Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars
Abstract
:1. Introduction
2. Study Area
3. Scientific Background
3.1. Water, Ice and Glacial Forms on Mars
3.2. Terrestrial Rock Glacier Characteristics
4. Equations Controlling Rock Glacier Flow
5. Methodology
6. Analysis
Red Lobe | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Basal Shear Stress τb = ρgh(tan α) | ||||||||||||
Point | Slope (deg) | Elevation (m) | Basal Elevation Calculation (m) | Adjusted Lobe Height (m) | 100% Rock Thickness (m) (Current) | 35% Ice, 65% Rock Thickness (m) (Low) | 50% Ice, 50% Rock Thickness (m) (High) | Tb (Basal Shear Stress) Pure Ice (kPa) | 35% Ice, 65% Rock τb (Basal Shear Stress) Rock/Ice mix (kPa) | 50% Ice, 50% Rock τb (Basal Shear Stress) Rock/Ice mix (kPa) | ||
1 | 17.41 | −2252 | −2331 | −79 | 79 | 122 | 158.20 | 84.38 | 254.90 | 331.37 | Density of Rock/Ice Mix (ρ) | 1800 kg/m3 |
2 | 14.31 | −2434 | −2494 | −60 | 60 | 93 | 120.96 | 52.50 | 158.59 | 206.16 | Density of Ice (ρ) | 917 kg/m3 |
3 | 14.50 | −2624 | −2659 | −35 | 35 | 54 | 70.62 | 31.07 | 93.85 | 122.00 | Gravity on Mars | 3.71 m/s2 |
4 | 16.65 | −2836 | −2887 | −51 | 51 | 78 | 101.12 | 51.44 | 155.39 | 202.00 | Middle lobe Length | 8.5 km |
5 | 14.61 | −3020 | −3069 | −49 | 49 | 75 | 97.58 | 43.27 | 130.71 | 169.92 | Average Height | 83 m |
6 | 12.99 | −3169 | −3213 | −44 | 44 | 68 | 87.88 | 34.47 | 104.13 | 135.37 | Average Slope | 13° |
7 | 13.99 | −3312 | −3404 | −92 | 92 | 142 | 184.04 | 77.98 | 235.57 | 306.24 | 35% Ice, 65% Rock Average Basal Shear Stress | 193 kPa |
8 | 13.89 | −3456 | −3613 | −157 | 157 | 242 | 314.06 | 132.13 | 399.14 | 518.89 | ||
9 | 8.86 | −3630 | −3750 | −120 | 120 | 185 | 240.04 | 63.66 | 192.30 | 249.99 | 50% Ice, 50% Rock Average Basal Shear Stress | 8.5251 kPa |
10 | 6.36 | −3717 | −3829 | −112 | 112 | 172 | 224.14 | 42.48 | 128.34 | 166.84 | ||
11 | 12.77 | −3838 | −3954 | −116 | 116 | 179 | 232.10 | 89.46 | 270.25 | 351.32 |
Temp (−50 °C) 35% Ice, 65% Rock |
Temp (−50 °C) 50% Ice, 50% Rock |
Temp (−50 °C) 35% Ice, 65% Rock |
Temp (−50 °C) 50% Ice, 50% Rock | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Point | m/s | = | k | τ | ^n | m/s | = | k | τ | ^n | Point | m/yr | m/yr |
1 | 1.9 × 10−11 | = | 3.6 × 10−18 | 255 | 2 | 5.9 × 10−4 | = | 3.6 × 10−18 | 331 | 2 | 1 | 0.0005984 | 0.0007780 |
2 | 5.6 × 10−12 | = | 3.6 × 10−18 | 159 | 2 | 1.7 × 10−4 | = | 3.6 × 10−18 | 206 | 2 | 2 | 0.0001771 | 0.0002302 |
3 | 1.1 × 10−12 | = | 3.6 × 10−18 | 94 | 2 | 3.6 × 10−5 | = | 3.6 × 10−18 | 122 | 2 | 3 | 0.0000362 | 0.0000471 |
4 | 4.5 × 10−12 | = | 3.6 × 10−18 | 155 | 2 | 1.4 × 10−4 | = | 3.6 × 10−18 | 202 | 2 | 4 | 0.0001421 | 0.0001848 |
5 | 3.0 × 10−12 | = | 3.6 × 10−18 | 131 | 2 | 9.7 × 10−5 | = | 3.6 × 10−18 | 170 | 2 | 5 | 0.0000971 | 0.0001262 |
6 | 1.7 × 10−12 | = | 3.6 × 10−18 | 104 | 2 | 5.5 × 10−5 | = | 3.6 × 10−18 | 135 | 2 | 6 | 0.0000555 | 0.0000721 |
7 | 1.8 × 10−11 | = | 3.6 × 10−18 | 236 | 2 | 5.9 × 10−4 | = | 3.6 × 10−18 | 306 | 2 | 7 | 0.0005946 | 0.0007730 |
8 | 9.2 × 10−11 | = | 3.6 × 10−18 | 399 | 2 | 2.9 × 10−3 | = | 3.6 × 10−18 | 519 | 2 | 8 | 0.0029130 | 0.0037870 |
9 | 1.6 × 10−11 | = | 3.6 × 10−18 | 192 | 2 | 5.1 × 10−4 | = | 3.6 × 10−18 | 250 | 2 | 9 | 0.0005168 | 0.0006718 |
10 | 6.8 × 10−12 | = | 3.6 × 10−18 | 128 | 2 | 2.1 × 10−4 | = | 3.6 × 10−18 | 167 | 2 | 10 | 0.0002149 | 0.0002794 |
11 | 3.1 × 10−11 | = | 3.6 × 10−18 | 270 | 2 | 9.8 × 10−4 | = | 3.6 × 10−18 | 351 | 2 | 11 | 0.0009869 | 0.0012830 |
Average | 0.0005757 | 0.0007484 | |||||||||||
Temp (0 °C) 35% Ice, 65% Rock | Temp (0 °C) 50% Ice, 50% Rock | Temp (0 °C) 35% Ice, 65% Rock | Temp (0 °C) 50% Ice, 50% Rock | ||||||||||
Point | m/s | = | k | τ | ^n | m/s | = | k | τ | ^n | Point | m/yr | m/yr |
1 | 3.5 × 10−8 | = | 6.8 × 10−15 | 255 | 2 | 1.1 × 100 | = | 6.8 × 10−15 | 331 | 2 | 1 | 1.13039 | 1.46951 |
2 | 1.0 × 10−8 | = | 6.8 × 10−15 | 159 | 2 | 3.3 × 10−1 | = | 6.8 × 10−15 | 206 | 2 | 2 | 0.33454 | 0.43490 |
3 | 2.1 × 10−9 | = | 6.8 × 10−15 | 94 | 2 | 6.8 × 10−2 | = | 6.8 × 10−15 | 122 | 2 | 3 | 0.06840 | 0.08892 |
4 | 8.5 × 10−9 | = | 6.8 × 10−15 | 155 | 2 | 2.6 × 10−1 | = | 6.8 × 10−15 | 202 | 2 | 4 | 0.26850 | 0.34905 |
5 | 5.8 × 10−9 | = | 6.8 × 10−15 | 131 | 2 | 1.8 × 10−1 | = | 6.8 × 10−15 | 170 | 2 | 5 | 0.18333 | 0.23834 |
6 | 3.3 × 10−9 | = | 6.8 × 10−15 | 104 | 2 | 1.0 × 10−1 | = | 6.8 × 10−15 | 135 | 2 | 6 | 0.10479 | 0.13622 |
7 | 3.5 × 10−8 | = | 6.8 × 10−15 | 236 | 2 | 1.1 × 100 | = | 6.8 × 10−15 | 306 | 2 | 7 | 0.10479 | 1.46010 |
8 | 1.7 × 10−7 | = | 6.8 × 10−15 | 399 | 2 | 5.5 × 100 | = | 6.8 × 10−15 | 519 | 2 | 8 | 1.12315 | 7.15315 |
9 | 3.1 × 10−8 | = | 6.8 × 10−15 | 192 | 2 | 9.7 × 10−1 | = | 6.8 × 10−15 | 250 | 2 | 9 | 5.50242 | 1.26897 |
10 | 1.2 × 10−8 | = | 6.8 × 10−15 | 128 | 2 | 4.0 × 10−1 | = | 6.8 × 10−15 | 167 | 2 | 10 | 0.97613 | 0.52778 |
11 | 5.9 × 10−8 | = | 6.8 × 10−15 | 270 | 2 | 1.8 × 100 | = | 6.8 × 10−15 | 351 | 2 | 11 | 0.40598 | 2.42343 |
Average | 1.08744 | 1.41367 |
Lobe Complex Study | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Density of Rock (ρ) | 1800 kg/m3 | Basal Shear Stress τb = ρgh(tan α) | Surface Flow Rate Us = ((2A)/(n + 1)) τbnh | ||||||||
Density of Ice (ρ) | 916.7 kg/m3 | ||||||||||
Gravity on Mars | 3.711 m/s² | ||||||||||
Lobe Color (#) | Average Slope (deg) | Lobe Length (km) | Average Height (m) | 35% Ice, 65% Rock Reconstructed Height (m) | 50% Ice, 50% Rock Reconstructed Height (m) | 35% Ice, 65% Rock Average Basal Shear Stress (kPa) | 50% Ice, 50% Rock Average Basal Shear Stress (kPa) | Temp (−50 °C) 35% Ice, 65% Rock (m/yr) | Temp (−50 °C) 50% Ice, 50% Rock (m/yr) | Temp (0 °C) 35% Ice, 65% Rock (m/yr) | Temp (0 °C) 50% Ice, 50% Rock m/yr |
Red (1) | 13.30 | 8.50 | 123.18 | 189.51 | 246.36 | 193.01 | 250.92 | 5.76 × 10−4 | 7.48 × 10−4 | 1.087 | 1.414 |
Black (2) | 13.45 | 6.56 | 84.92 | 130.64 | 169.84 | 212.12 | 275.75 | 6.91 × 10−4 | 8.99 × 10−4 | 1.306 | 1.697 |
Blue (3) | 10.63 | 4.98 | 100.94 | 155.30 | 201.89 | 299.82 | 389.76 | 1.49 × 10−3 | 3.27 × 10−3 | 2.810 | 6.173 |
Orange (4) | 20.73 | 5.93 | 52.27 | 80.42 | 104.54 | 200.41 | 260.53 | 6.61 × 10−4 | 1.45 × 10−3 | 1.248 | 2.743 |
Light Blue (5) | 23.04 | 5.33 | 47.56 | 73.17 | 95.12 | 206.10 | 267.92 | 4.18 × 10−4 | 9.17 × 10−4 | 0.789 | 1.733 |
Green (6) | 22.39 | 5.68 | 35.92 | 55.26 | 71.83 | 181.19 | 235.54 | 3.44 × 10−4 | 7.56 × 10−4 | 0.650 | 1.427 |
Pink (7) | 22.95 | 6.68 | 19.55 | 30.08 | 39.11 | 86.50 | 112.45 | 7.55 × 10−5 | 1.66 × 10−4 | 0.143 | 0.313 |
Grey (8) | 21.40 | 6.35 | 33.84 | 52.06 | 67.68 | 156.46 | 203.40 | 1.54 × 10−4 | 5.20 × 10−4 | 0.291 | 0.982 |
Dark Red (9) | 22.91 | 1.74 | 56.54 | 86.98 | 113.08 | 249.92 | 324.89 | 3.63 × 10−4 | 1.23 × 10−3 | 0.685 | 2.316 |
Yellow (10) | 16.64 | 4.55 | 41.21 | 63.40 | 82.42 | 130.18 | 169.23 | 8.24 × 10−5 | 2.78 × 10−4 | 0.156 | 0.526 |
7. Discussion/Synthesis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clifford, S.M. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. Planets 1993, 98, 10973–11016. [Google Scholar] [CrossRef] [Green Version]
- Mège, D.; Bourgeois, O. Equatorial glaciations on Mars revealed by gravitational collapse of Valles Marineris wallslopes. Earth Planet. Sci. Lett. 2011, 310, 182–191. [Google Scholar] [CrossRef]
- Wordsworth, R.D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 2016, 44, 381–408. [Google Scholar] [CrossRef] [Green Version]
- Mitrofanov, I.; Malakhov, A.; Djachkova, M.; Golovin, D.; Litvak, M.; Mokrousov, M.; Sanin, A.; Svedhem, H.; Zelenyi, L. The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars. Icarus 2022, 374, 114805. [Google Scholar] [CrossRef]
- Forget, F. Mars CO 2 Ice Polar Caps. In Solar System Ices; Springer: New York, NY, USA, 1998; pp. 477–507. [Google Scholar]
- Parry Rubincam, D. Mars secular obliquity change due to water ice caps. J. Geophys. Res. Planets 1999, 104, 30765–30771. [Google Scholar] [CrossRef]
- Baker, D.M.; Head, J.W.; Marchant, D.R. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus 2010, 207, 186–209. [Google Scholar] [CrossRef]
- Brough, S.; Hubbard, B.; Hubbard, A. Area and volume of mid-latitude glacier-like forms on Mars. Earth Planet. Sci. Lett. 2019, 507, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Dickson, J.L.; Head, J.W.; Marchant, D.R. Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases. Geology 2008, 36, 411–414. [Google Scholar] [CrossRef]
- Head, J.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 2005, 434, 346–351. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.; Agnew, M.; Fassett, C.; Kreslavsky, M. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett. 2006, 241, 663–671. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.R.; Dickson, J.L.; Kress, A.M.; Baker, D.M. Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth Planet. Sci. Lett. 2010, 294, 306–320. [Google Scholar] [CrossRef]
- Hubbard, B.; Milliken, R.E.; Kargel, J.S.; Limaye, A.; Souness, C. Geomorphological characterisation and interpretation of a mid-latitude glacier-like form: Hellas Planitia, Mars. Icarus 2011, 211, 330–346. [Google Scholar] [CrossRef]
- Hubbard, B.; Souness, C.; Brough, S. Glacier-like forms on Mars. Cryosphere 2014, 8, 2047–2061. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, K.; Head, J.; Marchant, D. Remnant Buried Ice in the Arsia Mons Fan-Shaped Deposit, Mars. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015. [Google Scholar]
- Shean, D.E.; Head, J.W., III; Fastook, J.L.; Marchant, D.R. Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Gourronc, M.; Bourgeois, O.; Mège, D.; Pochat, S.; Bultel, B.; Massé, M.; le Deit, L.; le Mouélic, S.; Mercier, D. One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5 Gy old glacial landsystem along the Martian equator. Geomorphology 2014, 204, 235–255. [Google Scholar] [CrossRef]
- Brough, S.; Hubbard, B.; Hubbard, A. Former extent of glacier-like forms on Mars. Icarus 2016, 274, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Forget, F.; Haberle, R.; Montmessin, F.; Levrard, B.; Head, J. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 2006, 311, 368–371. [Google Scholar] [CrossRef]
- Mellon, M.T.; Feldman, W.C.; Prettyman, T.H. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 2004, 169, 324–340. [Google Scholar] [CrossRef]
- Mellon, M.T.; Jakosky, B.M. The distribution and behavior of Martian ground ice during past and present epochs. J. Geophys. Res. Planets 1995, 100, 11781–11799. [Google Scholar] [CrossRef] [Green Version]
- Ward, W.R. Large-scale variations in the obliquity of Mars. Science 1973, 181, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, M.T.; Guzzetti, F.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Mancinelli, P.; Komatsu, G.; Borselli, L. Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars. Earth Planet. Sci. Lett. 2014, 405, 156–168. [Google Scholar] [CrossRef]
- Abe, Y.; Numaguti, A.; Komatsu, G.; Kobayashi, Y. Four climate regimes on a land planet with wet surface: Effects of obliquity change and implications for ancient Mars. Icarus 2005, 178, 27–39. [Google Scholar] [CrossRef]
- Bills, B.; Keane, J. Mars Obliquity Variations are Both Non-Chaotic and Probably Fully Damped. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019. [Google Scholar]
- Fastook, J.L.; Head, J.W.; Marchant, D.R.; Forget, F. Tropical mountain glaciers on Mars: Altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history. Icarus 2008, 198, 305–317. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.R. Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology 2003, 31, 641–644. [Google Scholar] [CrossRef]
- Head, J.W.; Nahm, A.L.; Marchant, D.R.; Neukum, G. Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Laskar, J.; Correia, A.; Gastineau, M.; Joutel, F.; Levrard, B.; Robutel, P. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 2004, 170, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Toigo, A.D.; Waugh, D.W.; Guzewich, S.D. Atmospheric transport into polar regions on Mars in different orbital epochs. Icarus 2020, 347, 113816. [Google Scholar] [CrossRef]
- Vos, E.; Aharonson, O.; Schorghofer, N. Dynamic and isotopic evolution of ice reservoirs on Mars. Icarus 2019, 324, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vos, E.; Aharonson, O.; Schorghofer, N.; Forget, F.; Millour, E. Milankovitch-driven redistribution and fractionation of ice deposits on Mars. In Proceedings of the 50th EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September 2019. [Google Scholar]
- Weiss, D.K. Mars in ice ages for∼25% of post-Noachian geologic history. Earth Planet. Sci. Lett. 2019, 528, 115847. [Google Scholar] [CrossRef]
- Williams, J.P.; van der Bogert, C.H.; Pathare, A.V.; Michael, G.G.; Kirchoff, M.R.; Hiesinger, H. Dating very young planetary surfaces from crater statistics: A review of issues and challenges. Meteorit. Planet. Sci. 2018, 53, 554–582. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.; Scuderi, L.A.; Newsom, H.E. Constraining Possible Glacial Reworking of Ancient Fluvial Channels on the Dichotomy Boundary at Equatorial Regions, Mars. In Proceedings of the AGU Fall Meeting Abstracts, 2020; Available online: https://ui.adsabs.harvard.edu/abs/2020AGUFMP038...02W/abstract (accessed on 28 February 2022).
- Deit, L.L.; Hauber, E.; Fueten, F.; Pondrelli, M.; Rossi, A.P.; Jaumann, R. Sequence of infilling events in Gale Crater, Mars: Results from morphology, stratigraphy, and mineralogy. J. Geophys. Res. Planets 2013, 118, 2439–2473. [Google Scholar] [CrossRef] [Green Version]
- Fairén, A.G.; Stokes, C.R.; Davies, N.S.; Schulze-Makuch, D.; Rodríguez, J.A.P.; Davila, A.F.; Uceda, E.R.; Dohm, J.M.; Baker, V.R.; Clifford, S.M. A cold hydrological system in Gale crater, Mars. Planet. Space Sci. 2014, 93, 101–118. [Google Scholar] [CrossRef]
- Schorghofer, N. Temperature response of Mars to Milankovitch cycles. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Ward, W.R. Climatic variations on Mars: 1. Astronomical theory of insolation. J. Geophys. Res. 1974, 79, 3375–3386. [Google Scholar] [CrossRef]
- Madeleine, J.B.; Head, J.W.; Forget, F.; Navarro, T.; Millour, E.; Spiga, A.; Colaïtis, A.; Määttänen, A.; Montmessin, F.; Dickson, J.L. Recent ice ages on Mars: The role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 2014, 41, 4873–4879. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.B.; Bell, J.F., III. Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars J. 2010, 5, 76–128. [Google Scholar] [CrossRef] [Green Version]
- Le Deit, L.; Hauber, E.; Fueten, F.; Pondrelli, M.; Rossi, A.; Mangold, N.; Jaumann, R. Geological study of Gale Crater on Mars. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 5–9 December 2011. [Google Scholar]
- Gallegos, Z.; Newsom, H.; Scuderi, L.; Gasnault, O.; le Mouélic, S.; Wiens, R.; Maurice, S. New Insights into the Extensive Inverted Features Within Gale Crater, Mars. In Proceedings of the Lunar and Planetary Science Conference, Woodlands, TX, USA, 16–20 March 2020. [Google Scholar]
- Newsom, H.; Scuderi, L.; Gallegos, Z.; Williams, J.; Dimitracopoulos, G.; Tornabene, L.; Wiens, R.; Gasnault, O. Evidence for Glacial and Fluvial Processes on Gale Crater Rim–Dulce Vallis. In Proceedings of the Lunar and Planetary Science Conference, Woodlands, TX, USA, 15–19 March 2021. [Google Scholar]
- Oehler, D.Z.; Mangold, N.; Hallet, B.; Fairén, A.G.; le Deit, L.; Williams, A.J.; Sletten, R.S.; Martínez-Frías, J. Origin and significance of decameter-scale polygons in the lower Peace Vallis fan of Gale crater, Mars. Icarus 2016, 277, 56–72. [Google Scholar] [CrossRef]
- Stack, K.M.; Grotzinger, J.P.; Lamb, M.P.; Gupta, S.; Rubin, D.M.; Kah, L.C.; Edgar, L.A.; Fey, D.M.; Hurowitz, J.A.; McBride, M. Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Sedimentology 2019, 66, 1768–1802. [Google Scholar] [CrossRef] [Green Version]
- Thomson, B.; Bridges, N.; Milliken, R.; Baldridge, A.; Hook, S.; Crowley, J.; Marion, G.; Filho, C.d.; Brown, A.; Weitz, C. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 2011, 214, 413–432. [Google Scholar] [CrossRef]
- Day, M.; Anderson, W.; Kocurek, G.; Mohrig, D. Carving intracrater layered deposits with wind on Mars. Geophys. Res. Lett. 2016, 43, 2473–2479. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, aac7575. [Google Scholar] [CrossRef] [PubMed]
- Malin, M.C.; Edgett, K.S. Sedimentary rocks of early Mars. Science 2000, 290, 1927–1937. [Google Scholar] [CrossRef]
- Anderson, R.B.; Edgar, L.A.; Rubin, D.M.; Lewis, K.W.; Newman, C. Complex bedding geometry in the upper portion of Aeolis Mons, Gale crater, Mars. Icarus 2018, 314, 246–264. [Google Scholar] [CrossRef]
- Banham, S.G.; Gupta, S.; Rubin, D.M.; Watkins, J.A.; Sumner, D.Y.; Edgett, K.S.; Grotzinger, J.P.; Lewis, K.W.; Edgar, L.A.; Stack-Morgan, K.M. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology 2018, 65, 993–1042. [Google Scholar] [CrossRef] [Green Version]
- Rapin, W.; Dromart, G.; Rubin, D.; Deit, L.L.; Mangold, N.; Edgar, L.A.; Gasnault, O.; Herkenhoff, K.; le Mouélic, S.; Anderson, R. Alternating wet and dry depositional environments recorded in the stratigraphy of Mount Sharp at Gale crater, Mars. Geology 2021, 49, 842–846. [Google Scholar] [CrossRef]
- Bridges, N.; Calef, F.; Hallet, B.; Herkenhoff, K.E.; Lanza, N.; le Mouélic, S.; Newman, C.; Blaney, D.; de Pablo, M.; Kocurek, G. The rock abrasion record at Gale crater: Mars Science Laboratory results from Bradbury landing to Rocknest. J. Geophys. Res. Planets 2014, 119, 1374–1389. [Google Scholar] [CrossRef] [Green Version]
- Bridges, N.; Greeley, R.; Haldemann, A.; Herkenhoff, K.E.; Kraft, M.; Parker, T.; Ward, A. Ventifacts at the Pathfinder landing site. J. Geophys. Res. Planets 1999, 104, 8595–8615. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, S.W.; Paull, D.J.; Bourke, M.C. Aeolian processes and dune morphology in Gale Crater. Icarus 2010, 210, 102–115. [Google Scholar] [CrossRef]
- Knight, J. The environmental significance of ventifacts: A critical review. Earth-Sci. Rev. 2008, 86, 89–105. [Google Scholar] [CrossRef]
- Laity, J.E.; Bridges, N.T. Ventifacts on Earth and Mars: Analytical, field, and laboratory studies supporting sand abrasion and windward feature development. Geomorphology 2009, 105, 202–217. [Google Scholar] [CrossRef]
- Sharp, R.P. Mars: Fretted and chaotic terrains. J. Geophys. Res. 1973, 78, 4073–4083. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.W. Yardangs on Mars: Evidence of recent wind erosion. J. Geophys. Res. Solid Earth 1979, 84, 8147–8166. [Google Scholar] [CrossRef]
- Williams, J.; Day, M.; Chojnacki, M.; Rice, M. Scarp orientation in regions of active aeolian erosion on Mars. Icarus 2020, 335, 113384. [Google Scholar] [CrossRef]
- Piqueux, S.; Buz, J.; Edwards, C.S.; Bandfield, J.L.; Kleinböhl, A.; Kass, D.M.; Hayne, P.O.; S, M.C.; Teams, T. Widespread shallow water ice on Mars at high latitudesand midlatitudes. Geophys. Res. Lett. 2019, 46, 14290–14298. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock glaciers and mountain hydrology: A review. Earth-Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Holt, J.W.; Safaeinili, A.; Plaut, J.J.; Head, J.W.; Phillips, R.J.; Seu, R.; Kempf, S.D.; Choudhary, P.; Young, D.A.; Putzig, N.E. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 2008, 322, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.K.; Murty, S. Amazonian modification of Moreux crater: Record of recent and episodic glaciation in the Protonilus Mensae region of Mars. Icarus 2015, 245, 122–144. [Google Scholar] [CrossRef]
- Fastook, J.L.; Head, J.W.; Marchant, D.R. Form. Lobate Debris Aprons Mars: Assess. Reg. Ice Sheet Collapse Debris-Cover. Armoring. Icarus 2014, 228, 54–63. [Google Scholar]
- Lucchitta, B.K. Ice Debris Frett. Terrain Mars. J. Geophys. Res. Solid Earth 1984, 89, B409–B418. [Google Scholar] [CrossRef]
- Squyres, S.W. Martian Frett. Terrain: Flow Eros. Debris. Icarus 1978, 34, 600–613. [Google Scholar]
- Van Gasselt, S.; Hauber, E.; Neukum, G. Lineated valley fill at the Martian dichotomy boundary: Nature and history of degradation. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Irwin, R.P., III; Watters, T.R.; Howard, A.D.; Zimbelman, J.R. Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J. Geophys. Res. Planets 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Mangold, N. Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Pierce, T.L.; Crown, D.A. Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars. Icarus 2003, 163, 46–65. [Google Scholar] [CrossRef]
- Wahrhaftig, C.; Cox, A. Rock glaciers in the Alaska Range. Geol. Soc. Am. Bull. 1959, 70, 383–436. [Google Scholar] [CrossRef]
- Elizabeth Martin, H.; Whalley, W.B. Rock glaciers: Part 1: Rock glacier morphology: Classification and distribution. Prog. Phys. Geogr. 1987, 11, 260–282. [Google Scholar] [CrossRef]
- Giardino, J.R.; Shroder, J.F.; Vitek, J.D. Rock Glaciers; Allen & Unwin: Crow’s Nest, Australia, 1987. [Google Scholar]
- Mahaney, W.C.; Miyamoto, H.; Dohm, J.M.; Baker, V.R.; Cabrol, N.A.; Grin, E.A.; Berman, D.C. Rock glaciers on Mars: Earth-based clues to Mars’ recent paleoclimatic history. Planet. Space Sci. 2007, 55, 181–192. [Google Scholar]
- Easterbrook, D.J. Surface Processes and Landforms; Macmillan: New York, NY, USA, 1993. [Google Scholar]
- Emmert, A.; Kneisel, C. Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging. Cryosphere 2017, 11, 841–855. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, J.J., Jr.; Giardino, J.R. Subsurface investigation of a rock glacier using ground-penetrating radar: Implications for locating stored water on Mars. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Whalley, W.B.; Azizi, F. Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Humlum, O. Rock glaciers in northern Spitsbergen: A discussion. J. Geol. 1982, 90, 214–217. [Google Scholar] [CrossRef]
- Azizi, F.; Whalley, W. Finite element analysis of the creep of debris containing thin ice bodies. In Proceedings of the Fifth International Offshore and Polar Engineering Conference, Hague, The Netherlands, 11–16 June 1995; OnePetro: Richardson, TX, USA, 1995. [Google Scholar]
- Azizi, F.; Whalley, W. Numerical modelling of the creep behaviour of ice-debris mixtures under variable thermal regimes. In Proceedings of the Sixth International Offshore and Polar Engineering Conference, Los Angeles, CA, USA, 26–31 May 1996; OnePetro: Richardson, TX, USA, 1996. [Google Scholar]
- Xue, K.; Wen, Z.; Zhu, Z.; Wang, D.; Luo, F.; Zhang, M. An experimental study of the relationship between the matric potential, unfrozen water, and segregated ice of saturated freezing soil. Bull. Eng. Geol. Environ. 2021, 80, 2535–2544. [Google Scholar] [CrossRef]
- Whalley, W.B.; Krinsley, D.H. A scanning electron microscope study of surface textures of quartz grains from glacial environments. Sedimentology 1974, 21, 87–105. [Google Scholar] [CrossRef]
- Whalley, W.B.; Martin, H.E. Rock glaciers: II models and mechanisms. Prog. Phys. Geogr. 1992, 16, 127–186. [Google Scholar] [CrossRef]
- Kaab, A. Rock glaciers and protalus forms. En-Cyclopedia Quat. Sci. 2007, 2236–2242. Available online: https://ci.nii.ac.jp/naid/20001586454/ (accessed on 28 February 2022).
- Hamilton, S.J.; Whalley, W.B. Rock glacier nomenclature: A re-assessment. Geomorphology 1995, 14, 73–80. [Google Scholar] [CrossRef]
- Halla, C.; Blöthe, J.H.; Baldis, C.T.; Liaudat, D.T.; Hilbich, C.; Hauck, C.; Schrott, L. Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina. Cryosphere 2021, 15, 1187–1213. [Google Scholar] [CrossRef]
- Berthling, I. Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology 2011, 131, 98–106. [Google Scholar] [CrossRef]
- Francou, B.; Fabre, D.; Pouyaud, B.; Jomelli, V.; Arnaud, Y. Symptoms of degradation in a tropical rock glacier, Bolivian Andes. Permafr. Periglac. Process. 1999, 10, 91–100. [Google Scholar] [CrossRef]
- Johnson, G.; Chang, H.; Fountain, A. Active rock glaciers of the contiguous United States: Geographic information system inventory and spatial distribution patterns. Earth Syst. Sci. Data 2021, 13, 3979–3994. [Google Scholar] [CrossRef]
- Koutnik, M.R.; Pathare, A.V. Contextualizing lobate debris aprons and glacier-like forms on Mars with debris-covered glaciers on Earth. Prog. Phys. Geogr. Earth Environ. 2021, 45, 130–186. [Google Scholar] [CrossRef]
- Konrad, S.; Humphrey, N.; Steig, E.; Clark, D.; Potter, N., Jr.; Pfeffer, W. Rock glacier dynamics and paleoclimatic implications. Geology 1999, 27, 1131–1134. [Google Scholar] [CrossRef]
- Whalley, W.B.; Azizi, F. Rheological models of active rock glaciers: Evaluation, critique and a possible test. Permafr. Periglac. Process. 1994, 5, 37–51. [Google Scholar] [CrossRef]
- Sergienko, O.; Creyts, T.T.; Hindmarsh, R. Similarity of organized patterns in driving and basal stresses of Antarctic and Greenland ice sheets beneath extensive areas of basal sliding. Geophys. Res. Lett. 2014, 41, 3925–3932. [Google Scholar] [CrossRef] [Green Version]
- Azuma, N. A flow law for anisotropic ice and its application to ice sheets. Earth Planet. Sci. Lett. 1994, 128, 601–614. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MS, USA, 2010. [Google Scholar]
- Goldsby, D.; Kohlstedt, D.L. Superplastic deformation of ice: Experimental observations. J. Geophys. Res. Solid Earth 2001, 106, 11017–11030. [Google Scholar] [CrossRef]
- Colaprete, A.; Jakosky, B.M. Ice flow and rock glaciers on Mars. J. Geophys. Res. Planets 1998, 103, 5897–5909. [Google Scholar] [CrossRef]
- Durham, W.; Stern, L. Rheological properties of water ice—Applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci. 2001, 29, 295–330. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L. Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.C.; Bell, J.F., III; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B. Context camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Dromart, G.; Le Deit, L.; Rapin, W.; Gasnault, O.; le Mouélic, S.; Quantin-Nataf, C.; Mangold, N.; Rubin, D.; Lasue, J.; Maurice, S. Deposition and erosion of a Light-Toned Yardang-forming unit of Mt Sharp, Gale crater, Mars. Earth Planet. Sci. Lett. 2021, 554, 116681. [Google Scholar] [CrossRef]
- Kenner, R.; Phillips, M.; Beutel, J.; Hiller, M.; Limpach, P.; Pointner, E.; Volken, M. Factors controlling velocity variations at short-term, seasonal and multiyear time scales, Ritigraben rock glacier, Western Swiss Alps. Permafr. Periglac. Process. 2017, 28, 675–684. [Google Scholar] [CrossRef]
- Whalley, W.B.; Hamilton, S.J.; Palmer, C.F.; Gordon, J.E.; Martin, H.E. The dynamics of rock glaciers: Data from Tröllaskagi, north Iceland. In Steepland Geomorphology; ResearchGate: Berlin, Germany, 1995; pp. 129–145. [Google Scholar]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Concentric crater fill in Utopia Planitia: History and interaction between glacial “brain terrain” and periglacial mantle processes. Icarus 2009, 202, 462–476. [Google Scholar] [CrossRef]
- Fraeman, A.; Ehlmann, B.; Arvidson, R.; Edwards, C.; Grotzinger, J.; Milliken, R.; Quinn, D.; Rice, M. The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets. J. Geophys. Res. Planets 2016, 121, 1713–1736. [Google Scholar] [CrossRef]
- Frauenfelder, R.; Laustela, M.; Kääb, A. Relative age dating of Alpine rockglacier surfaces. Z. Geomorphol. 2005, 49, 145–166. [Google Scholar]
- Haeberli, W.; Brandova, D.; Burga, C.; Egli, M.; Frauenfelder, R.; Kääb, A.; Maisch, M.; Mauz, B.; Dikau, R. Methods for absolute and relative age dating of rock-glacier surfaces in alpine permafrost. In Proceedings of the 8th International Conference on Permafrostm, Zurich, Switzerland, 21–25 July 2003. [Google Scholar]
- Krainer, K.; Bressan, D.; Dietre, B.; Haas, J.N.; Hajdas, I.; Lang, K.; Mair, V.; Nickus, U.; Reidl, D.; Thies, H. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quat. Res. 2015, 83, 324–335. [Google Scholar] [CrossRef]
- Fassett, C.I.; Levy, J.S.; Dickson, J.L.; Head, J.W. An extended period of episodic northern mid-latitude glaciation on Mars during the Middle to Late Amazonian: Implications for long-term obliquity history. Geology 2014, 42, 763–766. [Google Scholar] [CrossRef]
- Hauber, E.; Ulrich, M.; Preusker, F.; Trauthan, F.; Reiss, D.; Hiesinger, H.; Zanetti, M.; Team, S. Svalbard (Norway) as a terrestrial analogue for Martian landforms: Results on alluvial fans. EPSC Abstr. 2009, 4, EPSC2009-772. [Google Scholar]
- Carr, M.H. Retention of an atmosphere on early Mars. J. Geophys. Res. Planets 1999, 104, 21897–21909. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, J.M.; Scuderi, L.A.; Newsom, H.E. Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sens. 2022, 14, 1887. https://doi.org/10.3390/rs14081887
Williams JM, Scuderi LA, Newsom HE. Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sensing. 2022; 14(8):1887. https://doi.org/10.3390/rs14081887
Chicago/Turabian StyleWilliams, Joshua M., Louis A. Scuderi, and Horton E. Newsom. 2022. "Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars" Remote Sensing 14, no. 8: 1887. https://doi.org/10.3390/rs14081887
APA StyleWilliams, J. M., Scuderi, L. A., & Newsom, H. E. (2022). Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sensing, 14(8), 1887. https://doi.org/10.3390/rs14081887