Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = giant unilamellar vesicle (GUV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5704 KiB  
Article
Structural and Functional Effects of the Interaction Between an Antimicrobial Peptide and Its Analogs with Model Bacterial and Erythrocyte Membranes
by Michele Lika Furuya, Gustavo Penteado Carretero, Marcelo Porto Bemquerer, Sumika Kiyota, Magali Aparecida Rodrigues, Tarcillo José de Nardi Gaziri, Norma Lucia Buritica Zuluaga, Danilo Kiyoshi Matsubara, Marcio Nardelli Wandermuren, Karin do Amaral Riske, Hernan Chaimovich, Shirley Schreier and Iolanda Midea Cuccovia
Biomolecules 2025, 15(8), 1143; https://doi.org/10.3390/biom15081143 (registering DOI) - 7 Aug 2025
Abstract
Antimicrobial peptides (AMPs) are a primary defense against pathogens. Here, we examined the interaction of two BP100 analogs, R2R5-BP100 (where Arg substitutes Lys 2 and 5) and R2R5-BP100-A-NH-C16 (where an Ala and a C [...] Read more.
Antimicrobial peptides (AMPs) are a primary defense against pathogens. Here, we examined the interaction of two BP100 analogs, R2R5-BP100 (where Arg substitutes Lys 2 and 5) and R2R5-BP100-A-NH-C16 (where an Ala and a C16 hydrocarbon chain are added to the R2R5-BP100 C-terminus), with membrane models. Large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs) were prepared with the major lipids in Gram-positive (GP) and Gram-negative (GN) bacteria, as well as red blood cells (RBCs). Fluorescence data, dynamic light scattering (DLS), and zeta potential measurements revealed that upon achieving electroneutrality through peptide binding, vesicle aggregation occurred. Circular dichroism (CD) spectra corroborated these observations, and upon vesicle binding, the peptides acquired α-helical conformation. The peptide concentration, producing a 50% release of carboxyfluorescein (C50) from LUVs, was similar for GP-LUVs. With GN and RBC-LUVs, C50 decreased in the following order: BP100 > R2R5-BP100 > R2R5BP100-A-NH-C16. Optical microscopy of GP-, GN-, and RBC-GUVs revealed the rupture or bursting of the two former membranes, consistent with a carpet mechanism of action. Using GUVs, we confirmed RBC aggregation by BP100 and R2R5-BP100. We determined the minimal inhibitory concentrations (MICs) of peptides for a GN bacterium (Escherichia coli (E. coli)) and two GP bacteria (two strains of Staphylococcus aureus (S. aureus) and one strain of Bacillus subtilis (B. subtilis)). The MICs for S. aureus were strain-dependent. These results demonstrate that Lys/Arg replacement can improve the parent peptide’s antimicrobial activity while increasing hydrophobicity renders the peptide less effective and more hemolytic. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
13 pages, 2011 KiB  
Article
High-Efficiency Drug Loading in Lipid Vesicles by MEMS-Driven Gigahertz Acoustic Streaming
by Bingxuan Li, Haopu Wang, Zhen Wang, Huikai Xie and Yao Lu
Micromachines 2025, 16(5), 562; https://doi.org/10.3390/mi16050562 - 7 May 2025
Viewed by 817
Abstract
Drug carriers hold significant promise for precision medicine but face persistent challenges in balancing high encapsulation efficiency with structural preservation during active loading. In this study, we present a microelectromechanical system (MEMS)-driven platform that can generate gigahertz (GHz)-frequency acoustic streaming (1.55 GHz) to [...] Read more.
Drug carriers hold significant promise for precision medicine but face persistent challenges in balancing high encapsulation efficiency with structural preservation during active loading. In this study, we present a microelectromechanical system (MEMS)-driven platform that can generate gigahertz (GHz)-frequency acoustic streaming (1.55 GHz) to enable nondestructive, power-tunable drug encapsulation in lipid vesicles. Utilizing DSPE-PEG-modified bilayers with hydrodynamic shear forces, our method achieves transient membrane permeability that preserves membrane integrity while permitting controlled doxorubicin (DOX) influx. We developed the GHz acoustic MEMS platform and applied it to systematically investigate two drug loading strategies: (1) loading DOX into giant unilamellar vesicles (GUVs, >10 μm in diameter) prior to extrusion into small unilamellar vesicles (SUVs, 100 nm) versus (2) direct acoustic loading into pre-formed SUVs. The GUV-first approach demonstrated better performance, achieving 60.04% ± 1.55% encapsulation efficiency (EE%) at 250 mW acoustic power—a 5.93% enhancement over direct SUV loading (54.11% ± 0.72%). Structural analysis via TEM confirmed intact SUV morphology post-loading, while power-dependent EE% analysis showed a linear trend. This work bridges gaps in nanocarrier engineering by optimizing drug loading strategies, aiming to offer a potential drug carrier platform for drug delivery in biomedical treatment in future. Full article
Show Figures

Figure 1

28 pages, 5217 KiB  
Article
Rapid Multi-Well Evaluation of Assorted Materials for Hydrogel-Assisted Giant Unilamellar Vesicle Production: Empowering Bottom-Up Synthetic Biology
by Cherng-Wen Darren Tan, Magdalena Schöller and Eva-Kathrin Ehmoser
Gels 2025, 11(1), 29; https://doi.org/10.3390/gels11010029 - 2 Jan 2025
Cited by 1 | Viewed by 1204
Abstract
Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have [...] Read more.
Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs. Some leach and contaminate the GUVs, while others require handling toxic material or specialised chemistry, thus limiting their use by novices. Alternative hydrogel materials could address these issues or even offer novel advantages. To facilitate discovery, we replaced the manual spreading of reagents with controlled drop-casting in glass Petri dishes and polystyrene multi-well plates, allowing us to rapidly screen up to 96 GUV-production formulations simultaneously. Exploiting this, we rapidly evaluated assorted biomedical hydrogels, including PEG-DA, cross-linked hyaluronic acid, Matrigel, and cross-linked DNA. All of these alternatives successfully produced GUVs. In the process, we also developed a treatment for recycling agarose and polyvinyl alcohol hydrogels for GUV production, and successfully encapsulated porcine liver esterase (PLE-GUVs). PLE-GUVs offer a novel method of GUV labelling and tracing, which emulates the calcein-AM staining behaviour of cells. Our results highlight the utility of our protocol for potentiating substrate material discovery, as well as protocol and product development. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Graphical abstract

12 pages, 3237 KiB  
Article
Electroformation of Giant Unilamellar Vesicles from Damp Films in Conditions Involving High Cholesterol Contents, Charged Lipids, and Saline Solutions
by Ivan Mardešić, Zvonimir Boban and Marija Raguz
Membranes 2024, 14(10), 215; https://doi.org/10.3390/membranes14100215 - 12 Oct 2024
Viewed by 1871
Abstract
Giant unilamellar vesicles (GUVs) are frequently used as membrane models in studies of membrane properties. They are most often produced using the electroformation method. However, there are a number of parameters that can influence the success of the procedure. Some of the most [...] Read more.
Giant unilamellar vesicles (GUVs) are frequently used as membrane models in studies of membrane properties. They are most often produced using the electroformation method. However, there are a number of parameters that can influence the success of the procedure. Some of the most common conditions that have been shown to have a negative effect on GUV electroformation are the presence of high cholesterol (Chol) concentrations, the use of mixtures containing charged lipids, and the solutions with an elevated ionic strength. High Chol concentrations are problematic for the traditional electroformation protocol as it involves the formation of a dry lipid film by complete evaporation of the organic solvent from the lipid mixture. During drying, anhydrous Chol crystals form. They are not involved in the formation of the lipid bilayer, resulting in a lower Chol concentration in the vesicle bilayer compared to the original lipid mixture. Motivated primarily by the issue of artifactual Chol demixing, we have modified the electroformation protocol by incorporating the techniques of rapid solvent exchange (RSE), ultrasonication, plasma cleaning, and spin-coating for reproducible production of GUVs from damp lipid films. Aside from decreasing Chol demixing, we have shown that the method can also be used to produce GUVs from lipid mixtures with charged lipids and in ionic solutions used as internal solutions. A high yield of GUVs was obtained for Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) samples with mixing ratios ranging from 0 to 2.5. We also succeeded in preparing GUVs from mixtures containing up to 60 mol% of the charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and in NaCl solutions with low ionic strength (<25 mM). Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

18 pages, 2713 KiB  
Article
Engineering Phosphatidylserine Containing Asymmetric Giant Unilamellar Vesicles
by Jake McDonough, Trevor A. Paratore, Hannah M. Ketelhohn, Bella C. DeCilio, Alonzo H. Ross and Arne Gericke
Membranes 2024, 14(9), 181; https://doi.org/10.3390/membranes14090181 - 23 Aug 2024
Cited by 2 | Viewed by 1966
Abstract
The plasma membrane lipid distribution is asymmetric, with several anionic lipid species located in its inner leaflet. Among these, phosphatidylserine (PS) plays a crucial role in various important physiological functions. Over the last decade several methods have been developed that allow for the [...] Read more.
The plasma membrane lipid distribution is asymmetric, with several anionic lipid species located in its inner leaflet. Among these, phosphatidylserine (PS) plays a crucial role in various important physiological functions. Over the last decade several methods have been developed that allow for the fabrication of large or giant unilamellar vesicles (GUVs) with an asymmetric lipid composition. Investigating the physicochemical properties of PS in such asymmetric lipid bilayers and studying its interactions with proteins necessitates the reliable fabrication of asymmetric GUVs (aGUVs) with a high degree of asymmetry that exhibit PS in the outer leaflet so that the interaction with peptides and proteins can be studied. Despite progress, achieving aGUVs with well-defined PS asymmetry remains challenging. Recently, a Ca2+-initiated hemifusion method has been introduced, utilizing the fusion of symmetric GUVs (sGUVs) with a supported lipid bilayer (SLB) for the fabrication of aGUVs. We extend this approach to create aGUVs with PS in the outer bilayer leaflet. Comparing the degree of asymmetry between aGUVs obtained via Ca2+ or Mg2+ initiated hemifusion of a phosphatidylcholine (PC) sGUVwith a PC/PS-supported lipid bilayer, we observe for both bivalent cations a significant number of aGUVs with near-complete asymmetry. The degree of asymmetry distribution is narrower for physiological salt conditions than at lower ionic strengths. While Ca2+ clusters PS in the SLB, macroscopic domain formation is absent in the presence of Mg2+. However, the clustering of PS upon the addition of Ca2+ is apparently too slow to have a negative effect on the quality of the obtained aGUVs. We introduce a data filtering method to select aGUVs that are best suited for further investigation. Full article
(This article belongs to the Special Issue Advances in Symmetric and Asymmetric Lipid Membranes)
Show Figures

Figure 1

21 pages, 4551 KiB  
Article
Benefits of Combined Fluorescence Lifetime Imaging Microscopy and Fluorescence Correlation Spectroscopy for Biomedical Studies Demonstrated by Using a Liposome Model System
by Kristina Bruun, Hans-Gerd Löhmannsröben and Carsten Hille
Biophysica 2024, 4(2), 207-226; https://doi.org/10.3390/biophysica4020015 - 25 Apr 2024
Viewed by 1955
Abstract
Drug delivery systems play a pivotal role in targeted pharmaceutical transport and controlled release at specific sites. Liposomes, commonly used as drug carriers, constitute a fundamental part of these systems. Moreover, the drug–liposome model serves as a robust platform for investigating interaction processes [...] Read more.
Drug delivery systems play a pivotal role in targeted pharmaceutical transport and controlled release at specific sites. Liposomes, commonly used as drug carriers, constitute a fundamental part of these systems. Moreover, the drug–liposome model serves as a robust platform for investigating interaction processes at both cellular and molecular levels. To advance our understanding of drug carrier uptake mechanisms, we employed fluorescence lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS), leveraging the unique benefits of two-photon (2P) excitation. Our approach utilized giant unilamellar vesicles (GUVs) as a simplified model system for cell membranes, labelled with the amphiphilic fluorescent dye 3,3′-dioctadecyloxa-carbocyanine (DiOC18(3)). Additionally, large unilamellar vesicles (LUVs) functioned as a drug carrier system, incorporating the spectrally distinct fluorescent sulforhodamine 101 (SRh101) as a surrogate drug. The investigation emphasized the diverse interactions between GUVs and LUVs based on the charged lipids employed. We examined the exchange kinetics and structural alterations of liposome carriers during the uptake process. Our study underscores the significance of employing 2P excitation in conjunction with FLIM and FCS. This powerful combination offers a valuable methodological approach for studying liposome interactions, positioning them as an exceptionally versatile model system with a distinct technical advantage. Full article
Show Figures

Figure 1

12 pages, 1674 KiB  
Article
Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films with a Focus on Vesicles with High Cholesterol Content
by Ivan Mardešić, Zvonimir Boban and Marija Raguz
Membranes 2024, 14(4), 79; https://doi.org/10.3390/membranes14040079 - 27 Mar 2024
Cited by 2 | Viewed by 2599
Abstract
Giant unilamellar vesicles (GUVs) are membrane models used to study membrane properties. Electroformation is one of the methods used to produce GUVs. During electroformation protocol, dry lipid film is formed. The drying of the lipid film induces the cholesterol (Chol) demixing artifact, in [...] Read more.
Giant unilamellar vesicles (GUVs) are membrane models used to study membrane properties. Electroformation is one of the methods used to produce GUVs. During electroformation protocol, dry lipid film is formed. The drying of the lipid film induces the cholesterol (Chol) demixing artifact, in which Chol forms anhydrous crystals which do not participate in the formation of vesicles. This leads to a lower Chol concentration in the vesicle bilayers compared to the Chol concentration in the initial lipid solution. To address this problem, we propose a novel electroformation protocol that includes rapid solvent exchange (RSE), plasma cleaning, and spin-coating methods to produce GUVs. We tested the protocol, focusing on vesicles with a high Chol content using different spin-coating durations and vesicle type deposition. Additionally, we compared the novel protocol using completely dry lipid film. The optimal spin-coating duration for vesicles created from the phosphatidylcholine/Chol mixture was 30 s. Multilamellar vesicles (MLVs), large unilamellar vesicles (LUVs) obtained by the extrusion of MLVs through 100 nm membrane pores and LUVs obtained by extrusion of previously obtained LUVs through 50 nm membrane pores, were deposited on an electrode for 1.5/1 Chol/phosphatidylcholine (POPC) lipid mixture, and the results were compared. Electroformation using all three deposited vesicle types resulted in a high GUV yield, but the deposition of LUVs obtained by the extrusion of MLVs through 100 nm membrane pores provided the most reproducible results. Using the deposition of these LUVs, we produced high yield GUVs for six different Chol concentrations (from 0% to 71.4%). Using a protocol that included dry lipid film GUVs resulted in lower yields and induced the Chol demixing artifact, proving that the lipid film should never be subjected to drying when the Chol content is high. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes—2nd Edition)
Show Figures

Figure 1

13 pages, 1611 KiB  
Article
Membrane Tubulation with a Biomembrane Force Probe
by Lancelot Pincet and Frédéric Pincet
Membranes 2023, 13(12), 910; https://doi.org/10.3390/membranes13120910 - 18 Dec 2023
Viewed by 2375
Abstract
Tubulation is a common cellular process involving the formation of membrane tubes ranging from 50 nm to 1 µm in diameter. These tubes facilitate intercompartmental connections, material transport within cells and content exchange between cells. The high curvature of these tubes makes them [...] Read more.
Tubulation is a common cellular process involving the formation of membrane tubes ranging from 50 nm to 1 µm in diameter. These tubes facilitate intercompartmental connections, material transport within cells and content exchange between cells. The high curvature of these tubes makes them specific targets for proteins that sense local geometry. In vitro, similar tubes have been created by pulling on the membranes of giant unilamellar vesicles. Optical tweezers and micromanipulation are typically used in these experiments, involving the manipulation of a GUV with a micropipette and a streptavidin-coated bead trapped in optical tweezers. The interaction forms streptavidin/biotin bonds, leading to tube formation. Here, we propose a cost-effective alternative using only micromanipulation techniques, replacing optical tweezers with a Biomembrane Force Probe (BFP). The BFP, employing a biotinylated erythrocyte as a nanospring, allows for the controlled measurement of forces ranging from 1 pN to 1 nN. The BFP has been widely used to study molecular interactions in cellular processes, extending beyond its original purpose. We outline the experimental setup, tube formation and characterization of tube dimensions and energetics, and discuss the advantages and limitations of this approach in studying membrane tubulation. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes—2nd Edition)
Show Figures

Figure 1

17 pages, 3806 KiB  
Article
Antifungal Activity and Molecular Mechanisms of Copper Nanoforms against Colletotrichum gloeosporioides
by Mun’delanji C. Vestergaard, Yuki Nishida, Lihn T. T. Tran, Neha Sharma, Xiaoxiao Zhang, Masayuki Nakamura, Auriane F. Oussou-Azo and Tomoki Nakama
Nanomaterials 2023, 13(23), 2990; https://doi.org/10.3390/nano13232990 - 22 Nov 2023
Cited by 3 | Viewed by 2649
Abstract
In this work, we have synthesized copper nanoforms (Cu NFs) using ascorbic acid as a reducing agent and polyvinylpyrrolidone as a stabilizer. Elemental characterization using EDS has shown the nanostructure to be of high purity and compare well with commercially sourced nanoforms. SEM [...] Read more.
In this work, we have synthesized copper nanoforms (Cu NFs) using ascorbic acid as a reducing agent and polyvinylpyrrolidone as a stabilizer. Elemental characterization using EDS has shown the nanostructure to be of high purity and compare well with commercially sourced nanoforms. SEM images of both Cu NFs show some agglomeration. The in-house NFs had a better even distribution and size of the nanostructures. The XRD peaks represented a face-centered cubic structure of Cu2O. The commercially sourced Cu NFs were found to be a mixture of Cu and Cu2O. Both forms had a crystalline structure. Using these two types of Cu NFs, an antimicrobial study against Colletotrichum gloeosporioides, a devastating plant pathogen, showed the in-house Cu NFs to be most effective at inhibiting growth of the pathogen. Interestingly, at low concentrations, both Cu NFs increased fungal growth, although the mycelia appeared thin and less dense than in the control. SEM macrographs showed that the in-house Cu NFs inhibited the fungus by flattening the mycelia and busting some of them. In contrast, the mycelia were short and appeared clustered when exposed to commercial Cu NFs. The difference in effect was related to the size and/or oxidation state of the Cu NFs. Furthermore, the fungus produced a defense mechanism in response to the NFs. The fungus produced melanin, with the degree of melanization directly corresponding to the concentration of the Cu NFs. Localization of aggregated Cu NFs could be clearly observed outside of the model membranes. The large agglomerates may only contribute indirectly by a hit-and-bounce-off effect, while small structures may adhere to the membrane surface and/or internalize. Spatio-temporal membrane dynamics were captured in real time. The dominant dynamics culminated into large fluctuations. Some of the large fluctuations resulted in vesicular transformation. The major transformation was exo-bud/exo-cytosis, which may be a way to excrete the foreign object (Cu NFs). Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles)
Show Figures

Figure 1

13 pages, 3704 KiB  
Article
QS21-Initiated Fusion of Liposomal Small Unilamellar Vesicles to Form ALFQ Results in Concentration of Most of the Monophosphoryl Lipid A, QS21, and Cholesterol in Giant Unilamellar Vesicles
by Erwin G. Abucayon, Mangala Rao, Gary R. Matyas and Carl R. Alving
Pharmaceutics 2023, 15(9), 2212; https://doi.org/10.3390/pharmaceutics15092212 - 26 Aug 2023
Cited by 2 | Viewed by 2327
Abstract
Army Liposome Formulation with QS21 (ALFQ), a vaccine adjuvant preparation, comprises liposomes containing saturated phospholipids, with 55 mol% cholesterol relative to the phospholipids, and two adjuvants, monophosphoryl lipid A (MPLA) and QS21 saponin. A unique feature of ALFQ is the formation of giant [...] Read more.
Army Liposome Formulation with QS21 (ALFQ), a vaccine adjuvant preparation, comprises liposomes containing saturated phospholipids, with 55 mol% cholesterol relative to the phospholipids, and two adjuvants, monophosphoryl lipid A (MPLA) and QS21 saponin. A unique feature of ALFQ is the formation of giant unilamellar vesicles (GUVs) having diameters >1.0 µm, due to a remarkable fusion event initiated during the addition of QS21 to nanoliposomes containing MPLA and 55 mol% cholesterol relative to the total phospholipids. This results in a polydisperse size distribution of ALFQ particles, with diameters ranging from ~50 nm to ~30,000 nm. The purpose of this work was to gain insights into the unique fusion reaction of nanovesicles leading to GUVs induced by QS21. This fusion reaction was probed by comparing the lipid compositions and structures of vesicles purified from ALFQ, which were >1 µm (i.e., GUVs) and the smaller vesicles with diameter <1 µm. Here, we demonstrate that after differential centrifugation, cholesterol, MPLA, and QS21 in the liposomal phospholipid bilayers were present mainly in GUVs (in the pellet). Presumably, this occurred by rapid lateral diffusion during the transition from nanosize to microsize particles. While liposomal phospholipid recoveries by weight in the pellet and supernatant were 44% and 36%, respectively, higher percentages by weight of the cholesterol (~88%), MPLA (94%), and QS21 (96%) were recovered in the pellet containing GUVs, and ≤10% of these individual liposomal constituents were recovered in the supernatant. Despite the polydispersity of ALFQ, most of the cholesterol, and almost all of the adjuvant molecules, were present in the GUVs. We hypothesize that the binding of QS21 to cholesterol caused new structural nanodomains, and subsequent interleaflet coupling in the lipid bilayer might have initiated the fusion process, leading to creation of GUVs. However, the polar regions of MPLA and QS21 together have a “sugar lawn” of ten sugars, the hydrophilicity of which might have provided a driving force for rapid lateral diffusion and concentration of the MPLA and QS21 in the GUVs. Full article
Show Figures

Graphical abstract

9 pages, 2979 KiB  
Article
Microscopic Observation of Membrane Fusion between Giant Liposomes and Baculovirus Budded Viruses Activated by the Release of a Caged Proton
by Misako Nishigami, Yuki Uno and Kanta Tsumoto
Membranes 2023, 13(5), 507; https://doi.org/10.3390/membranes13050507 - 11 May 2023
Viewed by 2001
Abstract
Baculovirus (Autographa californica multiple nucleopolyhedrovirus, AcMNPV) is an envelope virus possessing a fusogenic protein, GP64, which can be activated under weak acidic conditions close to those in endosomes. When the budded viruses (BVs) are bathed at pH 4.0 to 5.5, they can [...] Read more.
Baculovirus (Autographa californica multiple nucleopolyhedrovirus, AcMNPV) is an envelope virus possessing a fusogenic protein, GP64, which can be activated under weak acidic conditions close to those in endosomes. When the budded viruses (BVs) are bathed at pH 4.0 to 5.5, they can bind to liposome membranes with acidic phospholipids, and this results in membrane fusion. In the present study, using the caged-proton reagent 1-(2-nitrophenyl)ethyl sulfate, sodium salt (NPE-caged-proton), which can be uncaged by irradiation with ultraviolet light, we triggered the activation of GP64 by lowering the pH and observed membrane fusion on giant liposomes (giant unilamellar vesicles, GUVs) by visualizing the lateral diffusion of fluorescence emitted from a lipophilic fluorochrome (octadecyl rhodamine B chloride, R18) that stained viral envelopes of BVs. In this fusion, entrapped calcein did not leak from the target GUVs. The behavior of BVs prior to the triggering of membrane fusion by the uncaging reaction was closely monitored. BVs appeared to accumulate around a GUV with DOPS, implying that BVs preferred phosphatidylserine. The monitoring of viral fusion triggered by the uncaging reaction could be a valuable tool for revealing the delicate behavior of viruses affected by various chemical and biochemical environments. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

15 pages, 3699 KiB  
Article
Temperature-Promoted Giant Unilamellar Vesicle (GUV) Aggregation: A Way of Multicellular Formation
by Xinmao Wang, Yangruizi Zhang, Maobin Xie, Zhibiao Wang and Hai Qiao
Curr. Issues Mol. Biol. 2023, 45(5), 3757-3771; https://doi.org/10.3390/cimb45050242 - 26 Apr 2023
Cited by 2 | Viewed by 2798
Abstract
The evolution of unicellular to multicellular life is considered to be an important step in the origin of life, and it is crucial to study the influence of environmental factors on this process through cell models in the laboratory. In this paper, we [...] Read more.
The evolution of unicellular to multicellular life is considered to be an important step in the origin of life, and it is crucial to study the influence of environmental factors on this process through cell models in the laboratory. In this paper, we used giant unilamellar vesicles (GUVs) as a cell model to investigate the relationship between environmental temperature changes and the evolution of unicellular to multicellular life. The zeta potential of GUVs and the conformation of the headgroup of phospholipid molecules at different temperatures were examined using phase analysis light scattering (PALS) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), respectively. In addition, the effect of increasing temperature on the aggregation of GUVs was further investigated in ionic solutions, and the possible mechanisms involved were explored. The results showed that increasing temperature reduced the repulsive forces between cells models and promoted their aggregation. This study could effectively contribute to our understanding of the evolution of primitive unicellular to multicellular life. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

16 pages, 2231 KiB  
Review
A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets
by Yiting Zhang, Haruto Obuchi and Taro Toyota
Membranes 2023, 13(4), 440; https://doi.org/10.3390/membranes13040440 - 18 Apr 2023
Cited by 14 | Viewed by 9408
Abstract
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing [...] Read more.
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing membrane proteins and/or other synthesized amphiphiles, giant unilamellar vesicles (GUVs) have been applied in various fields, such as supramolecular chemistry, soft matter physics, life sciences, and bioengineering. In this review, we focus on a preparation technique for GUVs that encapsulate water-soluble materials and/or water-dispersible particles. It is based on the centrifugation of a water-in-oil emulsion layered on water and does not require special equipment other than a centrifuge, which makes it the first choice for laboratory use. Furthermore, we review recent studies on GUV-based artificial cells prepared using this technique and discuss their future applications. Full article
(This article belongs to the Special Issue Functional Analysis and Applications of Membrane Lipids)
Show Figures

Figure 1

12 pages, 4069 KiB  
Article
Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films Formed by Vesicle Fusion
by Zvonimir Boban, Ivan Mardešić, Sanja Perinović Jozić, Josipa Šumanovac, Witold Karol Subczynski and Marija Raguz
Membranes 2023, 13(3), 352; https://doi.org/10.3390/membranes13030352 - 18 Mar 2023
Cited by 5 | Viewed by 3995
Abstract
Giant unilamellar vesicles (GUVs) are artificial membrane models which are of special interest to researchers because of their similarity in size to eukaryotic cells. The most commonly used method for GUVs production is electroformation. However, the traditional electroformation protocol involves a step in [...] Read more.
Giant unilamellar vesicles (GUVs) are artificial membrane models which are of special interest to researchers because of their similarity in size to eukaryotic cells. The most commonly used method for GUVs production is electroformation. However, the traditional electroformation protocol involves a step in which the organic solvent is completely evaporated, leaving behind a dry lipid film. This leads to artifactual demixing of cholesterol (Chol) in the form of anhydrous crystals. These crystals do not participate in the formation of the lipid bilayer, resulting in a decrease of Chol concentration in the bilayer compared to the initial lipid solution. We propose a novel electroformation protocol which addresses this issue by combining the rapid solvent exchange, plasma cleaning and spin-coating techniques to produce GUVs from damp lipid films in a fast and reproducible manner. We have tested the protocol efficiency using 1/1 phosphatidylcholine/Chol and 1/1/1 phosphatidylcholine/sphingomyelin/Chol lipid mixtures and managed to produce a GUV population of an average diameter around 40 µm, with many GUVs being larger than 100 µm. Additionally, compared to protocols that include the dry film step, the sizes and quality of vesicles determined from fluorescence microscopy images were similar or better, confirming the benefits of our protocol in that regard as well. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes)
Show Figures

Figure 1

8 pages, 1717 KiB  
Communication
A Note on Vestigial Osmotic Pressure
by Hao Wu, Zhong-Can Ou-Yang and Rudolf Podgornik
Membranes 2023, 13(3), 332; https://doi.org/10.3390/membranes13030332 - 14 Mar 2023
Cited by 2 | Viewed by 1667
Abstract
Recent experiments have indicated that at least a part of the osmotic pressure across the giant unilamellar vesicle (GUV) membrane was balanced by the rapid formation of the monodisperse daughter vesicles inside the GUVs through an endocytosis-like process. Therefore, we investigated a possible [...] Read more.
Recent experiments have indicated that at least a part of the osmotic pressure across the giant unilamellar vesicle (GUV) membrane was balanced by the rapid formation of the monodisperse daughter vesicles inside the GUVs through an endocytosis-like process. Therefore, we investigated a possible osmotic role played by these daughter vesicles for the maintenance of osmotic regulation in the GUVs and, by extension, in living cells. We highlighted a mechanism whereby the daughter vesicles acted as osmotically active solutes (osmoticants), contributing an extra vestigial osmotic pressure component across the membrane of the parent vesicle, and we showed that the consequences were consistent with experimental observations. Our results highlight the significance of osmotic regulation in cellular processes, such as fission/fusion, endocytosis, and exocytosis. Full article
(This article belongs to the Special Issue Recent Studies on the Behaviour of Lipid Membranes)
Show Figures

Figure 1

Back to TopTop