Climate Change and Intertidal Wetlands
Abstract
:1. Introduction
2. Saltmarshes and Mangrove Forests
3. Saltmarsh and Mangroves–A History of Use and Abuse
4. Climate Change and Intertidal Wetlands
- increases in ambient temperature
- changes in other climatic factors: rainfall, storms (including the frequency and intensity) and extreme events
- increases in sea level
- increases in atmospheric carbon dioxide concentration
4.1. Increasing Temperature
4.2. Other Climatic Factors
4.3. Change in Sea Level
4.4. Increase in Carbon Dioxide Concentration
5. Climate Change and Fauna of Intertidal Wetlands
6. Acidification and Temperature Rise; Implications for Fauna
7. Life History of Saltmarsh and Mangrove Fauna
8. Molluscs
9. Crabs and Crustaceans
Species, habitat and distribution | Life history stage tested | Elevated pCO2 conditions (pH) | Impacts of reduced pH | Reference |
---|---|---|---|---|
Molluscs | ||||
Saccostrea glomerata Existing substrata in shallow and intertidal estuaries of Eastern Australia | Larvae | 6.75 | Reduced development; increased abnormality | [159] |
Egg, larvae | 7.9 | Reduced fertilization; reduced larval growth and development; increased abnormality and mortality. | [141] | |
Larvae | 7.6 | Reduced growth and development; increased abnormality and mortality. | [142] | |
Egg, larvae | 7.9 | Reduced fertilization; reduced larval development and growth; increased abnormality | [143] | |
Spat | 7.84 | Reduced growth; greater resilience of selectively bred line vs. wild population. | [144] | |
Crassostrea gigas Existing substrata in shallow and intertidal estuaries of Japan; introduced to Australia, New Zealand, and America | Egg, larvae | 7.4 | Fertilization unaffected; reduced growth and larval size; increased abnormality | [138] |
Egg, sperm | 7.8 | Fertilization unaffected; sperm speed and motility unaffected | [140] | |
Crassostrea virginica Formed reefs in subtidal and intertidal areas of North and Central America. | Larvae | 6.25 | Reduced growth; increased mortality | [147] |
Larvae | 8.16 | Reduced growth and calcification | [130] | |
Larvae | 7.50–8.07 | Reduced growth; delayed metamorphosis; increased mortality | [154] | |
Juvenile | 7.5 | Reduced growth; increased abnormality and mortality; increased standard metabolic rate | [131] | |
Mytilus edilus Existing strata in intertidal areas of the northern Pacific and Atlantic | Larvae | 7.6–7.8 | Reduced shell size; pH 7.6 reduced hatch rate | [145] |
Mytilus galloprovincialis Intertidal regions of existing strata with high water flow; endemic to the Mediterranean. | Egg, larvae | 7.4 | Delayed metamorphosis; increased abnormality; decreased growth | [139] |
Argopecten irradians Sandy subtidal beds in protected areas; endemic to Northern America | Larvae | 7.5–8.17 | Decreased growth, rate of development and metamorphosis; increased abnormality and mortality | [154] |
Cavolinia inflexa Pelagic warm waters | Larvae | 7.51–7.82 | Increased abnormality; reduced growth | [133] |
Haliotis coccoradiata Subtidal rocky strata of Eastern Australia | Egg, sperm | 7.6–7.9 | No significant effect on fertilization | [165] |
Larvae, juvenile | 7.6–7.8 | Reduced calcification and development; increased abnormality | [117] | |
Haliotis rufescens Subtidal rocky strata of North America | Larvae | 7.87–7.97 | Reduced thermal tolerance at pH 7.87 in pre-torsion and late veligers; no effect on post-torsion and premetamorphic veligers; no effect on shell mineralization genes ap24 or engrailed | [148] |
Laternula elliptica Soft substrates of the Southern Ocean | Adult | 7.78 | Basal metabolism and heat shock protein HSP70 expression increased. Expression of chitin synthase significantly up-regulated | [149] |
Limacina helicina Pelagic Arctic waters | Juveniles | 7.78–8.21 | Increased abnormal development, shell degradation & mortality | [151] |
Littorina obtusata Intertidal rocky shores | Egg, larvae | 7.6 | Reduced viability and increased abnormal development | [150] |
Mercenaria mercenaria Subtidal soft substrates in North America | Larvae | 6.25 | Increased mortality | [147] |
Larvae | 7.5–8.17 | Reduced rate of growth and development with increasing
p CO2; increased abnormal development and mortality | [154] | |
Sepia officinalis Pelagic waters of Europe | Juvenile | 7.1–7.23 | Growth and development unaffected | [134] |
Egg | 7.6–7.85 | Egg weight increased; hatchling size unaffected; accumulation of silver increased, cadmium decreased; zinc accumulation highest at pH 7.85. | [135] | |
Arthropods | ||||
Amphibalanus amphitrite Naturally found in intertidal regions, and has spread across the globe by attachment to ships | Larvae, cyprid | 7.4 | No significant effects | [189] |
Semibalanus balanoides Intertidal regions of European coasts | Egg | 7.7 | Reduced rate of development in embryos | [188] |
Post-larval | 7.7 | Reduced calcification and survival in synergism with temperature increases | [190] | |
Elminius modestus Intertidal regions of European coasts | Post-larval | 7.7 | Decreased rate of growth | [190] |
Acartia tsuensis Pelagic regions of the temperate Pacific | Egg, larvae | 7.31 | No significant effects | [194] |
Calanus finmarchicus Pelagic North Atlantic | Egg | 6.95 | Reduced rate of hatching | [195] |
Echinogammarus marinus Pelagic, most of the world’s oceans | Egg | 7.5 | Reduced rate of embryonic development | [193] |
Hyas araneus Below low tide of the North Atlantic | Larvae | unknown | Delayed development; reduced rate of growth and fitness | [192] |
10. Fish
11. Avifauna
12. Conclusion
Acknowledgments
References
- Rovai, A.S.; Menghini, R.P.; Schaeffer-Novelli, Y.; Molero, G.C.; Coelho, C. Protecting Brazil’s coastal wetlands. Science 2012, 335, 1571–1572. [Google Scholar] [CrossRef]
- Adam, P. Saltmarsh Ecology; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Lee, S.Y. Mangrove outwelling: A review. Hydrobiologia 1995, 295, 203–212. [Google Scholar] [CrossRef]
- Middleburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; van den Plassche, O. Organic carbon isotope systematics of coastal marshes. Estuar. Coast. Shelf Sci. 1997, 45, 681–687. [Google Scholar] [CrossRef]
- Bouillon, S.; Connolly, R.M.; Lee, S.Y. Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. J. Sea Res. 2008, 59, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems; a review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Feller, I.C.; Lovelock, C.E.; Berger, U.; McKee, K.L.; Ball, M.C. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2010, 2, 395–417. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef]
- Townend, I.; Pethick, J. Estuarine flooding and managed retreat. Philos. Trans. R. Soc. Lond. A 2002, 360, 1477–1495. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Poloczanska, E.; Babcock, R.; Butler, A.; Hobday, A.; Hoegh-Guldberg, O.; Kunz, T.; Matear, R.; Milton, D.; Okey, T.; Richardson, A. Climate change and Australian marine life. Oceanogr. Mar. Biol. 2007, 45, 407. [Google Scholar]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar]
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [Google Scholar]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Duke, N.C. Australia’s Mangroves:The Authoritative Guide to Australia’s Mangrove Plants; University of Queensland Centre for Marine Studies: Brisbane, Australia, 2006. [Google Scholar]
- Saenger, P.; Moverley, J.H. Vegetative phenology of mangroves along the Queensland coastline. Proc. Ecol. Soc. Aust. 1985, 13, 257–265. [Google Scholar]
- Stuart, S.A.; Choat, B.; Martin, K.; Holbrook, N.M.; Ball, M.C. The role of freezing in setting the latitude limits of mangrove forest. New Phytol. 2007, 173, 576–583. [Google Scholar]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; Lopez-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Walter, M. Climate. In Wet Coastal Ecosystems; Chapman, V.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 61–67. [Google Scholar]
- Herr, D.; Galland, G.A. The Ocean and Climate Change, Tools and Guidelines for Action; IUCN: Gland, Switzerland, 2009; p. 72. [Google Scholar]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011. [Google Scholar] [CrossRef]
- SEWPAC, Issues paper. In The Role of Wetlands in the Carbon Cycle; Department of Sustainability, Environment, Water, Population and Communities: Canberra, Australia, 2012; p. 14.
- Adam, P. Climate change—Not an excuse for failing to address other threats. In Wildlife and Climate Change: Towards Robust Conservation Strategies for Australian Fauna; Lunney, D., Hutchings, P.A., Eds.; Royal Zoological Society of New South Wales: Mosman, Sydney, Australia, 2012; pp. 80–91. [Google Scholar]
- Chapman, V.J. Introduction. In Wet Coastal Ecosystems; Chapman, V.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 1–29. [Google Scholar]
- ap Rees, T.; Jenkin, L.E.T.; Smith, A.M.; Wilson, P.M. The metabolism of flood-tolerant plants. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 227–238. [Google Scholar]
- Crawford, R.; Monk, L.; Zochowski, Z. Enhancement of anoxia tolerance by removal of volatile products of anaerobiosis. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 357–384. [Google Scholar]
- Gaynard, T.; Armstrong, W. Some aspects of internal plant aeration in amphibious habitats. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 303–320. [Google Scholar]
- Mendelssohn, I.A.; McKee, K.L. Root metabolic response of Spartina alterniflora to hypoxia. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 239–254. [Google Scholar]
- Hovenden, M.J.; Curran, M.; Cole, M.A.; Goulter, P.F.E.; Skelton, N.J.; Allaway, W.G. Ventilation and respiration in roots of one-year-old seedlings of grey mangrove Avicennia marina (Forsk.) Vierh. Hydrobiology 1995, 295, 23–29. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Brearley, A. Ernest Hodgkin’s Swanland: Estuaries and Coastal Lagoons of South-Western Australia; University of Western Australia Press: Perth, Australia, 2005. [Google Scholar]
- Adam, P. Saltmarshes in a time of change. Environ. Conserv. 2002, 29, 39–61. [Google Scholar] [CrossRef]
- Valiela, I. Global Coastal Change; Blackwell Scientific Publications: Oxford, UK, 2006. [Google Scholar]
- Gedan, K.B.; Silliman, B.; Bertness, M. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci. 2009, 1, 117–141. [Google Scholar] [CrossRef]
- Watson, J.G. Mangrove Forests of the Malay Peninsula. Malays. For. Rec. 1926, 6, 1–275. [Google Scholar]
- Pagliosa, P.R.; Rovai, A.S.; Fonseca, A.L. Carbon mismanagement in Brazil. Nat. Clim. Change 2012, 2, 764. [Google Scholar] [CrossRef]
- Nixon, S.W. Between coastal marshes and coastal waters—A review of 20 years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In Estuarine and Wetland Processes with Emphasis on Modeling; Hamilton, P., MacDonald, K.B., Eds.; Plenum: New York, NY, USA, 1980; pp. 437–525. [Google Scholar]
- Shine, C.; de Klemm, C. Wetlands, water and the law. Using the law to advance wetland conservation and wise use. In IUCN Environmental Policy and Law Paper Number 38; IUCN, The World Conservation Union: Gland, Switzerland; Cambridge, UK, 1999; pp. 1–340. [Google Scholar]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010. [Google Scholar]
- Giri, C.; Ocheing, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Siikimaki, J.; Sanchirico, J.N.; Jardine, S.L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl. Acad. Sci. 2012. [Google Scholar] [CrossRef]
- Caldiera, K. Avoiding mangrove destruction by avoiding carbon dioxide emissions. Proc. Natl. Acad. Sci.USA 2012, 109, 14287–14288. [Google Scholar] [CrossRef]
- Murray, B.C. Mangroves hidden value. Nat. Clim. Change 2012, 2, 773–774. [Google Scholar] [CrossRef]
- Martini, I.P.; Jefferies, R.L.; Morrison, R.I.G.; Abraham, K.F. Polar coastal wetlands: Development, structure and land use. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 119–156. [Google Scholar]
- Peterson, B.J.; Holmes, R.M.; McClelland, J.W.; Vorosmarty, C.J.; Lammers, R.B.; Shiklomanov, A.; Shiklomanov, I.A.; Rahmstorf, S. Increasing river discharge to the Arctic Ocean. Science 2002, 298, 2171–2173. [Google Scholar] [CrossRef]
- Weaver, S.C.; Reisin, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef]
- Dale, P.E.R.; Knight, J.M. Managing mosquitoes without destroying wetlands: An eastern Australian approach. Wetl. Ecol. Manag. 2012, 20, 233–242. [Google Scholar] [CrossRef]
- Knight, J.M. A model of mosquito-mangrove basin ecosystems with implications for management. Ecosystems 2011, 4, 1382–1395. [Google Scholar] [CrossRef]
- Cain, S.A. Foundations of Plant Geography; Harper: New York, NY, USA, 1944. [Google Scholar]
- Nettel, A.; Dodd, R.S. Drifting propagules and receding swamps: Genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 2007, 61, 958–971. [Google Scholar] [CrossRef]
- Cary, C.J.; Radstock, R.A.; Gill, A.M.; Williams, R.J. Global change and fire regimes in Australia. In Flammable Australia. Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Melbourne, Australia, 2012; pp. 149–169. [Google Scholar]
- Daiber, F.C. Conservation of Tidal Marshes; Van Nostrand Reinhold: New York, NY, USA, 1986. [Google Scholar]
- Daiber, F.C. Animals of the Tidal Marsh; Van Nostrand Reinhold: New York, NY, USA, 1982. [Google Scholar]
- Mitchell, L.R.; Galbrey, S.; Marra, P.P.; Irwin, R.M. Impacts of marsh management on coastal-marsh bird habitats. In Terrestrial Vertebrates of Tidal Marshes: Evolution, Ecology, and Conservation; Greenburg, R., Maldonado, J.E., Droege, S., McDonald, M.V., Eds.; Cooper Ornithological Society: Camarillo, CA, USA, 2006; pp. 155–175. [Google Scholar]
- Anning, P. Pastures for Cape York peninsula. Qld. Agric. J. 1980, March-April, 148–171. [Google Scholar]
- Stevenson, J.G.; Rooth, J.E.; Kearney, M.S.; Sundburg, K.L. The health and long-term stability of natural and restored marshes in Chesapeake Bay. In Concepts and Controversies in Tidal Marsh Ecology; Weinstein, M.P., Kreeger, D.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherland, 2000; pp. 709–735. [Google Scholar]
- Boon, P.I.; Allen, T.; Brook, J.; Carr, G.; Frood, D.; Harty, C.; Hoye, J.; McMahon, A.; Mathews, S.; Rosengren, N. Mangroves and Coastal Saltmarsh of Victoria: Distribution, Condition, Threats and Management; Institute for sustainability and innovation: Victoria University, Melbourne, Australia, 2011. [Google Scholar]
- Tinning, G. Recovery of Saltmarsh after Fire at Moona Moona Creek, Jervis Bay, and Its Relationship with Tidal Inundation Frequency. Unpublished Honours Thesis, School of Geography, University of New South Wales, Sydney, Australia, 1990. [Google Scholar]
- Paijmans, K.; Rollet, R. The mangroves of Galley Reach, Papua New Guinea. For. Ecol. Manag. 1977, 1, 119–140. [Google Scholar]
- Johns, R.J. The instability of the tropical ecosystem in New Guinea. Blumea 1986, 31, 341–371. [Google Scholar]
- Frodin, D. The mangrove ecosystem in Papua New Guinea. In Mangrove Ecosystems of Asia and the Pacific. Status, Exploitation and Management; Field, C.D., Dartnall, A.J., Eds.; AIMS: Townsville, Australia, 1985; pp. 53–63. [Google Scholar]
- Smith, T.J.; Roblee, M.B.; Wanless, H.R. Mangroves, hurricanes, and lightning strike. BioScience 1994, 44, 256–262. [Google Scholar] [CrossRef]
- Duke, N.C. Gap creation and regenerative processes driving diversity and structure of mangrove systems. Wetl. Ecol. Manag. 2001, 9, 257–269. [Google Scholar]
- Houston, W.A. Severe hail damage to mangroves at Port Curtis, Australia. Mangroves Salt Marsh 1999, 3, 29–40. [Google Scholar] [CrossRef]
- Prahalad, V.N.; Kirkpatrick, J.B.; Mount, R.E. Tasmanian coastal saltmarsh community transitions associated with climate change and relative sea level rise 1975–2009. Aust. J. Bot. 2011, 59, 741–748. [Google Scholar]
- McIvor, A.; Moller, I.; Spencer, T.; Spalding, M. Reduction of wind and swell waves by mangroves. In Natural Coastal Protection Series: Report 1. Cambridge Coastal Research Unit Working Paper 40; The Nature Conservancy and Wetlands International: Cambridge, UK, 2012; p. 27. [Google Scholar]
- McIvor, A.; Spencer, T.; Moller, I.; Spalding, M. Storm surge reduction by mangroves. In Natural Coastal Protection Series: Report 2. Cambridge Coastal Research Unit Working Paper 41; The Nature Conservancy and Wetlands International: Cambridge, UK, 2012; p. 35. [Google Scholar]
- Mitchener, W.K.; Blood, E.R.; Bildstein, K.L.; Brinson, M.M.; Gardner, L.R. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol. Appl. 1997, 7, 770–801. [Google Scholar] [CrossRef]
- Managing the risks of extreme events and disasters to advance climate change adaptation. In Natural Coastal Protection Series: Report 2. Cambridge Coastal Research Unit Working Paper 41; Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. (Eds.) Cambridge University Press: Cambridge, UK, 2012; Volume 35, p. 582.
- Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. Climate related sea-level variations over the past two millennia. Proc. Natl. Acad. Sci. USA 2011, 108, 11017–11022. [Google Scholar]
- Lambeck, K. Glacial rebound and sea-level change in the British Isles. Terra Res. 1991, 3, 379–389. [Google Scholar] [CrossRef]
- Lambeck, K.; Smither, C.; Eckman, M. Tests of glacial rebound models for Fennoscandinavia based on instrumented sea-and lake-level records. Geophys. J. Int. 1998, 135, 375–387. [Google Scholar] [CrossRef]
- Semeniuk, V. Predicting the effect of sea-level rise mangroves in northwestern Australia. J. Coast. Res. 1994, 10, 1050–1076. [Google Scholar]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate chang. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Adam, P. Morecambe bay saltmarshes: 25 years of change. In British Saltmarshes; Sherwood, B.G., Gardiner, B.G., Harris, T., Eds.; Linnean Society of London: London, UK, 2000; pp. 81–107. [Google Scholar]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Scavia, D.; Bricker, S.B. Coastal eutrophication assessment in the United States. Biogeochemistry 2006, 79, 187–208. [Google Scholar] [CrossRef]
- Tillman, D. Relative growth rates and plant allocation patterns. Am. Nat. 1991, 138, 1269–1275. [Google Scholar]
- Lovelock, C.E.; Ball, M.C.; Martin, K.C.; Feller, I.C. Nutrient enrichment increases mortality of mangroves. PLoS One 2009, 4. [Google Scholar] [CrossRef]
- Deegan, L.A.; Johnson, D.S.; Warren, R.S.; Peterson, B.J.; Fleeger, J.W.; Fagerazzi, S.; Wollheim, W.M. Coastal eutrophication as a driver of salt marsh loss. Nature 2012, 490, 388–392. [Google Scholar] [CrossRef]
- Altieri, A.H.; Bertness, M.D.; Coverdale, T.C.; Herrmann, N.C.; Angelini, C. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 2012, 93, 1402–1410. [Google Scholar] [CrossRef]
- Understanding Sea-Level Rise and Variability; Church, J.A.; Woodworth, P.L.; Aarup, T.; Wilson, W.C. (Eds.) Wiley-Blackwell: Chichester, UK, 2010.
- Saintilan, N.; Rogers, K.; McKee, K. Salt-marsh-mangrove interactions in Australia and the Americas. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 855–883. [Google Scholar]
- Eslami-Andargoli, L.; Dale, P.; Sipe, N.; Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 2009, 85, 292–298. [Google Scholar] [CrossRef]
- Clough, B.F.; Andrews, T.J.; Cowan, I.R. Physiological processes in mangroves. In Mangrove Ecosystems in Australia. Structure, Function and Management; Clough, B.F., Ed.; AIMS & ANU Press: Canberra, Australia, 1982; pp. 193–210. [Google Scholar]
- Tue, N.T.; Hamaoka, H.; Sogebe, A.; Qu’y, T.D.; Nhuan, M.T.; Omori, K. Sources of sedimentary organic carbon in mangrove ecosystems from Ba Lat estuary, Red River, Vietnam. In Interdisciplinary Studies on Environmental Chemistry—Marine Environmental Modelng & Analysis; Omori, K., Guo, X., Yoshie, N., Fujii, N., Handoh, I.C., Isobe, A., Tanabe, S., Terrapub, T.S., Eds.; Terrapub: Tokyo, Japan, 2011; pp. 151–157. [Google Scholar]
- Kadereit, G.; Borsch, T.; Weiring, K.; Freitag, H. Phylogeny of Amaranthaceae—Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 2003, 164, 959–986. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Cerling, T.E. C3 and C4 photosynthesis. In Encyclopedia of Global EnvironmentalChange. The Earth System: Biological and Ecological Dimensions of Global Environmental Change; Mooney, H.H., Canadell, J.G., Eds.; Wiley: Chichester, UK, 2002; Volume 2, pp. 186–190. [Google Scholar]
- Field, C.D. Impact of expected climate change on mangroves. Hydrobiologia 1995, 295, 75–81. [Google Scholar] [CrossRef]
- Ball, M.C. Ecophysiology of mangroves. Trees 1988, 2, 129–142. [Google Scholar]
- Ball, M.C.; Munns, R. Plant responses to salinity under elevated atmospheric concentrations of CO2. Aust. J. Bot. 1992, 40, 515–525. [Google Scholar] [CrossRef]
- Arp, W.; Drake, B.; Pockman, W.; Curtis, P.; Whigham, D. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric C02. Vegetatio 1993, 104, 133–143. [Google Scholar] [CrossRef]
- Arp, W.J.; Drake, B.G. Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2. Plant Cell Environ. 1991, 14, 1003–1006. [Google Scholar] [CrossRef]
- Drake, B.; Peresta, G.; Beugeling, F.; Matamala, R. Long-term elevated CO2 exposure in a Chesapeake Bay Wetland: Ecosystem gas exchange, primary production, and tissue nitrogen. In Carbon Dioxide and Terrestrial Ecosystems; Koch, C., Mooney, H.A., Eds.; Academic Press: New York, NY, USA, 1996; pp. 197–214. [Google Scholar]
- Hovenden, M.J.; Williams, A.L. The impacts of rising CO2 concentrations on Australian terrestrial species and ecosystems. Austral Ecol. 2010, 35, 665–684. [Google Scholar] [CrossRef]
- Lawler, I.R.; Foley, W.J.; Woodrow, I.E.; Cork, S.J. The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 1997, 109, 59–68. [Google Scholar] [CrossRef]
- Booth, C.; Low, T. Rising CO2 plants and biodiversity. 2011. Available online: http://ecosmagazine.com/?paper=EC10105/ (accessed on 11 March 2013).
- Stewart, G.R.; Popp, M. The ecophysiology of mangroves. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 335–345. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Hughes, L. Can australian biodiversity adapt to climate change? In Wildlife and Climate Change: Towards Robust Conservation Strategies for Australian Fauna; Lunney, D., Hutchings, P.A., Eds.; Royal Zoological Society of New South Wales: Mosman, Sydney, Australia, 2012; pp. 8–10. [Google Scholar]
- Holt, R.D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 1977, 12, 197–229. [Google Scholar] [CrossRef]
- Golding, R.E.; Ponder, W.F.; Byrne, M. Taxonomy and anatomy of Amphiboloidea (Gastropoda: Heterobranchia: Archeopulmonata). Zootaxa 2007, 1476, 1–50. [Google Scholar]
- Kneib, R.T. The role of tidal marshes in the ecology of estuarine nekton. Oceanogr. Mar. Biol. Ann. Rev. 1997, 35, 163–220. [Google Scholar]
- Piersma, T.; Lindström, Å. Migrating shorebirds as integrative sentinels of global environmental change. Ibis 2004, 146, 61–69. [Google Scholar] [CrossRef]
- Ross, P.; Minchinton, T.; Ponder, W. The ecology of Molluscs in Australian Saltmarshes. In Australian Saltmarsh Ecology; Saintilan, N., Ed.; CSIRO Publishing: Melbourne, Australia, 2009; pp. 67–107. [Google Scholar]
- Howard, W.R.; Anthony, K.; Schmutter, K.; Bostock, H.; Bromhead, D.; Byrne, M.; Currie, K.; Diaz-Pulido, G.; Eggins, S.; Ellwood, M.; et al. Ocean acidification. In Marine Climate Change in Australia. Impacts and Adaptation Responses Report Card for Australia; Polozanska, E.S., Hobday, A.J., Richardson, A.J., Eds.; CSIRO Publishing: Melbourne, Australia, 2012. [Google Scholar]
- Lovelock, C.E.; Skilleter, S.G.; Saintilan, N. Tidal Wetlands. In Marine Climate Change in Australia. Impacts and Adaptation Responses Report Card for Australia; Poloczanska, E.S., Hobday, A.J., Richardson, A.J., Eds.; CSIRO Publishing: Melbourne, Australia, 2012. [Google Scholar]
- Rombouts, I.; Beaugrand, G.; Dauvin, J.C. Potential changes in benthic macrofaunal distributions from the English Channel simulated under climate change scenarios. Estuar. Coast. Shelf Sci. 2012, 99, 153–161. [Google Scholar] [CrossRef]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. [Google Scholar] [Green Version]
- Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.J.; Millero, F.J. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 2004, 305, 362–366. [Google Scholar]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Mar. Sci. 2009, 1, 169–192. [Google Scholar]
- Caldeira, K.; Wickett, M.E. Anthropogenic carbon and ocean pH. Nature 2003, 425, 365–365. [Google Scholar]
- Turley, C.; Blackford, J.; Widdicombe, S.; Lowe, D.; Nightingale, P.; Rees, A. Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In Avoiding Dangerous Climate Change; Schellnhuber, H.J., Cramer, W., Nakicenovic, N., Wigley, T., Yohe, G., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 8, pp. 65–70. [Google Scholar]
- Guinotte, J.M.; Fabry, V.J. Ocean acidification and its potential effects on marine ecosystems. Ann. NY Acad. Sci. 2008, 1134, 320–342. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. The physical science basis. In Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996.
- Pörtner, H.O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser. 2008, 373, 203–217. [Google Scholar] [CrossRef]
- Byrne, M.; Ho, M.; Wong, E.; Soars, N.A.; Selvakumaraswamy, P.; Shepard-Brennand, H.; Dworjanyn, S.A.; Davis, A.R. Unshelled abalone and corrupted urchins: Development of marine calcifiers in a changing ocean. Proc. R. Soc. Lond. B Biol. 2011, 278, 2376–2383. [Google Scholar]
- Ross, P.M. Larval supply, settlement and survival of barnacles in a temperate mangrove forest. Mar. Ecol. Prog. Ser. 2001, 215, 237–249. [Google Scholar] [CrossRef]
- Satumanatpan, S.; Keough, M.J. Roles of larval supply and behavior in determining settlement of barnacles in a temperate mangrove forest. J. Exp. Mar. Biol. Ecol. 2001, 260, 133–153. [Google Scholar] [CrossRef]
- Underwood, A.; Fairweather, P. Supply-side ecology and benthic marine assemblages. Trends Ecol. Evol. 1989, 4, 16–20. [Google Scholar] [CrossRef]
- Menge, B.A.; Chan, F.; Nielsen, K.J.; Lorenzo, E.D.; Lubchenco, J. Climatic variation alters supply-side ecology: Impact of climate patterns on phytoplankton and mussel recruitment. Ecol. Monogr. 2009, 79, 379–395. [Google Scholar] [CrossRef]
- Ross, P.M.; Parker, L.; O’Connor, W.A.; Bailey, E.A. The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water 2011, 3, 1005–1030. [Google Scholar] [CrossRef]
- Bertness, M.D.; Grosholz, E. Population dynamics of the ribbed mussel, Geukensia demissa: The costs and benefits of an aggregated distirbution. Oecologia 1985, 67, 192–204. [Google Scholar] [CrossRef]
- Silliman, B.R.; Zieman, J.C. Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt Marsh. Ecology 2001, 82, 2830–2845. [Google Scholar]
- Silliman, B.R.; Bertness, M.D. A trophic cascade regulates salt marsh primary production. Proc. Natl. Acad. Sci. USA 2002, 99, 10500–10505. [Google Scholar] [CrossRef]
- Pennings, S.C.; Bertness, M.D. Saltmarsh communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates Inc.: Sunderland, MA, USA, 2004; pp. 289–316. [Google Scholar]
- Hutchens, J.J.; Walters, K. Gastropods abundance and biomass relationships with salt marsh vegetation within ocean-dominated South Carolina, USA estuaries. J. Shellfish Res. 2006, 25, 947–953. [Google Scholar]
- Stenzel, H. Oysters: Composition of the larval shell. Science 1964, 145, 155–156. [Google Scholar]
- Ries, J.B.; Cohen, A.L.; McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 2009, 37, 1131–1134. [Google Scholar] [CrossRef]
- Miller, A.W.; Reynolds, A.C.; Sobrino, C.; Riedel, G.F. Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One 2009, 4. [Google Scholar] [CrossRef]
- Beniash, E.; Ivanina, A.; Lieb, N.S.; Kurochkin, I.; Sokolova, I.M. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar. Ecol. Prog. Ser. 2010, 419, 95–108. [Google Scholar] [CrossRef]
- Waldbusser, G.G.; Voigt, E.P.; Bergschneider, H.; Green, M.A.; Newell, R.I.E. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuar. Coasts 2011, 34, 221–231. [Google Scholar] [CrossRef]
- Comeau, S.; Gorsky, G.; Alliouane, S.; Gattuso, J.P. Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar. Biol. 2010, 157, 2341–2345. [Google Scholar] [CrossRef]
- Gutowska, M.A.; Pörtner, H.O.; Melzner, F. Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar. Ecol. Prog. Ser. 2008, 373, 303–309. [Google Scholar] [CrossRef]
- Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.L.; Markich, S.; Jeffree, R.; Bustamante, P. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis. Biogeosciences 2009, 6, 2561–2573. [Google Scholar] [CrossRef]
- Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Ann. Rev. 2011, 49, 1–42. [Google Scholar]
- Gazeau, F.; Quiblier, C.; Jansen, J.M.; Gattuso, J.P.; Middelburg, J.J.; Heip, C.H.R. Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Kurihara, H.; Kato, S.; Ishimatsu, A. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat. Biol. 2007, 1, 91–98. [Google Scholar] [CrossRef]
- Kurihara, H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser. 2008, 373, 275–284. [Google Scholar] [CrossRef]
- Havenhand, J.; Schlegel, P. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences 2009, 6, 3009–3015. [Google Scholar] [CrossRef]
- Parker, L.M.; Ross, P.M.; O’Connor, W.A. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob. Change Biol. 2009, 15, 2123–2136. [Google Scholar] [CrossRef]
- Watson, S.A.; Southgate, P.C.; Tyler, P.A.; Peck, L.S. Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2 driven ocean acidification. J. Shellfish Res. 2009, 28, 431–437. [Google Scholar] [CrossRef]
- Parker, L.M.; Ross, P.M.; O’Connor, W.A. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar. Biol. 2010, 157, 2435–2452. [Google Scholar] [CrossRef]
- Parker, L.M.; Ross, P.M.; O’Connor, W.A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol. 2011, 158, 689–697. [Google Scholar] [CrossRef]
- Gazeau, F.; Gattuso, J.; Dawber, C.; Pronker, A.; Peene, F.; Peene, J.; Heip, C.; Middelburg, J. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 2010, 7, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Barton, A.; Hales, B.; Waldbusser, G.G.; Langdon, C.; Feely, R.A. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr. 2012, 57, 698–710. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, A.; Davis, H.C. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biol. Bull. 1966, 131, 427–436. [Google Scholar] [CrossRef]
- Zippay, M.K.L.; Hofmann, G.E. Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens). J. Shellfish Res. 2010, 29, 429–439. [Google Scholar] [CrossRef]
- Cummings, V.; Hewitt, J.; van Rooyen, A.; Currie, K.; Beard, S.; Thrush, S.; Norkko, J.; Barr, N.; Heath, P.; Halliday, N.J. Ocean acidification at high latitudes: Potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS One 2011, 6, e16069. [Google Scholar]
- Ellis, R.P.; Bersey, J.; Rundle, S.D.; Hall-Spencer, J.M.; Spicer, J.I. Subtle but significant effects of C02 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat. Biol. 2009, 5, 41–48. [Google Scholar] [CrossRef]
- Lischka, S.; Buedenbender, J.; Boxhammer, T.; Riebesell, U. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth. Biogeosciences 2010, 7, 8177–8214. [Google Scholar] [CrossRef]
- Cooley, S.R.; Doney, S.C. Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ. Res. Lett. 2009, 4. [Google Scholar] [CrossRef]
- Kroeker, K.J.; Kordas, R.L.; Crim, R.N.; Singh, G.G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 2010, 13, 1419–1434. [Google Scholar] [CrossRef]
- Talmage, S.C.; Gobler, C.J. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc. Natl. Acad. Sci. USA 2010, 107, 17246–17251. [Google Scholar] [CrossRef]
- Pechenik, J.A. Larval experience and latent effects—Metamorphosis is not a new beginning. Integr. Comp. Biol. 2006, 46, 323–333. [Google Scholar] [CrossRef]
- Bibby, R.; Cleall Hardsing, P.; Rundle, S.; Widdicombe, S.; Spicer, J. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol. Lett. 2007, 3, 699–701. [Google Scholar] [CrossRef]
- Amaral, V.; Cabral, H.N.; Bishop, M.J. Effects of estuarine acidification on predator-prey interactions. Mar. Ecol. Prog. Ser. 2012, 445, 117–127. [Google Scholar] [CrossRef]
- Amaral, V.; Cabral, H.N.; Bishop, M.J. Moderate acidification affects growth but not survival of 6-month-old oysters. Aquat. Ecol. 2012, 1–9. [Google Scholar]
- Wilson, S.P.; Hyne, R.V. Toxicity of acid-sulfate soil leachate and aluminum to embryos of the Sydney rock oyster. Ecotox. Environ. Saf. 1997, 37, 30–36. [Google Scholar] [CrossRef]
- Bibby, R.; Widdicombe, S.; Parry, H.; Spicer, J.; Pipe, R. Effect of ocean acidification on the immune response of the blue mussel, Mytilus edulis. Aquat. Biol. 2008, 2, 67–74. [Google Scholar] [CrossRef]
- Silliman, B.R.; van de Koppel, J.B.; Bertness, M.D.; Stanton, L.E.; Mendelssohn, I.A. Drought, snails, and large-scale die-off of Southern U.S. Saltmarshes. Science 2005, 1803-1806, 409–410. [Google Scholar]
- Najjar1, R.G.; Walker, H.A.; Anderson, P.J.; Barron, E.J.; Bord, R.J.; Gibson, J.R.; Kennedy, V.S.; Knight, C.G.; Megonigal, J.P.; O’Connor, R.E.; et al. The potential impacts of climate change on the mid-Atlantic coastal region. Clim. Res. 2000, 14, 219–233. [Google Scholar] [CrossRef]
- Parker, L.M.; Ross, P.M.; O’Connor, W.A.; Borysko, L.; Raftos, D.A.; Pörtner, H.O. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 2012, 18, 82–92. [Google Scholar] [CrossRef]
- Byrne, M.; Selvakumaraswamy, P.; Ho, M.; Woolsey, E.; Nguyen, H. Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules. Deep Sea Res. Part II 2011, 58, 712–719. [Google Scholar] [CrossRef]
- Byrne, M.; Soars, N.A.; Ho, M.A.; Wong, E.; McElroy, D.; Selvakumaraswamy, P.; Dworjanyn, S.A.; Davis, A.R. Fertilization in a suite of coastal marine invertebrates from South East Australia is robust to near-future ocean warming and acidification. Mar. Biol. 2010, 157, 2061–2069. [Google Scholar]
- Byrne, M.; Soars, N.; Selvakumaraswamy, P.; Dworjanyn, S.A.; Davis, A.R. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar. Environ. Res. 2010, 69, 234–239. [Google Scholar] [CrossRef]
- Dupont, S.; Lundve, B.; Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. Part B 2010, 314, 382–389. [Google Scholar] [CrossRef]
- Kurihara, H.; Shirayama, Y. Effects of increased atmospheric CO2 on sea urchin early development. Mar. Ecol. Prog. Ser. 2004, 274, 161–169. [Google Scholar] [CrossRef]
- Clark, D.; Lamare, M.; Barker, M. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: A comparison among a tropical, temperate, and a polar species. Mar. Biol. 2009, 156, 1125–1137. [Google Scholar] [CrossRef]
- Havenhand, J.N.; Buttler, F.R.; Thorndyke, M.C.; Williamson, J.E. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol. 2008, 18, 651–652. [Google Scholar] [CrossRef]
- Byrne, M.; Ho, M.; Selvakumaraswamy, P.; Nguyen, H.D.; Dworjanyn, S.A.; Davis, A.R. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc. R. Soc. Lond. B Biol. 2009, 276, 1883–1888. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Todgham, A.E.; Sewell, M.A.; Hammond, L.T.M.; Ruggiero, K.; Fangue, N.A.; Zippay, M.L.; Hofmann, G.E. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar. Ecol. Prog. Ser. 2010, 398, 157–171. [Google Scholar] [CrossRef]
- Dupont, S.; Havenhand, J.; Thorndyke, W.; Peck, L.; Thorndyke, M. Near-future level of CO2 -driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser. 2008, 373, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Richier, S.; Pedrotti, M.L.; Dupont, S.; Castejon, C.; Gerakis, Y.; Kerros, M.E.; Oberhänsli, F.; Teyssié, J.L.; Jeffree, R. Early development and molecular plasticity in the mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J. Exp. Biol. 2011, 214, 1357–1368. [Google Scholar] [CrossRef]
- Moulin, L.; Catarino, A.I.; Claessens, T.; Dubois, P. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus Lamarck 1816). Mar. Poll. Bull. 2011, 62, 48–54. [Google Scholar] [CrossRef]
- Ericson, J.A.; Lamare, M.D.; Morley, S.A.; Barker, M.F. The response of two ecologically important antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: Effects on fertilisation and embryonic development. Mar. Biol. 2010, 157, 2689–2702. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Hammond, L.T.M.; Hofmann, G.E. Predicted impact of ocean acidification on a marine invertebrate: Elevated CO2 alters response to thermal stress in sea urchin larvae. Mar. Biol. 2009, 156, 439–446. [Google Scholar] [CrossRef]
- Reuter, K.I.M.E.; Lotterhos, K.E.; Crim, R.N.; Thompson, C.A.; Harley, C.D.G. Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus. Glob. Change Biol. 2011, 17, 163–171. [Google Scholar] [CrossRef]
- Abele, L.G.; Institution, S. A Review of the Grapsid Crab Genus Sesarma (Crustacea: Decapoda: Grapsidae) in America, with the Description of a New Genus; Smithsonian Institution Press: Washington, DC, USA, 1992. [Google Scholar]
- Montague, C.L. The Influence of Fiddler Crab Burrows and Burrowing on Metabolic Processes in Salt Marsh Sediments. In Estuarine Comparisons; Kennedy, K.S., Ed.; Academic Press: New York, NY, USA, 1982; pp. 283–301. [Google Scholar]
- Bertness, M.D. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 1985, 66, 1042–1055. [Google Scholar] [CrossRef]
- Smith, T.J., III; Boto, K.G.; Frusher, S.D.; Giddins, R.L. Keystone species and mangrove forest dynamics: The influence of burrowing by crabs on soil nutrient status and forest productivity. Estuar. Coast. Shelf Sci. 1991, 33, 419–432. [Google Scholar] [CrossRef]
- Zimmer, M.; Pennings, S.; Buck, T.L.; Carefoot, T.H. Salt marsh litter and detritivores: A closer look at redundancy. Estuaries 2004, 27, 753–769. [Google Scholar] [CrossRef]
- Warren, J.H.; Underwood, A. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. J. Exp. Mar. Biol. Ecol. 1986, 102, 223–235. [Google Scholar] [CrossRef]
- Mazumder, D.; Saintilan, N.; Williams, R.J. Trophic relationships between itinerant fish and crab larvae in a temperate Australian saltmarsh. Mar. Freshw. Res. 2006, 57, 193–199. [Google Scholar] [CrossRef]
- Mazumder, D. Ecology of burrowing crabs in temperate saltmarsh of south-east Australia. In Australian Saltmarsh Ecology; Saintilan, N., Ed.; CSIRO Publishing: Melbourne, Australia, 2009; pp. 115–131. [Google Scholar]
- Guest, M.A.; Connolly, R.M.; Loneragan, N.R. Carbon movement and assimilation by invertebrates in estuarine habitats at a scale of metres. Mar. Ecol. Prog. Ser. 2004, 278, 27–34. [Google Scholar] [CrossRef]
- Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 2009, 389, 193–202. [Google Scholar] [CrossRef]
- McDonald, M.R.; McClintock, J.B.; Amsler, C.D.; Rittschof, D.; Angus, R.A.; Orihuela, B.; Lutostanski, K. Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar. Ecol. Prog. Ser. 2009, 385, 179–187. [Google Scholar] [CrossRef]
- Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar. Biol. 2010, 157, 725–735. [Google Scholar] [CrossRef]
- Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuar. Coast. Shelf Sci. 2010, 86, 675–682. [Google Scholar] [CrossRef]
- Walther, K.; Anger, K.; Pörtner, H.O. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79° N). Mar. Ecol. Prog. Ser. 2010, 417, 159–170. [Google Scholar] [CrossRef]
- Egilsdottir, H.; Spicer, J.I.; Rundle, S.D. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach). Mar. Poll. Bull. 2009, 58, 1187–1191. [Google Scholar] [CrossRef]
- Kurihara, H.; Ishimatsu, A. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar. Poll. Bull. 2008, 56, 1086–1090. [Google Scholar] [CrossRef]
- Mayor, D.; Matthews, C.; Cook, K.; Zuur, A.; Hay, S. CO2 induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 2007, 350, 91–97. [Google Scholar] [CrossRef]
- Ries, J.B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta 2011, 75, 4053–4064. [Google Scholar] [CrossRef]
- Hollingsworth, A.; Connolly, R.M. Feeding by fish visiting inundated subtropical saltmarsh. J. Exper. Mar. Biol. Ecol. 2006, 336, 88–98. [Google Scholar] [CrossRef]
- Connolly, R.M. Fish on Australian Saltmarshes. In Australian Saltmarsh Ecology; Saintilan, N., Ed.; CSIRO Publishing: Melbourne, Australia, 2009; pp. 131–149. [Google Scholar]
- Robertson, A.; Duke, N. Mangroves as nursery sites: Comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical australia. Mar. Biol. 1987, 96, 193–205. [Google Scholar] [CrossRef]
- Odum, W.E.; Heald, E.J. Mangrove Forests and Aquatic Productivity. In Coupling of Land and Water Systems; Hasler, A.D., Ed.; Springer Verlag: New York, NY, USA, 1975; pp. 129–136. [Google Scholar]
- Connolly, R.M. Saltmarsh as habitat for fish and nektonic crustaceans: Challenges in sampling designs and methods. Aust. J. Ecol. 1999, 24, 422–430. [Google Scholar] [CrossRef]
- Crinall, S.; Hindell, J. Assessing the use of saltmarsh flats by fish in a temperate australian embayment. Estuar. Coasts 2004, 27, 728–739. [Google Scholar] [CrossRef]
- Bloomfield, A.; Gillanders, B. Fish and invertebrate assemblages in seagrass, mangrove, saltmarsh, and nonvegetated habitats. Estuar. Coasts 2005, 28, 63–77. [Google Scholar] [CrossRef]
- Thomas, B.E.; Connolly, R.M. Fish use of subtropical saltmarshes in Queensland, Australia: Relationships with vegetation, water depth and distance onto the marsh. Mar. Ecol. Prog. Ser. 2001, 209, 275–288. [Google Scholar] [CrossRef]
- Kneib, R.; Stiven, A. Growth, reproduction, and feeding of Fundulus heteroclitus (L.) on a North Carolina salt marsh. J. Exp. Mar. Biol. Ecol. 1978, 31, 121–140. [Google Scholar] [CrossRef]
- Moy, L.D.; Levin, L.A. Are Spartina marshes a replaceable resource? A functional approach to evaluation of marsh creation efforts. Estuar. Coasts 1991, 14, 1–16. [Google Scholar] [CrossRef]
- Rozas, L.P.; LaSalle, M.W. A comparison of the diets of gulf killifish, Fundulus grandis baird and Girard, entering and leaving a Mississippi brackish marsh. Estuar. Coasts 1990, 13, 332–336. [Google Scholar] [CrossRef]
- Turner, R.E.; Boesch, D.F. Aquatic Animal Production and Wetland Relationships: Insights Gleaned Following Wetland Loss or Gain. In Ecology and Management of Wetlands; Hook, B., Ed.; Croon Helms Ltd.: Beckenham, UK, 1987. [Google Scholar]
- Munday, P.L.; Dixson, D.L.; Donelson, J.M.; Jones, G.P.; Pratchett, M.S.; Devitsina, G.V.; Døving, K.B. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA 2009, 106, 1848–1852. [Google Scholar] [CrossRef]
- Munday, P.L.; Donelson, J.M.; Dixson, D.L.; Endo, G.G.K. Effects of ocean acidification on the early life history of a tropical marine fish. Proc. R. Soc. B Biol. 2009, 276, 3275–3283. [Google Scholar] [CrossRef]
- Checkley, D.M., Jr.; Dickson, A.G.; Takahashi, M.; Radich, J.A.; Eisenkolb, N.; Asch, R. Elevated CO2 enhances otolith growth in young fish. Science 2009, 324, 1683–1683. [Google Scholar] [CrossRef]
- Frommel, A.; Stiebens, V.; Clemmesen, C.; Havenhand, J. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences 2010, 7, 5859–5872. [Google Scholar] [CrossRef]
- Franke, A.; Clemmesen, C. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 2011, 8, 3697–3707. [Google Scholar] [CrossRef] [Green Version]
- Domenici, P.; Allan, B.; McCormick, M.I.; Munday, P.L. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett. 2012, 8, 78–81. [Google Scholar] [CrossRef]
- Hughes, R. Climate change and loss of saltmarshes: Consequences for birds. Ibis 2004, 146, 214. [Google Scholar] [CrossRef]
- Traill, L.W.; Whitehead, P.J.; Brook, B.W. How will climate change affect plant-herbivore interactions: A tropical waterbird case study. Emu 2009, 109, 126–134. [Google Scholar] [CrossRef]
- Woodley, K. Godwits. Long-haul Champions; Raupo: Auckland, New Zealand, 2009. [Google Scholar]
- Hollands, D.; Minton, C. Waders. The Shorebirds of Australia; Bloomings Books: Melbourne, Australia, 2012. [Google Scholar]
- Visser, J.M.; Baltz, D.M. Ecosystem Structure of Tidal Saline Marshes. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 425–444. [Google Scholar]
- Tobias, C.; Neubauer, S.C. Saltmarsh Biogeochemistry-an Overview. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 445–493. [Google Scholar]
- Twilley, R.R.; Rivera‐Monroy, V. Sediment and nutrient tradeoffs in restoring Mississippi river delta: Restoration vs. eutrophication. J. Contemp. Water Res. Educ. 2009, 141, 39–44. [Google Scholar] [CrossRef]
- Brander, L.M.; Florax, R.J.G.M.; Vermaat, J.E. The empirics of wetland valuation: A comprehensive summary and a meta-analysis of the literature. Environ. Resour. Econ. 2006, 33, 223–250. [Google Scholar] [CrossRef]
- Nellemann, C.; Corcoran, E.; Duarte, E.; Valdes, L.; de Young, C.; Fonseca, L.; Grimsditch, G. Blue Carbon, A Rapid Assessment. United Nations Environment Programme; GRID-Arendal: Birkeland Trykkeri AS, Birkeland, Norway, 2009. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ross, P.M.; Adam, P. Climate Change and Intertidal Wetlands. Biology 2013, 2, 445-480. https://doi.org/10.3390/biology2010445
Ross PM, Adam P. Climate Change and Intertidal Wetlands. Biology. 2013; 2(1):445-480. https://doi.org/10.3390/biology2010445
Chicago/Turabian StyleRoss, Pauline M., and Paul Adam. 2013. "Climate Change and Intertidal Wetlands" Biology 2, no. 1: 445-480. https://doi.org/10.3390/biology2010445
APA StyleRoss, P. M., & Adam, P. (2013). Climate Change and Intertidal Wetlands. Biology, 2(1), 445-480. https://doi.org/10.3390/biology2010445