# A Note on Vestigial Osmotic Pressure

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Osmotic Pressure Equilibrium

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Leneveu, D.M.; Rand, R.P.; Parsegian, V.A. Measurement of forces between lecithin bilayers. Nature
**1976**, 259, 601–603. [Google Scholar] [CrossRef] [PubMed] - Lu, B.S.; Gupta, S.P.; Belička, M.; Podgornik, R.; Pabst, G. Modulation of elasticity and interactions in charged lipid multibilayers: Monovalent salt solutions. Langmuir
**2016**, 32, 13546–13555. [Google Scholar] [CrossRef] [PubMed] - Liu, X.; Stenhammar, J.; Wennerström, H.; Sparr, E. Vesicles Balance Osmotic Stress with Bending Energy That Can Be Released to Form Daughter Vesicles. J. Phys. Chem. Lett.
**2022**, 13, 498–507. [Google Scholar] [CrossRef] - Döbereiner, H.G.; Käs, J.; Noppl, D.; Sprenger, I.; Sackmann, E. Budding and fission of vesicles. Biophys. J.
**1993**, 65, 1396–1403. [Google Scholar] [CrossRef] [Green Version] - Mally, M.; Božič, B.; Hartman, S.V.; Klančnik, U.; Mur, M.; Svetina, S.; Derganc, J. Controlled shaping of lipid vesicles in a microfluidic diffusion chamber. RSC Adv.
**2017**, 7, 36506–36515. [Google Scholar] [CrossRef] [Green Version] - Wennerström, H.; Sparr, E.; Stenhammar, J. Thermal fluctuations and osmotic stability of lipid vesicles. Phys. Rev. E
**2022**, 106, 064607. [Google Scholar] [CrossRef] [PubMed] - Lipowsky, R. Coupling of bending and stretching deformations in vesicle membranes. Adv. Colloid Interface Sci.
**2014**, 208, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhong-Can, O.Y.; Helfrich, W. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A
**1989**, 39, 5280. [Google Scholar] [CrossRef] [PubMed] - Deserno, M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids
**2015**, 185, 11–45. [Google Scholar] [CrossRef] [PubMed] - Wu, H.; De León, M.A.P.; Othmer, H.G. Getting in shape and swimming: The role of cortical forces and membrane heterogeneity in eukaryotic cells. J. Math. Biol.
**2018**, 77, 595–626. [Google Scholar] [CrossRef] - Bassereau, P.; Jin, R.; Baumgart, T.; Deserno, M.; Dimova, R.; Frolov, V.A.; Bashkirov, P.V.; Grubmüller, H.; Jahn, R.; Risselada, H.J.; et al. The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D Appl. Phys.
**2018**, 51, 343001. [Google Scholar] [CrossRef] [PubMed] - Lipowsky, R. Multispherical shapes of vesicles highlight the curvature elasticity of biomembranes. Adv. Colloid Interface Sci.
**2022**, 301, 102613. [Google Scholar] [CrossRef] [PubMed] - Hill, T.L. Thermodynamics of Small Systems. J. Chem. Phys.
**1962**, 36, 3182–3197. [Google Scholar] [CrossRef] - Dimova, R. Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci.
**2014**, 208, 225–234. [Google Scholar] [CrossRef] [PubMed] - Hu, M.; Briguglio, J.J.; Deserno, M. Determining the Gaussian curvature modulus of lipid membranes in simulations. Biophys. J.
**2012**, 102, 1403–1410. [Google Scholar] [CrossRef] [Green Version] - Hu, M.; de Jong, D.H.; Marrink, S.J.; Deserno, M. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: A comparative study using the MARTINI model. Faraday Discuss.
**2013**, 161, 365–382. [Google Scholar] [CrossRef] [Green Version] - Li, Y.; Lipowsky, R.; Dimova, R. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. Proc. Natl. Acad. Sci. USA
**2011**, 108, 4731–4736. [Google Scholar] [CrossRef] [Green Version] - Bhatia, T.; Agudo-Canalejo, J.; Dimova, R.; Lipowsky, R. Membrane nanotubes increase the robustness of giant vesicles. ACS Nano
**2018**, 12, 4478–4485. [Google Scholar] [CrossRef] [Green Version] - Bhatia, T.; Christ, S.; Steinkühler, J.; Dimova, R.; Lipowsky, R. Simple sugars shape giant vesicles into multispheres with many membrane necks. Soft Matter
**2020**, 16, 1246–1258. [Google Scholar] [CrossRef] [Green Version] - Holló, G.; Miele, Y.; Rossi, F.; Lagzi, I. Shape changes and budding of giant vesicles induced by an internal chemical trigger: An interplay between osmosis and pH change. Phys. Chem. Chem. Phys.
**2021**, 23, 4262–4270. [Google Scholar] [CrossRef] - Miele, Y.; Holló, G.; Lagzi, I.; Rossi, F. Shape deformation, budding and division of giant vesicles and artificial cells: A review. Life
**2022**, 12, 841. [Google Scholar] [CrossRef] [PubMed] - Jönsson, B.; Persello, J.; Li, J.; Cabane, B. Equation of State of Colloidal Dispersions. Langmuir
**2011**, 27, 6606–6614. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yu, Q.; Dasgupta, S.; Auth, T.; Gompper, G. Osmotic concentration-controlled particle uptake and wrapping-induced lysis of cells and vesicles. Nano Lett.
**2020**, 20, 1662–1668. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**a**) A schematic depiction of the “parent”, a single spherical vesicle with the fixed radius ${R}_{0}$, area ${A}_{0}$, and volume ${V}_{0}$ (the parent state), converting to (

**b**) the “progeny” spherical vesicle with the fixed radius ${R}_{1}$, area ${A}_{1}$, and volume ${V}_{1}$, including n daughter spherical vesicles with the fixed radius ${R}_{d}$, area ${A}_{d}$, and volume ${V}_{d}$ (the progeny state).

**Figure 2.**The final vesicle size ${R}_{1}$ as a function of the initial size ${R}_{0}$. The light yellow color indicates a stable regime for $\Delta \mathcal{F}<0$. The blue solid line, the red dashed line, and the green dash-dotted line corresponds to ${\gamma}_{sp}=7.05\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, $7.01\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, and $6.97\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, respectively, within the spontaneous tension range in Table 1 of [7].

**Figure 3.**The number of daughter vesicles as a function of the initial size ${R}_{0}$. The black dots with the error bars are calculated from the experimental data of [3]. The light yellow color indicates the stable regime for $\Delta \mathcal{F}<0$. The blue solid line, the red dashed line, and the green dash-dotted line corresponds to ${\gamma}_{sp}=7.05\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, $7.01\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, and $6.97\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, respectively, within the spontaneous tension range in Table 1 of [7].

**Figure 4.**Vestigial osmotic pressure as a function of the initial size ${R}_{0}$. The vestigial osmotic pressure, according to the experiments in [2], was estimated to be $0.4$ mPa, which is marked by a magenta arrow. The light yellow color indicates a stable regime for $\Delta \mathcal{F}<0$. The blue solid line, the red dashed line, and the green dash-dotted line corresponds to ${\gamma}_{sp}=7.05\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, $7.01\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, and $6.97\times {10}^{-6}\phantom{\rule{3.33333pt}{0ex}}\mathrm{mN}/\mathrm{m}$, respectively, within the spontaneous tension range in Table 1 of [7].

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wu, H.; Ou-Yang, Z.-C.; Podgornik, R.
A Note on Vestigial Osmotic Pressure. *Membranes* **2023**, *13*, 332.
https://doi.org/10.3390/membranes13030332

**AMA Style**

Wu H, Ou-Yang Z-C, Podgornik R.
A Note on Vestigial Osmotic Pressure. *Membranes*. 2023; 13(3):332.
https://doi.org/10.3390/membranes13030332

**Chicago/Turabian Style**

Wu, Hao, Zhong-Can Ou-Yang, and Rudolf Podgornik.
2023. "A Note on Vestigial Osmotic Pressure" *Membranes* 13, no. 3: 332.
https://doi.org/10.3390/membranes13030332