cow adipose tissue. Further in vivo studies are needed to confirm the role of rumen-protected amino acids in regulating bovine adipose function. Full article
Show Figures

Figure 1

Back to TopTop