error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = genetic prion disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2339 KB  
Review
Genetic Variation and Strain Dynamics in Chronic Wasting Disease
by Irina Zemlyankina, Melissa Razcon-Echeagaray, Gokhan Yilmaz, Kristen B. Gregg, Sabine Gilch and Samia Hannaoui
Viruses 2025, 17(10), 1308; https://doi.org/10.3390/v17101308 - 27 Sep 2025
Viewed by 1019
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids marked by growing strain diversity and variation in host susceptibility. Central to this complexity are prion protein gene (Prnp) polymorphisms, which can modulate pathogenesis by altering the ability of cellular prion [...] Read more.
Chronic wasting disease (CWD) is a prion disease of cervids marked by growing strain diversity and variation in host susceptibility. Central to this complexity are prion protein gene (Prnp) polymorphisms, which can modulate pathogenesis by altering the ability of cellular prion protein (PrPC) to misfold into infectious prions (PrPSc), or by promoting the emergence of novel strains. Studies in cervids and transgenic rodent models demonstrate that individual polymorphisms influence PrP stability, conversion efficiency, and the selection of PrPSc conformers, with most variants conferring partial resistance but none offering complete protection. These host–strain interactions define transmission barriers and disease phenotype. Understanding how Prnp genotypes shape CWD strain diversity is essential for predicting transmission dynamics, refining surveillance, and assessing zoonotic potential as the disease continues to expand geographically and genetically. Full article
(This article belongs to the Special Issue Chronic Wasting Disease: From Pathogenesis to Prevention)
Show Figures

Figure 1

30 pages, 1460 KB  
Systematic Review
Systematic Review of the Role of Kv4.x Potassium Channels in Neurodegenerative Diseases: Implications for Neuronal Excitability and Therapeutic Modulation
by Bárbara Teruel-Peña, Piedad Gómez-Torres, Sergio Galarreta-Aperte, Nora Suleiman-Martos, Isabel Prieto, Manuel Ramírez-Sánchez, Carmen M. Fernández-Martos and Germán Domínguez-Vías
Physiologia 2025, 5(3), 31; https://doi.org/10.3390/physiologia5030031 - 10 Sep 2025
Cited by 2 | Viewed by 2206
Abstract
Background/Objectives: The voltage-gated potassium channels of the Kv4 family (Kv4.1, Kv4.2, Kv4.3) regulate neuronal excitability and synaptic integration. The dysregulation of these channels has been linked to neurodegenerative diseases, such as Alzheimer’s disease (AD), spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), prion diseases, and [...] Read more.
Background/Objectives: The voltage-gated potassium channels of the Kv4 family (Kv4.1, Kv4.2, Kv4.3) regulate neuronal excitability and synaptic integration. The dysregulation of these channels has been linked to neurodegenerative diseases, such as Alzheimer’s disease (AD), spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), prion diseases, and Parkinson’s disease (PD). Current evidence is scattered across diverse models, and a systematic synthesis is lacking. This review seeks to compile and analyze data on Kv4 channel alterations in neurodegeneration, focusing on genetic variants, functional changes, and phenotypic consequences. Methods: A systematic search was conducted for peer-reviewed studies, including human participants, human-derived cell models, and relevant animal models. Studies were considered eligible if they investigated Kv4.1–Kv4.3 (encoded by gene encoding the Kv4.1-Kv4.3 α-subunit of voltage-gated A-type potassium channels (KCND1-KCND3)) expression, function, or genetic variants, as well as associated auxiliary subunits such as DPP6 (dipeptidyl peptidase–like protein 6) and KChIP2 (Kv channel–interacting protein 2), in neurodegenerative diseases. Both observational and experimental designs were considered. Data extraction included disease type, model, Kv4 subunit, functional or genetic findings, and key outcomes. Risk of bias was assessed in all included studies. Results: Kv4 channels exhibit significant functional and expression changes in various neurodegenerative diseases. In AD and prionopathies, reduced Kv4.1- and Kv4.2-mediated currents contribute to neuronal hyperexcitability. In spinocerebellar ataxias, KCND3 mutations cause loss- or gain-of-function phenotypes in Kv4.3, disrupting cerebellar signaling. In models of ALS and PD, Kv4 dysfunction correlates with altered neuronal excitability and can be modulated pharmacologically. Subunit modulators such as DPP6 and KChIP2 influence channel function and could represent therapeutic targets. Conclusions: Kv4 channels are crucial for neuronal excitability in multiple neurodegenerative contexts. Dysregulation through genetic or pathological mechanisms contributes to functional deficits, highlighting Kv4 channels as promising targets for interventions aimed at restoring electrical homeostasis and mitigating early neuronal dysfunction. Full article
(This article belongs to the Special Issue Feature Papers in Human Physiology—3rd Edition)
Show Figures

Graphical abstract

15 pages, 455 KB  
Article
White-Tailed Deer Prion Protein Gene Variability Suggests Selection Against Chronic Wasting Disease in Canada’s Prairies
by William Pilot, Maria I. Arifin, Antanas Staskevicius, Nicholas J. Haley, Gordon Mitchell and Jiewen Guan
Viruses 2025, 17(8), 1121; https://doi.org/10.3390/v17081121 - 15 Aug 2025
Cited by 1 | Viewed by 1441
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that targets cervids, has become a significant threat to both free-ranging and captive populations of Canadian white-tailed deer. In an effort to mitigate its spread, research in the past 20 years has demonstrated that the [...] Read more.
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that targets cervids, has become a significant threat to both free-ranging and captive populations of Canadian white-tailed deer. In an effort to mitigate its spread, research in the past 20 years has demonstrated that the genetic background of deer may influence the pathogenesis of CWD. Specifically, variants located on the 95-, 96-, 116- and 226-codon of the prion protein gene seem to attenuate disease progression in white-tailed deer. The influence of these alleles on the likelihood of being found CWD-positive on Saskatchewan and Albertan farms was assessed using a Bayesian logistic regression model. To assess the presence of selection for favourable prion protein gene alleles, shifts in variant genotype frequencies were examined over the last seventeen years. Our results show that deer harboring the G96S allele have significantly lowered odds of infection within Canadian herds. Furthermore, the prevalence of this allele has increased significantly in farmed deer over the past seventeen years. Establishing the dynamic genetic background of Canadian deer populations will inform future disease management initiatives. Full article
(This article belongs to the Special Issue Chronic Wasting Disease: From Pathogenesis to Prevention)
Show Figures

Figure 1

43 pages, 2656 KB  
Review
α-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges
by Oscar Arias-Carrión, Magdalena Guerra-Crespo, Francisco J. Padilla-Godínez, Luis O. Soto-Rojas and Elías Manjarrez
Int. J. Mol. Sci. 2025, 26(11), 5405; https://doi.org/10.3390/ijms26115405 - 4 Jun 2025
Cited by 9 | Viewed by 9463
Abstract
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, [...] Read more.
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, including its structure, aggregation mechanisms, cellular interactions, and systemic influences. We highlight the structural diversity of aSyn aggregates, ranging from oligomers to fibrils, their strain-like properties, and their prion-like propagation. While the role of prion-like mechanisms in disease progression remains a topic of ongoing debate, these processes may contribute to the clinical heterogeneity of synucleinopathies. Dysregulation of protein clearance pathways, including chaperone-mediated autophagy and the ubiquitin–proteasome system, exacerbates aSyn accumulation, while post-translational modifications influence its toxicity and aggregation propensity. Emerging evidence suggests that immune responses and alterations in the gut microbiome are key modulators of aSyn pathology, linking peripheral processes—particularly those of intestinal origin—to central neurodegeneration. Advances in biomarker development, such as cerebrospinal fluid assays, post-translationally modified aSyn, and real-time quaking-induced conversion technology, hold promise for early diagnosis and disease monitoring. Furthermore, positron emission tomography imaging and conformation-specific antibodies offer innovative tools for visualising and targeting aSyn pathology in vivo. Despite significant progress, challenges remain in accurately modelling human synucleinopathies, as existing animal and cellular models capture only specific aspects of the disease. This review underscores the need for more reliable aSyn biomarkers to facilitate the development of effective treatments. Achieving this goal requires an interdisciplinary approach integrating genetic, epigenetic, and environmental insights. Full article
(This article belongs to the Special Issue Molecular Insights in Neurodegeneration)
Show Figures

Graphical abstract

39 pages, 23859 KB  
Article
Computational Search for Inhibitors of SOD1 Mutant Infectivity as Potential Therapeutics for ALS Disease
by Marco Carnaroli, Marco Agostino Deriu and Jack Adam Tuszynski
Int. J. Mol. Sci. 2025, 26(10), 4660; https://doi.org/10.3390/ijms26104660 - 13 May 2025
Viewed by 1481
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective degeneration of motor neurons. Among the main genetic causes of ALS, over 200 mutations have been identified in the Cu/Zn superoxide dismutase (SOD1) protein, a dimeric metalloenzyme essential for [...] Read more.
Familial amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective degeneration of motor neurons. Among the main genetic causes of ALS, over 200 mutations have been identified in the Cu/Zn superoxide dismutase (SOD1) protein, a dimeric metalloenzyme essential for converting superoxides from cellular respiration into less toxic products. Point mutations in SOD1 monomers can induce protein misfolding, which spreads to wild-type monomers through a prion-like mechanism, leading to dysfunctions that contribute to the development of the disease. Understanding the structural and functional differences between the wild-type protein and its mutated variants, as well as developing drugs capable of inhibiting the propagation of misfolding, is crucial for identifying new therapeutic strategies. In this work, seven SOD1 mutations (A4V, G41D, G41S, D76V, G85R, G93A, and I104F) were selected, and three-dimensional models of SOD1 dimers composed of one wild-type monomer and one mutated monomer were generated, along with a control dimer consisting solely of wild-type monomers. Molecular dynamics simulations were conducted to investigate conformational differences between the dimers. Additionally, molecular docking was performed using a library of ligands to identify compounds with high affinity for the mutated dimers. The study reveals some differences in the mutated dimers following molecular dynamics simulations and in the docking of the selected ligands with the various dimers. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

36 pages, 3949 KB  
Review
Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies
by María González-Sánchez, María Jesús Ramírez-Expósito and José Manuel Martínez-Martos
Life 2025, 15(4), 647; https://doi.org/10.3390/life15040647 - 14 Apr 2025
Cited by 11 | Viewed by 9243
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and evolving therapeutic strategies. Mechanistically, ALS arises from complex interactions between genetic mutations (e.g., in C9orf72, SOD1, TARDBP (TDP-43), and FUS) and dysregulated cellular pathways, including impaired RNA metabolism, protein misfolding, nucleocytoplasmic transport defects, and prion-like propagation of toxic aggregates. Phenotypic heterogeneity, manifesting as bulbar-, spinal-, or respiratory-onset variants, complicates its early diagnosis, which thus necessitates the rigorous application of the revised El Escorial criteria and emerging biomarkers such as neurofilament light chain. Clinically, ALS intersects with frontotemporal dementia (FTD) in up to 50% of the cases, driven by shared TDP-43 pathology and C9orf72 hexanucleotide expansions. Epidemiological studies have revealed a lifetime risk of 1:350, with male predominance (1.5:1) and peak onset between 50 and 70 years. Disease progression varies widely, with a median survival of 2–4 years post-diagnosis, underscoring the urgency for early intervention. Approved therapies, including riluzole (glutamate modulation), edaravone (antioxidant), and tofersen (antisense oligonucleotide), offer modest survival benefits, while dextromethorphan/quinidine alleviates the pseudobulbar affect. Non-pharmacological treatment advances, such as non-invasive ventilation (NIV), prolong survival by 13 months and improve quality of life, particularly in bulb-involved patients. Multidisciplinary care—integrating physical therapy, respiratory support, nutritional management, and cognitive assessments—is critical to addressing motor and non-motor symptoms (e.g., dysphagia, spasticity, sleep disturbances). Emerging therapies show promise in preclinical models. However, challenges persist in translating genetic insights into universally effective treatments. Ethical considerations, including euthanasia and end-of-life decision-making, further highlight the need for patient-centered communication and palliative strategies. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

22 pages, 1982 KB  
Review
Unraveling Molecular Targets for Neurodegenerative Diseases Through Caenorhabditis elegans Models
by Rongmei Xu, Qiaoju Kang, Xuefei Yang, Ping Yi and Rongying Zhang
Int. J. Mol. Sci. 2025, 26(7), 3030; https://doi.org/10.3390/ijms26073030 - 26 Mar 2025
Viewed by 3040
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and prion disease, represent a group of age-related disorders that pose a growing and formidable challenge to global health. Despite decades of extensive research that has [...] Read more.
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and prion disease, represent a group of age-related disorders that pose a growing and formidable challenge to global health. Despite decades of extensive research that has uncovered key genetic factors and biochemical pathways, the precise molecular mechanisms underlying these diseases and effective therapeutic strategies remain elusive. Caenorhabditis elegans (C. elegans) has emerged as a powerful model organism for studying NDDs due to its unique biological features such as genetic tractability, conserved molecular pathways, and ease of high-throughput screening. This model provides an exceptional platform for identifying molecular targets associated with NDDs and developing novel therapeutic interventions. This review highlights the critical role of C. elegans in elucidating the complex molecular mechanisms of human NDDs, with a particular focus on recent advancements and its indispensable contributions to the discovery of molecular targets and therapeutic strategies for these NDDs. Full article
(This article belongs to the Special Issue C. elegans as a Disease Model: Molecular Perspectives: 2nd Edition)
Show Figures

Graphical abstract

16 pages, 9111 KB  
Article
Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii)
by Chang-Su Han, Sae-Young Won, Sang-Hun Park and Yong-Chan Kim
Animals 2025, 15(2), 220; https://doi.org/10.3390/ani15020220 - 15 Jan 2025
Viewed by 2250
Abstract
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal [...] Read more.
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the PRNP gene have not been investigated. In this study, genetic polymorphisms in the PRNP gene were investigated in 194 Dybowski’s frogs using polymerase chain reaction (PCR) and amplicon sequencing. We carried out in silico analyses to predict functional alterations according to non-synonymous single nucleotide polymorphisms (SNPs) using PolyPhen-2, PANTHER, SIFT, and MutPred2. We used ClustalW2 and MEGA X to compare frog PRNP and PrP sequences with those of prion-related animals. To evaluate the impact of the SNPs on protein aggregation propensity and 3D structure, we utilized AMYCO and ColabFold. We identified 34 novel genetic polymorphisms including 6 non-synonymous SNPs in the frog PRNP gene. The hydrogen bond length varied at codons 143 and 207 according to non-synonymous SNPs, even if the electrostatic potential was not changed. In silico analysis predicted S143N to increase the aggregation propensity, and W6L, C8Y, R211W, and L241F had damaging effects on frog PrPs. The PRNP and PrP sequences of frogs showed low homology with those of prion-related mammals. To the best of our knowledge, this study was the first to discover genetic polymorphisms in the PRNP gene in amphibians. Full article
(This article belongs to the Special Issue Prion Diseases in Animals)
Show Figures

Figure 1

11 pages, 1418 KB  
Article
Novel Insertion/Deletion Polymorphisms and Genetic Studies of the Shadow of Prion Protein (SPRN) in Raccoon Dogs
by Da-In Choi, Mohammed Zayed, Eun-Jee Na, Jae-Ku Oem and Byung-Hoon Jeong
Animals 2024, 14(24), 3716; https://doi.org/10.3390/ani14243716 - 23 Dec 2024
Viewed by 1320
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of invariably fatal neurodegenerative disorders. One of the candidate genes involved in prion diseases is the shadow of the prion protein (SPRN) gene. Raccoon dogs, a canid, are considered to be [...] Read more.
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of invariably fatal neurodegenerative disorders. One of the candidate genes involved in prion diseases is the shadow of the prion protein (SPRN) gene. Raccoon dogs, a canid, are considered to be a prion disease-resistant species. To date, the genetic polymorphisms of the SPRN gene and the predicted protein structure of the shadow of prion protein (Sho) have not been explored in raccoon dogs. SPRN was amplified using polymerase chain reaction (PCR). We also investigated the genetic polymorphisms of SPRN by analyzing the frequencies of genotypes, alleles, and haplotypes, as well as the linkage disequilibrium among the identified genetic variations. In addition, in silico analysis with MutPred-Indel was performed to predict the pathogenicity of insertion/deletion polymorphisms. Predicted 3D structures were analyzed by the Alphafold2. We found a total of two novel synonymous single nucleotide polymorphisms and three insertion/deletion polymorphisms. In addition, the 3D structure of the Sho protein in raccoon dogs was predicted to resemble that of the Sho protein in dogs. This is the first study regarding the genetic and structural characteristics of the raccoon dog SPRN gene. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

16 pages, 2108 KB  
Article
First Report of Polymorphisms and Genetic Characteristics of Prion-like Protein Gene (PRND) in Cats
by Min-Ju Jeong, Yong-Chan Kim and Byung-Hoon Jeong
Animals 2024, 14(23), 3438; https://doi.org/10.3390/ani14233438 - 27 Nov 2024
Cited by 1 | Viewed by 1258
Abstract
Prion diseases are fatal neurodegenerative disorders caused by the misfolding of the normal cellular prion protein (PrPC) into its infectious isoform (PrPSc). Although prion diseases in humans, sheep, goats, and cattle have been extensively studied, feline spongiform encephalopathy (FSE) [...] Read more.
Prion diseases are fatal neurodegenerative disorders caused by the misfolding of the normal cellular prion protein (PrPC) into its infectious isoform (PrPSc). Although prion diseases in humans, sheep, goats, and cattle have been extensively studied, feline spongiform encephalopathy (FSE) remains poorly understood. Genetic factors, particularly polymorphisms in the prion protein gene (PRNP) and prion-like protein gene (PRND), have been linked to prion disease susceptibility in various species. However, no studies have yet investigated the PRND gene in cats with respect to prion diseases. Therefore, we investigated polymorphisms in the feline PRND gene and analyzed their genetic characteristics. We sequenced the coding region of the PRND gene using samples from 210 domestic cats and determined the genotype and allele frequencies of PRND polymorphisms. We identified thirteen novel single nucleotide polymorphisms (SNPs), including six non-synonymous variants and one insertion/deletion (InDel) in the feline PRND gene. Four of the non-synonymous SNPs were predicted to have deleterious effects on the Doppel protein’s structure and function. Notably, the SNP c.97A>G (I33V) showed potential structural clashes, and the others formed additional hydrogen bonds. The LD analysis revealed strong genetic associations between the PRND SNPs and the PRNP InDel, suggesting linkage between these loci in cats. This study identifies novel PRND polymorphisms in domestic cats and provides new insights into the genetic factors underlying feline susceptibility to prion diseases. The strong genetic linkage between PRND and PRNP polymorphisms, coupled with predictions of detrimental effects on Doppel protein structure, suggests that PRND gene variants could influence prion disease progression in cats. These findings provide a foundational framework for future studies on the functional implications of PRND polymorphisms in FSE. To the best of our knowledge, this study is the first report on the genetic characteristics of PRND polymorphisms in cats. Full article
(This article belongs to the Special Issue Molecular Genomics and Genetics in Animal Prion Diseases)
Show Figures

Figure 1

15 pages, 1043 KB  
Article
A Retrospective Cohort Study of a Newly Proposed Criteria for Sporadic Creutzfeldt–Jakob Disease
by Toshiaki Nonaka, Ryusuke Ae, Koki Kosami, Hiroya Tange, Miho Kaneko, Takehiro Nakagaki, Tsuyoshi Hamaguchi, Nobuo Sanjo, Yoshikazu Nakamura, Tetsuyuki Kitamoto, Yoshiyuki Kuroiwa, Kensaku Kasuga, Manabu Doyu, Fumiaki Tanaka, Koji Abe, Shigeo Murayama, Ichiro Yabe, Hideki Mochizuki, Takuya Matsushita, Hiroyuki Murai, Masashi Aoki, Koji Fujita, Masafumi Harada, Masaki Takao, Tadashi Tsukamoto, Yasushi Iwasaki, Masahito Yamada, Hidehiro Mizusawa, Katsuya Satoh and Noriyuki Nishidaadd Show full author list remove Hide full author list
Diagnostics 2024, 14(21), 2424; https://doi.org/10.3390/diagnostics14212424 - 30 Oct 2024
Cited by 1 | Viewed by 3908
Abstract
Background/Objectives: Sporadic Creutzfeldt–Jakob disease (sCJD) is a fatal neurodegenerative disorder traditionally diagnosed based on the World Health Organization (WHO) criteria in 1998. Recently, Hermann et al. proposed updated diagnostic criteria incorporating advanced biomarkers to enhance early detection of sCJD. This study aimed to [...] Read more.
Background/Objectives: Sporadic Creutzfeldt–Jakob disease (sCJD) is a fatal neurodegenerative disorder traditionally diagnosed based on the World Health Organization (WHO) criteria in 1998. Recently, Hermann et al. proposed updated diagnostic criteria incorporating advanced biomarkers to enhance early detection of sCJD. This study aimed to evaluate the sensitivity and specificity of Hermann’s criteria compared with those of the WHO criteria in a large cohort of patients suspected of prion disease in Japan. Methods: In this retrospective cohort study, we examined the new criteria using data of 2004 patients with suspected prion disease registered with the Japanese Prion Disease Surveillance (JPDS) between January 2009 and May 2023. Patients with genetic or acquired prion diseases or incomplete data necessary for the diagnostic criteria were excluded, resulting in 786 eligible cases. The sensitivity and specificity of the WHO and Hermann’s criteria were calculated by comparing diagnoses with those made by the JPDS Committee. Results: Of the 786 included cases, Hermann’s criteria helped identify 572 probable cases compared with 448 by the WHO criteria. The sensitivity and specificity of the WHO criteria were 96.4% and 96.6%, respectively. Hermann’s criteria demonstrated a sensitivity of 99.3% and a specificity of 95.2%, indicating higher sensitivity but slightly lower specificity. Fifty-five cases were classified as “definite” by both criteria. Conclusions: The findings suggest that Hermann’s criteria could offer improved sensitivity for detecting sCJD, potentially reducing diagnostic oversight. However, caution is advised in clinical practice to avoid misdiagnosis, particularly in treatable neurological diseases, by ensuring thorough exclusion of other potential conditions. Full article
Show Figures

Figure 1

13 pages, 2119 KB  
Article
Novel Single-Nucleotide Polymorphisms (SNPs) and Genetic Studies of the Shadow of Prion Protein (SPRN) in Quails
by Da-In Choi, Mohammed Zayed and Byung-Hoon Jeong
Animals 2024, 14(17), 2481; https://doi.org/10.3390/ani14172481 - 26 Aug 2024
Cited by 1 | Viewed by 1654
Abstract
Prion diseases are a group of deadly neurodegenerative disorders caused by the accumulation of the normal prion protein (PrPC) into misfolding pathological conformations (PrPSc). The PrP gene is essential for the development of prion diseases. Another candidate implicated in [...] Read more.
Prion diseases are a group of deadly neurodegenerative disorders caused by the accumulation of the normal prion protein (PrPC) into misfolding pathological conformations (PrPSc). The PrP gene is essential for the development of prion diseases. Another candidate implicated in prion pathogenesis is the shadow of the prion protein (SPRN) gene. To date, genetic polymorphisms of the SPRN gene and the structure of the Sho protein have not been explored in quails. We used polymerase chain reaction (PCR) to amplify the SPRN gene sequence and then conducted Sanger DNA sequencing to identify the genetic polymorphisms in quail SPRN. Furthermore, we examined the genotype, allele, and haplotype frequencies, and assessed the linkage disequilibrium among the genetic polymorphisms of the SPRN gene in quails. Additionally, we used in silico programs such as MutPred2, SIFT, MUpro, AMYCO, and SODA to predict the pathogenicity of non-synonymous single-nucleotide polymorphisms (SNPs). Alphafold2 predicted the 3D structure of the Sho protein in quails. The results showed that a total of 13 novel polymorphisms were found in 106 quails, including 4 non-synonymous SNPs. Using SIFT and MUpro in silico programs, three out of the four non-synonymous SNPs (A68T, L74P, and M105I) were predicted to have deleterious effects on quail Sho. Furthermore, the 3D structure of quail Sho was predicted to be similar to that of chicken Sho. To our knowledge, this is the first report to investigate the genetic and structural properties of the quail SPRN gene. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

9 pages, 1355 KB  
Article
First Report of Single Nucleotide Polymorphisms (SNPs) of the Leporine Shadow of Prion Protein Gene (SPRN) and Absence of Nonsynonymous SNPs in the Open Reading Frame (ORF) in Rabbits
by Sameeullah Memon, Zerui Wang, Wen-Quan Zou, Yong-Chan Kim and Byung-Hoon Jeong
Animals 2024, 14(12), 1807; https://doi.org/10.3390/ani14121807 - 17 Jun 2024
Cited by 2 | Viewed by 1490
Abstract
Prion disorders are fatal infectious diseases that are caused by a buildup of pathogenic prion protein (PrPSc) in susceptible mammals. According to new findings, the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) [...] Read more.
Prion disorders are fatal infectious diseases that are caused by a buildup of pathogenic prion protein (PrPSc) in susceptible mammals. According to new findings, the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) is associated with prion protein (PrP), promoting the progression of prion diseases. Although genetic polymorphisms in SPRN are associated with susceptibility to several prion diseases, genetic polymorphisms in the rabbit SPRN gene have not been investigated in depth. We discovered two novel single nucleotide polymorphisms (SNPs) in the leporine SPRN gene on chromosome 18 and found strong linkage disequilibrium (LD) between them. Additionally, strong LD was not found between the polymorphisms of PRNP and SPRN genes in rabbits. Furthermore, nonsynonymous SNPs that alter the amino acid sequences within the open reading frame (ORF) of SPRN have been observed in prion disease-susceptible animals, but this is the first report in rabbits. As far as we are aware, this study represents the first examination of the genetic features of the rabbit SPRN gene. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 6309 KB  
Article
The First Genetic Characterization of the SPRN Gene in Pekin Ducks (Anas platyrhynchos domesticus)
by Thi-Thuy-Duong Nguyen, Mohammed Zayed, Yong-Chan Kim and Byung-Hoon Jeong
Animals 2024, 14(11), 1588; https://doi.org/10.3390/ani14111588 - 27 May 2024
Cited by 2 | Viewed by 1882
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by an accumulation of misfolded prion protein (PrPSc) in brain tissues. The shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) is involved in prion disease progress. [...] Read more.
Prion diseases are fatal neurodegenerative disorders characterized by an accumulation of misfolded prion protein (PrPSc) in brain tissues. The shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) is involved in prion disease progress. The interaction between Sho and PrP accelerates the PrPSc conversion rate while the SPRN gene polymorphisms have been associated with prion disease susceptibility in several species. Until now, the SPRN gene has not been investigated in ducks. We identified the duck SPRN gene sequence and investigated the genetic polymorphisms of 184 Pekin ducks. We compared the duck SPRN nucleotide sequence and the duck Sho protein amino acid sequence with those of several other species. Finally, we predicted the duck Sho protein structure and the effects of non-synonymous single nucleotide polymorphisms (SNPs) using computational programs. We were the first to report the Pekin duck SPRN gene sequence. The duck Sho protein sequence showed 100% identity compared with the chicken Sho protein sequence. We found 27 novel SNPs in the duck SPRN gene. Four amino acid substitutions were predicted to affect the hydrogen bond distribution in the duck Sho protein structure. Although MutPred2 and SNPs&GO predicted that all non-synonymous polymorphisms were neutral or benign, SIFT predicted that four variants, A22T, G49D, A68T, and M105I, were deleterious. To the best of our knowledge, this is the first report about the genetic and structural characteristics of the duck SPRN gene. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

7 pages, 2909 KB  
Case Report
Creutzfeldt–Jakob Disease Associated with E200K Mutation and SARS-CoV-2 Infection: Pure Coincidence or Neurodegenerative Acceleration?
by Elisa Colaizzo, Luca Prosperini, Antonio Petrucci and Alessia Perna
Clin. Transl. Neurosci. 2024, 8(2), 16; https://doi.org/10.3390/ctn8020016 - 26 Mar 2024
Cited by 2 | Viewed by 9117
Abstract
Several recent studies reported on some patients developing Creutzfeldt–Jakob disease (CJD) following coronavirus disease 2019, but, to the best of our knowledge, this case is the first reported in Italy on an onset of a CJD genetic form (gCJD) immediately after COVID-19 infection. [...] Read more.
Several recent studies reported on some patients developing Creutzfeldt–Jakob disease (CJD) following coronavirus disease 2019, but, to the best of our knowledge, this case is the first reported in Italy on an onset of a CJD genetic form (gCJD) immediately after COVID-19 infection. We present a 51-year-old woman with a positive family history for CJD, who, two months after a mild SARS-CoV-2 infection, presented a rapidly progressing dementia diagnosed as CJD through clinical features, imaging, electroencephalography, and cerebrospinal fluid analysis. Genetic testing revealed the E200K mutation (p.Glu200Lys) c.598G>A, with homozygosity for methionine (MET) at codon 129, thus confirming the diagnosis of Creutzfeldt–Jakob disease. She passed away two months later. Interestingly, our case confirms that homozygous E200K gCJD patients are characterized by a relatively younger age of onset; moreover, it also sheds light on the neurodegeneration underlying both prion diseases and COVID-19 infection. In our opinion, the rising global prevalence of neurodegenerative complications following COVID-19 disease adds urgency to the study of this potential relationship, mostly in elderly patients who may experience worse long-lasting outcomes systemically and within the nervous system. Full article
Show Figures

Figure 1

Back to TopTop