Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Relationship of Sampling Effort to the ISAR
Appendix B. Slope of the ISAR on the Linear Scale
Appendix C. Multicollinearity among Covariates
References
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- MacArthur, R.H.; Wilson, E.O. An equilibrium theory of insular zoogeography. Evolution 1963, 17, 373–387. [Google Scholar] [CrossRef]
- Warren, B.H.; Simberloff, D.; Ricklefs, R.E.; Aguilée, R.; Condamine, F.L.; Gravel, D.; Morlon, H.; Mouquet, N.; Rosindell, J.; Casquet, J.; et al. Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecol. Lett. 2015, 18, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, Z. Global microbiome diversity scaling in hot springs with DAR (Diversity-area relationship) profiles. Front. Microbiol. 2019, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darcy, J.L.; Gendron, E.M.S.; Sommers, P.; Porazinska, D.L.; Schmidt, S.K. Island Biogeography of Cryoconite Hole Bacteria in Antarctica’s Taylor Valley and Around the World. Front. Ecol. Evol. 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.S. Sketching the Human Microbiome Biogeography with DAR (Diversity-Area Relationship) Profiles. Microb. Ecol. 2019, 77, 821–838. [Google Scholar] [CrossRef]
- Peay, K.G.; Bruns, T.D.; Kennedy, P.G.; Bergemann, S.E.; Garbelotto, M. A strong species-area relationship for eukaryotic soil microbes: Island size matters for ectomycorrhizal fungi. Ecol. Lett. 2007, 10, 470–480. [Google Scholar] [CrossRef]
- Grossmann, L.; Jensen, M.; Pandey, R.V.; Jost, S.; Bass, D.; Psenner, R.; Boenigk, J. Molecular investigation of protistan diversity along an elevation transect of alpine lakes. Aquat. Microb. Ecol. 2016, 78, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Green, J.; Bohannan, B.J.M. Spatial scaling of microbial biodiversity. Trends Ecol. Evol. 2006, 21, 501–507. [Google Scholar] [CrossRef]
- Green, J.; Holmes, A.; Westoby, M.; Oliver, I.; Briscoe, D.; Dangerfield, M.; Gillings, M.; Beattie, A. Spatial scaling of microbial diversity. Nature 2004, 432, 747–750. [Google Scholar] [CrossRef]
- Horner-Devine, M.C.; Lage, M.; Hughes, J.B.; Bohannan, B.J.M. A taxa-area relationship for bacteria. Nature 2004, 432, 750–753. [Google Scholar] [CrossRef]
- Bell, T.; Ager, D.; Song, J.I.; Newman, J.A.; Thompson, I.P.; Lilley, A.K.; Van Der Gast, C.J. Ecology: Larger islands house more bacterial taxa. Science 2005, 308, 1884. [Google Scholar] [CrossRef]
- Van Der Gast, C.J.; Lilley, A.K.; Ager, D.; Thompson, I.P. Island size and bacterial diversity in an archipelago of engineering machines. Environ. Microbiol. 2005, 7, 1220–1226. [Google Scholar] [CrossRef]
- Grilli, G.; Longo, S.; Huais, P.Y.; Pereyra, M.; Verga, E.G.; Urcelay, C.; Galetto, L. Fungal diversity at fragmented landscapes: Synthesis and future perspectives. Curr. Opin. Microbiol. 2017, 37, 161–165. [Google Scholar] [CrossRef]
- Matthews, T.J.; Cottee-Jones, H.E.W.; Whittaker, R.J. Quantifying and interpreting nestedness in habitat islands: A synthetic analysis of multiple datasets. Divers. Distrib. 2015, 21, 392–404. [Google Scholar] [CrossRef]
- Hanski, I.; Zurita, G.A.; Bellocq, M.I.; Rybicki, J. Species-fragmented area relationship. Proc. Natl. Acad. Sci. USA 2013, 110, 12715–12720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemergut, D.R.; Schmidt, S.K.; Fukami, T.; O’Neill, S.P.; Bilinski, T.M.; Stanish, L.F.; Knelman, J.E.; Darcy, J.L.; Lynch, R.C.; Wickey, P.; et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 2013, 77, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.M.; Memiaghe, H.; Korte, L.; Kenfack, D.; Alonso, A.; Bohannan, B.J.M. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018, 12, 1404–1413. [Google Scholar] [CrossRef]
- Lau, D.C.P.; Christoffersen, K.S.; Erkinaro, J.; Hayden, B.; Heino, J.; Hellsten, S.; Holmgren, K.; Kahilainen, K.K.; Kahlert, M.; Karjalainen, S.M.; et al. Multitrophic biodiversity patterns and environmental descriptors of sub-Arctic lakes in northern Europe. Freshw. Biol. 2020, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Storch, D.; Evans, K.L.; Gaston, K.J. The species-area-energy relationship. Ecol. Lett. 2005, 8, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Hurlbert, A.H.; Jetz, W. More than “more individuals”: The nonequivalence of area and energy in the scaling of species richness. Am. Nat. 2010, 176, E50–E65. [Google Scholar] [CrossRef] [Green Version]
- Hurlbert, A.H. Linking species-area and species-energy relationships in Drosophila microcosms. Ecol. Lett. 2006, 9, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Zaoli, S.; Giometto, A.; Giezendanner, J.; Maritan, A.; Rinaldo, A. On the probabilistic nature of the species-area relation. J. Theor. Biol. 2019, 462, 391–407. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, S.; Borges, P.A.V.; Dapporto, L.; Strona, G. What can the parameters of the species–area relationship (SAR) tell us? Insights from Mediterranean islands. J. Biogeogr. 2017, 44, 1018–1028. [Google Scholar] [CrossRef]
- Storch, D.; Bohdalková, E.; Okie, J. The more-individuals hypothesis revisited: The role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol. Lett. 2018, 21, 920–937. [Google Scholar] [CrossRef]
- Mcclain, C.R.; Barry, J.P.; Eernisse, D.; Horton, T.; Judge, J.; Kakui, K.; Mah, C.; Warén, A. Multiple processes generate productivity-diversity relationships in experimental wood-fall communities. Ecology 2016, 97, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Willis, A.D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 2019, 10, 2407. [Google Scholar] [CrossRef] [Green Version]
- Sommers, P.; Porazinska, D.L.; Darcy, J.L.; Zamora, F.; Fountain, A.G.; Schmidt, S.K. Experimental cryoconite holes as mesocosms for studying community ecology. Polar Biol. 2019, 42, 1973–1984. [Google Scholar] [CrossRef]
- Bellas, C.M.; Schroeder, D.C.; Edwards, A.; Barker, G.; Anesio, A.M. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fountain, A.G.; Nylen, T.H.; Tranter, M.; Bagshaw, E. Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Artarctica. J. Geophys. Res. Biogeosci. 2008, 113, 1–11. [Google Scholar] [CrossRef]
- Fountain, A.G.; Tranter, M.; Nylen, T.H.; Lewis, K.J.; Mueller, D.R. Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. J. Glaciol. 2004, 50, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Gribbon, P.W.F. Cryoconite Holes on Sermikavsak, West Greenland. J. Glaciol. 1979, 22, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Wharton, R.A.; McKay, C.P.; Simmons, G.M.; Parker, B.C. Cryoconite Holes on Glaciers. Bioscience 1985, 35, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Porazinska, D.L.; Fountain, A.G.; Nylen, T.H.; Tranter, M.; Virginia, R.A.; Wall, D.H. The Biodiversity and Biogeochemistry of Cryoconite Holes from McMurdo Dry Valley Glaciers, Antarctica. Arct. Antarct. Alp. Res. 2004, 36, 84–91. [Google Scholar] [CrossRef]
- Sommers, P.; Darcy, J.L.; Porazinska, D.L.; Gendron, E.M.S.; Fountain, A.G.; Zamora, F.; Vincent, K.; Cawley, K.M.; Solon, A.J.; Vimercati, L.; et al. Comparison of Microbial Communities in the Sediments and Water Columns of Frozen Cryoconite Holes in the McMurdo Dry Valleys, Antarctica. Front. Microbiol. 2019, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Foreman, C.M.; Sattler, B.; Mikucki, J.A.; Porazinska, D.L.; Priscu, J.C. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J. Geophys. Res. Biogeosci. 2007, 112, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sommers, P.; Darcy, J.L.; Gendron, E.M.S.; Stanish, L.F.; Bagshaw, E.A.; Porazinska, D.L.; Schmidt, S.K. Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes. FEMS Microbiol. Ecol. 2018, 94, fix167. [Google Scholar] [CrossRef]
- Bagshaw, E.A.; Wadham, J.L.; Tranter, M.; Perkins, R.; Morgan, A.; Williamson, C.J.; Fountain, A.G.; Fitzsimons, S.; Dubnick, A. Response of Antarctic cryoconite microbial communities to light. FEMS Microbiol. Ecol. 2016, 92, fiw076. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, E.A.; Tranter, M.; Fountain, A.G.; Welch, K.A.; Basagic, H.; Lyons, W.B. Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. J. Geophys. Res. Biogeosci. 2007, 112, 112. [Google Scholar] [CrossRef]
- Telling, J.; Anesio, A.M.; Tranter, M.; Fountain, A.G.; Nylen, T.; Hawkings, J.; Singh, V.B.; Kaur, P.; Musilova, M.; Wadham, J.L. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes. Front. Microbiol. 2014, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tranter, M.; Fountain, A.G.; Fritsen, C.H.; Lyons, W.B.; Priscu, J.C.; Statham, P.J.; Welch, K.A. Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol. Process. 2004, 18, 379–387. [Google Scholar] [CrossRef]
- Webster-Brown, J.G.; Hawes, I.; Jungblut, A.D.; Wood, S.A.; Christenson, H.K. The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiol. Ecol. 2015, 91, fiv144. [Google Scholar] [CrossRef] [Green Version]
- Itescu, Y. Are island-like systems biologically similar to islands? A review of the evidence. Ecography 2019, 42, 1298–1314. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.; Hodson, A.; Telling, J.; Anesio, A.; Irvine-Fynn, T.; Bellas, C. The mass-area relationship within cryoconite holes and its implications for primary production. Ann. Glaciol. 2010, 51, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.M.; Hodson, A.J.; Irvine-Fynn, T.D.L. Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. 2016, 30, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.H. Species-Energy Theory: An Extension of Species-Area Theory. Oikos 1983, 41, 496–506. Available online: http://www.jstor.com/stable/3544109 (accessed on 3 November 2020). [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; McCliment, E.A.; Ducklow, H.W.; Huse, S.M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 2009, 4, e6372. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; Sankaran, K.; Fukuyama, J.A.; McMurdie, P.J.; Holmes, S.P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses [version 1; referees: 3 approved]. F1000Research 2016, 5, 1–48. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O.; Amaral-Zettler, L.A.; McCliment, E.A.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2009, 41, e6372. [Google Scholar]
- Leff, J.W. mctoolsr: MIcrobial Community Data Analysis Tools. 2017. R Package Version 0.1.1.2. Available online: https://github.com/leffj/mctoolsr (accessed on 1 October 2020).
- McMurdie, P.J.; Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 2014, 10, e1003531. [Google Scholar] [CrossRef] [Green Version]
- Matthews, T.J.; Guilhaumon, F.; Triantis, K.A.; Borregaard, M.K.; Whittaker, R.J. On the form of species–area relationships in habitat islands and true islands. Glob. Ecol. Biogeogr. 2016, 25, 847–858. [Google Scholar] [CrossRef]
- Triantis, K.A.; Guilhaumon, F.; Whittaker, R.J. The island species-area relationship: Biology and statistics. J. Biogeogr. 2012, 39, 215–231. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Fox, J.; Wisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 1 October 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots. 2020. R Package Version 0.3.0. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 1 October 2020).
- Li, D. hillR: Taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. J. Open Source Softw. 2018, 3, 1041. [Google Scholar] [CrossRef]
- Barrett, J.E.; Virginia, R.A.; Hopkins, D.W.; Aislabie, J.; Bargagli, R.; Bockheim, J.G.; Campbell, I.B.; Lyons, W.B.; Moorhead, D.L.; Nkem, J.N.; et al. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol. Biochem. 2006, 38, 3019–3034. [Google Scholar] [CrossRef]
- Zawierucha, K.; Kolicka, M.; Takeuchi, N.; Kaczmarek, Ł. What animals can live in cryoconite holes? A faunal review. J. Zool. 2015, 295, 159–169. [Google Scholar] [CrossRef]
- Zawierucha, K.; Porazinska, D.L.; Ficetola, G.F.; Ambrosini, R.; Baccolo, G.; Buda, J.; Ceballos, J.L.; Devetter, M.; Dial, R.; Franzetti, A.; et al. A hole in the nematosphere: Tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. 2020. Early view. [Google Scholar] [CrossRef]
- Lancaster, N. Flux of Eolian Sediment in the McMurdo Dry Valleys, Antarctica: A Preliminary Assessment. Arct. Antarct. Alp. Res. 2017, 34, 318–323. Available online: http://www.jstor.org/stable/1552490 (accessed on 3 November 2020). [CrossRef]
- Stanish, L.F.; Bagshaw, E.A.; McKnight, D.M.; Fountain, A.G.; Tranter, M. Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environ. Res. Lett. 2013, 8, 045006. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.S. DAR (diversity–area relationship): Extending classic SAR (species–area relationship) for biodiversity and biogeography analyses. Ecol. Evol. 2018, 8, 10023–10038. [Google Scholar] [CrossRef]
- Ladau, J.; Eloe-Fadrosh, E.A. Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends Microbiol. 2019, 27, 662–669. [Google Scholar] [CrossRef] [Green Version]
- Storch, D. The theory of the nested species–area relationship: Geometric foundations of biodiversity scaling. J. Veg. Sci. 2016, 27, 880–891. [Google Scholar] [CrossRef]
- Dengler, J. Which function describes the species-area relationship best? A review and empirical evaluation. J. Biogeogr. 2009, 36, 728–744. [Google Scholar] [CrossRef]
- Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix Using “ggplot2”. 2019. R Package Version 0.1.3. Available online: https://CRAN.R-project.org/package=ggcorrplot (accessed on 1 October 2020).
Domain | Glacier | Intercept | Std. Err. | Slope | Std. Err. |
---|---|---|---|---|---|
Bacteria | Canada | 2.08 | 0.066 | 0.16 | 0.022 |
Taylor | 1.85 | 0.098 | 0.21 | 0.032 | |
Eukaryotes | Canada | 1.26 | 0.073 | 0.24 | 0.024 |
Taylor | 0.83 | 0.16 | 0.31 | 0.054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommers, P.; Porazinska, D.L.; Darcy, J.L.; Gendron, E.M.S.; Vimercati, L.; Solon, A.J.; Schmidt, S.K. Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity. Microorganisms 2020, 8, 1747. https://doi.org/10.3390/microorganisms8111747
Sommers P, Porazinska DL, Darcy JL, Gendron EMS, Vimercati L, Solon AJ, Schmidt SK. Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity. Microorganisms. 2020; 8(11):1747. https://doi.org/10.3390/microorganisms8111747
Chicago/Turabian StyleSommers, Pacifica, Dorota L. Porazinska, John L. Darcy, Eli M. S. Gendron, Lara Vimercati, Adam J. Solon, and Steven K. Schmidt. 2020. "Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity" Microorganisms 8, no. 11: 1747. https://doi.org/10.3390/microorganisms8111747