Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = glacier extinction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 23789 KB  
Article
Accelerated Glacier Area Loss and Extinction of Small Glaciers in the Bhutanese Himalaya over the Past Five Decades
by Thongley Thongley, Levan G. Tielidze, Weilin Yang, Andrew Gunn and Andrew N. Mackintosh
Remote Sens. 2026, 18(2), 323; https://doi.org/10.3390/rs18020323 - 18 Jan 2026
Viewed by 351
Abstract
Glacier inventories are critical for monitoring glacier response to climate change, providing constraints for glacier modeling studies and for assessing the impacts of glacier retreat on ecosystems and human societies. In the Bhutanese Himalaya, an up-to-date glacier inventory and a systematic analysis of [...] Read more.
Glacier inventories are critical for monitoring glacier response to climate change, providing constraints for glacier modeling studies and for assessing the impacts of glacier retreat on ecosystems and human societies. In the Bhutanese Himalaya, an up-to-date glacier inventory and a systematic analysis of decadal-scale glacier changes is lacking. Here, we present three glacier inventories (1976, 1998, and 2024) for this region. Manual mapping of glacier outlines from multi-source satellite imagery and the Copernicus digital elevation model (DEM) are used to derive a glacier inventory with associated topographic attributes. We found that 1871 glaciers existed in this region in 1976, covering an area of 2297.07 ± 117.15 km2. By 1998 this number had reduced to 1803 glaciers, covering 2106.99 ± 90.60 km2. In 2024, only 1697 glaciers remained, covering 1584.18 ± 36.37 km2. A total of 89 (1976–1998) and 435 (1998–2024) glaciers became extinct in the Bhutanese Himalaya during these two time periods, and glacier area decrease accelerated from ~0.38% yr−1 to ~0.95% yr−1. Lake-terminating glaciers retreated almost three times faster (~32.2 m yr−1) than land-terminating (~10.4 m yr−1) glaciers during the observation period. Debris-covered glacier area increased from 112.79 ± 11.50 km2 in 1976 to 128.89 ± 10.50 km2 in 2024. Glaciers on the South Bhutanese Himalaya (draining into Bhutan) experienced faster glacier retreat than the glaciers of the North Bhutanese Himalaya (draining into the Tibetan Autonomous Region). ERA5-Land reanalysis data show that summer decadal average temperature in this region increased by 0.003 °C yr−1 between 1976 and 1998 and 0.020 °C yr−1 between 1998 and 2024, with the increase in warming rate coinciding with accelerated glacier retreat after 1998. Our updated glacier inventories will be useful for assessments of global sea level change, mountain hazards, and water resources. Full article
Show Figures

Figure 1

20 pages, 16348 KB  
Article
The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
by Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha and José Guerrero-Casado
Earth 2025, 6(3), 86; https://doi.org/10.3390/earth6030086 - 1 Aug 2025
Viewed by 3441
Abstract
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in [...] Read more.
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in January 2024, its thickness (from 2.5 m to 0.71 m), and its volume (from 2638.85 m3 to 457.18 m3), before its complete deglaciation in February 2024; this rapid melting and its small size classify it as a glacierette. Multivariate analyses (PCA and biclustering) were performed to correlate climatic variables (temperature, solar radiation, precipitation, relative humidity, vapor pressure, and wind) with glacier surface and thickness. The PCA explained 70.26% of the total variance, with Axis 1 (28.01%) associated with extreme thermal conditions (temperatures up to 8.18 °C and radiation up to 16.14 kJ m−2 day−1), which probably drove its disappearance. Likewise, Axis 2 (21.56%) was related to favorable hydric conditions (precipitation between 39 and 94 mm) during the initial phase of glacier monitoring. Biclustering identified three groups of variables: Group 1 (temperature, solar radiation, and vapor pressure) contributed most to deglaciation; Group 2 (precipitation, humidity) apparently benefited initial stability; and Group 3 (wind) played a secondary role. These results, validated through in situ measurements, provide scientific evidence of the disappearance of the Carihuairazo volcano glacier by February 2024. They also corroborate earlier projections that anticipated its extinction by the middle of this decade. The early disappearance of this glacier highlights the vulnerability of small tropical Andean glaciers and underscores the urgent need for water security strategies focused on management, adaptation, and resilience. Full article
Show Figures

Figure 1

10 pages, 753 KB  
Article
Impact of Global Warming on Kryal Fauna: Thermal Tolerance Response of Diamesa steinboecki (Goetghebuer, 1933; Chironomidae)
by Ana-Belén Muñiz-González, José-Luis Martínez-Guitarte and Valeria Lencioni
Diversity 2023, 15(6), 708; https://doi.org/10.3390/d15060708 - 26 May 2023
Cited by 6 | Viewed by 2203
Abstract
The ice fly Diamesa steinboecki Goetghebuer, 1933 (Diptera: Chironomidae: Diamesinae) is exclusive to glacier-fed streams in the East Palaearctic region and is threatened by extinction due to global warming and glacier retreat. To date, no data are available on its thermal tolerance or [...] Read more.
The ice fly Diamesa steinboecki Goetghebuer, 1933 (Diptera: Chironomidae: Diamesinae) is exclusive to glacier-fed streams in the East Palaearctic region and is threatened by extinction due to global warming and glacier retreat. To date, no data are available on its thermal tolerance or ability to develop a heat shock response (HSR) or involve other biomarkers when exposed to higher-than-natural temperatures (i.e., >4–6 °C). Our study aimed to investigate the warmth resistance of IV-instar larvae of D. steinboecki in terms of (1) ability to survive heat shock and (2) gene expression of four genes known to be involved in the detoxification/stress response (cytochrome p450 (Cyp450), heat shock protein 70 (hsp70), hsp70 with intron and heat shock protein cognate 70 (hsc70)). Larvae were exposed to short-term shocks for 1 h at increasing temperatures (26, 28, 30, 32, 34, 36, 38, and 40 °C) to estimate the lethal temperature, obtaining high values (LT10 = 38.1 °C, LT50 = 39.2 °C, LT99 = 40.3 °C), suggesting a strong heat resistance up to 38 °C and a very rapid decline in survival thereafter. Moreover, gene expression analysis by real-time PCR was performed on larvae from the control (at 2 °C) and larvae found alive after the previous treatment at 26, 28, 30, 32, 34, 36, and 38 °C. Modulation of the expression was observed only for hsc70 and hsp70 genes. Specifically, hsc70 resulted in constitutive overexpression, even at 26 °C when all larvae were found alive without evidence of suffering. By contrast, hsp70 showed up and downregulation according to the specific temperature, suggesting the activation of an HSR at 28 °C, when some larvae were found alive but suffering (almost paralyzed). The results suggest that, based on LTs, D. steinboecki is more thermally tolerant than other Diamesa species (e.g., D. tonsa) from cold freshwaters, but, as in these, hsp70 and hsc70 are involved in surviving short-term heat shock. This makes the ice fly from the Alps different from Belgica antarctica and other cold-adapted organisms living in extremely cold habitats that, constantly exposed to cold, have lost the ability to develop an HSR. Further research is needed to investigate the response to prolonged exposure to temperatures higher that the natural one, giving new insights into the biological response to climate change of alpine species threatened by extinction. Full article
Show Figures

Figure 1

26 pages, 6157 KB  
Article
Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars
by Joshua M. Williams, Louis A. Scuderi and Horton E. Newsom
Remote Sens. 2022, 14(8), 1887; https://doi.org/10.3390/rs14081887 - 14 Apr 2022
Cited by 9 | Viewed by 4467
Abstract
The presence of buried glacial ice and putative extinct rock glaciers in Mars’ equatorial regions has implications for understanding its climate history and sensitivity to changes in insolation and has significant implications for past global redistribution of the water ice cryosphere. We quantify [...] Read more.
The presence of buried glacial ice and putative extinct rock glaciers in Mars’ equatorial regions has implications for understanding its climate history and sensitivity to changes in insolation and has significant implications for past global redistribution of the water ice cryosphere. We quantify the morphology of rock glacier- “like” features on the northern slopes of Aeolis Mons (known also as Mount Sharp) within Gale crater and use this information to evaluate a possible rock glacier origin for these forms. Detailed morphometric evaluation of cross and long profiles of these lobate features, which exhibit higher slopes at their heads, lower slopes at their distal edge, and a convex upward cross-sectional profile and oversteepened sides, resembles active terrestrial rock glaciers. However, the absence of a chevron wrinkle pattern and sublimation features could indicate extensive aeolian reworking and the lack of deflation could indicate a higher rock to ice mixture. The lack of cratering surfaces relative to the cratered surfaces that they overly could indicate a younger age and are possibly indistinguishable in age from the capping units of Mount Sharp, which may have once been more laterally extensive and may have been the source of these mass wasting forms. Full article
(This article belongs to the Special Issue Mars Remote Sensing)
Show Figures

Graphical abstract

19 pages, 3838 KB  
Article
Spatial and Temporal Variation Characteristics of Glacier Resources in Xinjiang over the Past 50 Years
by Xueying Zhang, Lin Liu, Zhengyong Zhang, Ziwei Kang, Hao Tian, Tongxia Wang and Hongjin Chen
Water 2022, 14(7), 1057; https://doi.org/10.3390/w14071057 - 28 Mar 2022
Cited by 11 | Viewed by 4174
Abstract
Changes in glacier resources and their meltwater runoff contributions in Xinjiang are significant to the hydrological processes and water resources utilization. This study used the first and second Chinese Glacier Inventory, geomorphological and meteorological data. GIS spatial analysis technology was used to explore [...] Read more.
Changes in glacier resources and their meltwater runoff contributions in Xinjiang are significant to the hydrological processes and water resources utilization. This study used the first and second Chinese Glacier Inventory, geomorphological and meteorological data. GIS spatial analysis technology was used to explore the characteristics of glacier change and its response to topography and climate change in Xinjiang in the last 50 years. The results show that there are currently 20,695 glaciers in Xinjiang with a total area of 22,742.55 km2 and ice reserves of about 2229.17 km3. Glaciers in Xinjiang are concentrated at 5100–6000 m. The Tianshan mountains have the largest number of glaciers. However, the Kunlun mountains have the largest glaciers and ice reserves. The scale of glaciers is significantly larger in the south than that in the north. The changes in glaciers in Xinjiang during the last 50 years are mainly receding and splitting, and their number, area, and ice reserves have decreased by 1359, 7080.12 km2 and 482.65 km3, respectively. Small glaciers are more sensitive to climate change. Glaciers are basically unchanged in regions above 6000 m. The glaciers on the south slope of mountains are more susceptible to climate change. The phenomenon of an increase in the number of glaciers but decreasing total area in the southern mountains is related to glacier extinction and splitting. Glacier development and formation are determined by the combination of topography and hydrothermal material conditions. The change of glacier areas in Xinjiang is jointly affected by climatic conditions (53.45%) and topographic conditions (46.55%), among which climatic conditions are more prominent. Full article
(This article belongs to the Special Issue Sea, River, Lake Ice Properties and Their Applications in Practices)
Show Figures

Figure 1

16 pages, 7300 KB  
Article
Polarization Lidar Measurements of Dust Optical Properties at the Junction of the Taklimakan Desert–Tibetan Plateau
by Qingqing Dong, Zhongwei Huang, Wuren Li, Ze Li, Xiaodong Song, Wentao Liu, Tianhe Wang, Jianrong Bi and Jinsen Shi
Remote Sens. 2022, 14(3), 558; https://doi.org/10.3390/rs14030558 - 25 Jan 2022
Cited by 34 | Viewed by 4755
Abstract
Previous studies have shown that dust aerosols may accelerate the melting of snow and glaciers over the Tibetan Plateau. To investigate the vertical structure of dust aerosols, we conducted a ground-based observation by using multi-wavelength polarization lidar which is designed for continuous network [...] Read more.
Previous studies have shown that dust aerosols may accelerate the melting of snow and glaciers over the Tibetan Plateau. To investigate the vertical structure of dust aerosols, we conducted a ground-based observation by using multi-wavelength polarization lidar which is designed for continuous network measurements. In this study, we used the lidar observation from September to October 2020 at the Ruoqiang site (39.0°N, 88.2°E; 894 m ASL), located at the junction of the Taklimakan Desert–Tibetan Plateau. Our results showed that dust aerosols can be lifted up to 5 km from the ground, which is comparable with the elevation of the Tibetan Plateau in autumn with a mass concentration of 400–900 μg m−3. Moreover, the particle depolarization ratio (PDR) of the lifted dust aerosols at 532 nm and 355 nm are 0.34 ± 0.03 and 0.25 ± 0.04, respectively, indicating the high degree of non-sphericity in shape. In addition, extinction-related Ångström exponents are very small (0.11 ± 0.24), implying the large values in size. Based on ground-based lidar observation, this study proved that coarse non-spherical Taklimakan dust with high concentration can be transported to the Tibetan Plateau, suggesting its possible impacts on the regional climate and ecosystem. Full article
(This article belongs to the Special Issue Optical and Laser Remote Sensing of Atmospheric Composition)
Show Figures

Graphical abstract

16 pages, 3150 KB  
Article
Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity
by Pacifica Sommers, Dorota L. Porazinska, John L. Darcy, Eli M. S. Gendron, Lara Vimercati, Adam J. Solon and Steven K. Schmidt
Microorganisms 2020, 8(11), 1747; https://doi.org/10.3390/microorganisms8111747 - 7 Nov 2020
Cited by 11 | Viewed by 4020
Abstract
The island species–area relationship (ISAR) is a positive association between the number of species and the area of an isolated, island-like habitat. ISARs are ubiquitous across domains of life, yet the processes generating ISARs remain poorly understood, particularly for microbes. Larger and more [...] Read more.
The island species–area relationship (ISAR) is a positive association between the number of species and the area of an isolated, island-like habitat. ISARs are ubiquitous across domains of life, yet the processes generating ISARs remain poorly understood, particularly for microbes. Larger and more productive islands are hypothesized to have more species because they support larger populations of each species and thus reduce the probability of stochastic extinctions in small population sizes. Here, we disentangled the effects of “island” size and productivity on the ISAR of Antarctic cryoconite holes. We compared the species richness of bacteria and microbial eukaryotes on two glaciers that differ in their productivity across varying hole sizes. We found that cryoconite holes on the more productive Canada Glacier gained more species with increasing hole area than holes on the less productive Taylor Glacier. Within each glacier, neither productivity nor community evenness explained additional variation in the ISAR. Our results are, therefore, consistent with productivity shaping microbial ISARs at broad scales. More comparisons of microbial ISARs across environments with limited confounding factors, such as cryoconite holes, and experimental manipulations within these systems will further contribute to our understanding of the processes shaping microbial biogeography. Full article
(This article belongs to the Special Issue Microbes in the Cryosphere)
Show Figures

Graphical abstract

25 pages, 9960 KB  
Review
Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges
by Bijeesh Kozhikkodan Veettil and Ulrich Kamp
Geosciences 2019, 9(5), 196; https://doi.org/10.3390/geosciences9050196 - 30 Apr 2019
Cited by 60 | Viewed by 19687
Abstract
This article reviews the current status of tropical glaciers in the South American Andes, East Africa, and Australasia by shedding light on past, present, and future glacier coverage in the tropics, the influence of global and regional climates on the tropical glaciers, the [...] Read more.
This article reviews the current status of tropical glaciers in the South American Andes, East Africa, and Australasia by shedding light on past, present, and future glacier coverage in the tropics, the influence of global and regional climates on the tropical glaciers, the regional importance of these glaciers, and challenges of ongoing glacier recessions. While tropical glaciers have predominantly receded since the Little Ice Age, the rate of shrinkage has accelerated since the late 1970s as a result of climate changes. As a result, socio-ecological implications occur around ecosystem health, natural hazards, freshwater resources, agriculture, hydropower, mining, human and animal health, traditions and spirituality, and peace. Full article
(This article belongs to the Special Issue Cryosphere II)
Show Figures

Figure 1

14 pages, 4916 KB  
Article
Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers
by Rainer Prinz, Armin Heller, Martin Ladner, Lindsey I. Nicholson and Georg Kaser
Geosciences 2018, 8(5), 174; https://doi.org/10.3390/geosciences8050174 - 11 May 2018
Cited by 29 | Viewed by 12187
Abstract
Since the last complete glacier mapping of Mt. Kenya in 2004, strong glacier retreat and glacier disintegration have been reported. Here, we compile and present a new glacier inventory of Mt. Kenya to document recent glacier change. Glacier area and mass changes were [...] Read more.
Since the last complete glacier mapping of Mt. Kenya in 2004, strong glacier retreat and glacier disintegration have been reported. Here, we compile and present a new glacier inventory of Mt. Kenya to document recent glacier change. Glacier area and mass changes were derived from an orthophoto and digital elevation model extracted from Pléiades tri-stereo satellite images. We additionally explore the feasibility of using freely available imagery (Sentinel-2) and an alternative elevation model (TanDEM-X-DEM) for monitoring very small glaciers in complex terrain, but both proved to be inappropriate; Sentinel-2 because of its too coarse horizontal resolution compared to the very small glaciers, and TanDEM-X-DEM because of errors in the steep summit area of Mt. Kenya. During 2004–2016, the total glacier area on Mt. Kenya decreased by 121.0 × 10³ m² (44%). The largest glacier (Lewis) lost 62.8 × 10³ m² (46%) of its area and 1.35 × 10³ m³ (57%) of its volume during the same period. The mass loss of Lewis Glacier has been accelerating since 2010 due to glacier disintegration, which has led to the emergence of a rock outcrop splitting the glacier in two parts. If the current retreat rates prevail, Mt. Kenya’s glaciers will be extinct before 2030, implying the cessation of the longest glacier monitoring record of the tropics. Full article
(This article belongs to the Special Issue Remote Sensing of Land Ice)
Show Figures

Figure 1

36 pages, 323 KB  
Review
Climate Change and Intertidal Wetlands
by Pauline M. Ross and Paul Adam
Biology 2013, 2(1), 445-480; https://doi.org/10.3390/biology2010445 - 19 Mar 2013
Cited by 35 | Viewed by 13273
Abstract
Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, [...] Read more.
Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. Full article
(This article belongs to the Special Issue Biological Implications of Climate Change)
Back to TopTop