Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = gene OPG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 496
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

16 pages, 417 KiB  
Review
Potential Biological and Genetic Links Between Dementia and Osteoporosis: A Scoping Review
by Abayomi N. Ogunwale, Paul E. Schulz, Jude K. des Bordes, Florent Elefteriou and Nahid J. Rianon
Geriatrics 2025, 10(4), 96; https://doi.org/10.3390/geriatrics10040096 - 20 Jul 2025
Viewed by 351
Abstract
Background: The biological mediators for the epidemiologic overlap between osteoporosis and dementia are unclear. We undertook a scoping review of clinical studies to identify genetic and biological factors linked with these degenerative conditions, exploring the mechanisms and pathways connecting both conditions. Methods: Studies [...] Read more.
Background: The biological mediators for the epidemiologic overlap between osteoporosis and dementia are unclear. We undertook a scoping review of clinical studies to identify genetic and biological factors linked with these degenerative conditions, exploring the mechanisms and pathways connecting both conditions. Methods: Studies selected (1) involved clinical research investigating genetic factors or biomarkers associated with dementia or osteoporosis, and (2) were published in English in a peer-reviewed journal between July 1993 and March 2025. We searched Medline Ovid, Embase, PsycINFO, the Cochrane Library, the Web of Science databases, Google Scholar, and the reference lists of studies following the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR). Results: Twenty-three studies were included in this review. These explored the role of the APOE polymorphism (n = 2) and the APOE4 allele (n = 13), associations between TREM2 mutation and late onset AD (n = 1), and associations between amyloid beta and bone remodeling (n = 1); bone-related biomarkers like DKK1, OPG, and TRAIL as predictors of cognitive change (n = 2); extracellular vesicles as bone–brain communication pathways (1); and the role of dementia-related genes (n = 1), AD-related CSF biomarkers (n = 1), and parathyroid hormone (PTH) (n = 1) in osteoporosis–dementia pathophysiology. Conclusions: Bone-related biomarkers active in the Wnt/β-Catenin pathway (Dkk1 and sclerostin) and the RANKL/RANK/OPG pathway (OPG/TRAIL ratio) present consistent evidence of involvement in AD and osteoporosis development. Reports proposing APOE4 as a causal genetic link for both osteoporosis and AD in women are not corroborated by newer observational studies. The role of Aβ toxicity in osteoporosis development is unverified in a large clinical study. Full article
Show Figures

Figure 1

20 pages, 1783 KiB  
Review
Beyond Muscle Weakness: Unraveling Endocrine and Metabolic Dysfunctions in Duchenne Muscular Dystrophy, a Narrative Review
by Giuseppe Cannalire, Giacomo Biasucci, Vanessa Sambati, Tommaso Toschetti, Arianna Maria Bellani, Anna-Mariia Shulhai, Federica Casadei, Erika Rita Di Bari, Francesca Ferraboschi, Cecilia Parenti, Maria Carmela Pera, Susanna Esposito and Maria Elisabeth Street
Biomedicines 2025, 13(7), 1613; https://doi.org/10.3390/biomedicines13071613 - 1 Jul 2025
Viewed by 908
Abstract
Background: Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular disorder caused by mutations in the DMD gene, leading to progressive muscle degeneration, loss of ambulation, and multi-systemic complications. Beyond its impact on mobility, DMD is associated with significant endocrine and metabolic dysfunctions [...] Read more.
Background: Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular disorder caused by mutations in the DMD gene, leading to progressive muscle degeneration, loss of ambulation, and multi-systemic complications. Beyond its impact on mobility, DMD is associated with significant endocrine and metabolic dysfunctions that develop over time. Objective: To provide a comprehensive analysis of growth disturbances, endocrine dysfunctions, and metabolic complications in DMD including bone metabolism, considering the underlying mechanisms, clinical implications, and management strategies for daily clinical guidance. Methods: In this narrative review, an evaluation of the literature was conducted by searching the Medline database via the PubMed, Scopus, and Web of Science interfaces. Results: Growth retardation is a hallmark feature of DMD, with patients exhibiting significantly shorter stature compared to their healthy peers. This is exacerbated by long-term glucocorticoid therapy, which disrupts the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and delays puberty. Obesity prevalence follows a biphasic trend, with increased risk in early disease stages due to reduced mobility and corticosteroid use, followed by a decline in body mass index (BMI) in later stages due to muscle wasting. Metabolic complications, including insulin resistance, altered lipid metabolism, and hepatic steatosis, further characterize disease burden. Osteoporosis and increased fracture risk, primarily due to reduced mechanical loading and glucocorticoid-induced bone resorption, are major concerns, needing early screening and intervention. The RANK/RANKL/OPG signaling pathway has emerged as a critical factor in bone deterioration, providing potential therapeutic targets for improving skeletal health. Conclusions: Growth and endocrine disorders in DMD are complex and multifactorial, requiring proactive monitoring and early intervention. Addressing these issues requires a multidisciplinary approach integrating endocrine, nutritional, and bone health management. Further research is essential to refine treatment strategies that mitigate growth and metabolic disturbances while preserving overall patient well-being. Full article
(This article belongs to the Special Issue Musculoskeletal Diseases: From Molecular Basis to Therapy (Volume II))
Show Figures

Figure 1

13 pages, 2729 KiB  
Article
Influence of Unidirectional Vacuum Application on Bone Healing in Maxillofacial Surgery
by Tom Alexander Schröder, Athanasios Karasavvas, Maximilian Bauckloh, Matthias C. Schulz, Günter Lauer and Lysann Michaela Kroschwald
Cells 2025, 14(10), 751; https://doi.org/10.3390/cells14100751 - 21 May 2025
Viewed by 2419
Abstract
Negative-pressure wound therapy (NPWT) using vacuum-assisted closure (VAC) is a well known tissue defect bridging method that applies a vacuum pump to sterile, open-cell foam dressings via suction tubes. Although it has mostly been described for soft tissue use, there are also a [...] Read more.
Negative-pressure wound therapy (NPWT) using vacuum-assisted closure (VAC) is a well known tissue defect bridging method that applies a vacuum pump to sterile, open-cell foam dressings via suction tubes. Although it has mostly been described for soft tissue use, there are also a few studies concerning its use on hard tissue. However, as oral and maxillofacial surgery has to deal with both soft and hard tissue, which lie next to each other in these regions, there is a particular need to assess the influence of negative pressure on bone. Therefore, the effects of different negative pressure levels (530 mbar and 725 mbar) and atmospheric pressure (1013 mbar) on bone tissue cultures and osteoblast cell cultures were investigated over periods of 1, 3, and 6 weeks. During the culture period, osteoblast growth and the tissue regeneration of bone defects were studied in vitro using tissue cultures that were histologically supplemented by cytological investigations and quantitative RNA expression studies. In the bone defect model, there was a faster defect reduction using NPWT; the effect was especially strong for 530 mbar. Compared to the control group, up to 30% more newly generated bone tissue was detected. This effect on the mineralization capacity was assessed by the mRNA expression of osteogenic marker genes, as well as the receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG), two multifaceted cytokines that regulate bone metabolism. The influence of negative pressure consequently resulted in a decreased RANKL/OPG ratio in osteoblasts. Associated with the upregulation of marker genes to up to 400%, including Col1, BMP4, OCN, and RUNX2, the decrease in the RANKL/OPG ratio to 41% indicates the stimulation of osteogenesis. Since VAC has been shown to be a safe and effective method to close wounds in general, these data suggest that patients suffering from compound bone and soft tissue defects in the maxillofacial area may benefit from an adapted therapy approach accelerating both soft and hard tissue regeneration. Full article
Show Figures

Figure 1

14 pages, 4786 KiB  
Article
The Anisotropic Osteoinductive Capacity of a Nickel–Titanium Alloy Fabricated Through Laser Powder Bed Fusion
by Yu Sun, Zhenglei Yu, Qingping Liu, Luquan Ren, Xin Zhao and Jincheng Wang
Int. J. Mol. Sci. 2025, 26(10), 4640; https://doi.org/10.3390/ijms26104640 - 13 May 2025
Viewed by 376
Abstract
A novel parameter optimization method for additively manufacturing nickel–titanium (NiTi) alloys using laser powder bed fusion (LBPF) was developed. Compared with the conventional NiTi alloy and the previously reported LPBF-NiTi alloy, the LBPF-NiTi alloy prepared with these parameters exhibits excellent tensile properties and [...] Read more.
A novel parameter optimization method for additively manufacturing nickel–titanium (NiTi) alloys using laser powder bed fusion (LBPF) was developed. Compared with the conventional NiTi alloy and the previously reported LPBF-NiTi alloy, the LBPF-NiTi alloy prepared with these parameters exhibits excellent tensile properties and an anisotropic microstructure. Since distinct regions of orthopedic implants have specific functional requirements, we investigated the anisotropy of this LPBF-NiTi in terms of its osteoinductive capacity to determine the appropriate building direction for prosthesis fabrication. The biosafety of the transverse (XY-NiTi) and longitudinal (XZ-NiTi) planes was assessed through cytotoxicity assays. Comparative analyses of the biological activities of these planes were conducted by evaluating the adherent cell counts, the adhesion morphology, and the expression of osteogenic-related genes and factors in adherent cells. Compared with XZ-NiTi, XY-NiTi exhibited superior cell adhesion properties. Additionally, the expression levels of osteogenic markers (RUNX2, ALP, OPG, and OCN) were significantly greater in bone marrow mesenchymal cells (BMMCs) adhered to XY-NiTi than in those adhered to XZ-NiTi. These results indicate a greater osteogenic potential in the XY-NiTi group. XY-NiTi was more advantageous as an implant–bone contact surface. Building implant products in the direction perpendicular to the load-bearing axis enhances biofixation; thus, this is the preferred orientation for manufacturing orthopedic implants. Full article
Show Figures

Figure 1

8 pages, 2518 KiB  
Interesting Images
Radiological and Surgery Considerations and Alternatives in Total Temporomandibular Joint Replacement in Gorlin-Goltz Syndrome
by Kamil Nelke, Klaudiusz Łuczak, Maciej Janeczek, Agata Małyszek, Piotr Kuropka and Maciej Dobrzyński
Diagnostics 2025, 15(9), 1158; https://doi.org/10.3390/diagnostics15091158 - 2 May 2025
Viewed by 577
Abstract
Gorlin-Goltz syndrome (GGS) is also known as Nevoid basal cell carcinoma syndrome (NBCCS). In the most common manifestation, GGS is diagnosed based on multiple cysts in the jaw bones, namely OKCs (odontogenic keratocysts). Other features might include major and minor clinical and radiological [...] Read more.
Gorlin-Goltz syndrome (GGS) is also known as Nevoid basal cell carcinoma syndrome (NBCCS). In the most common manifestation, GGS is diagnosed based on multiple cysts in the jaw bones, namely OKCs (odontogenic keratocysts). Other features might include major and minor clinical and radiological criteria to confirm this syndrome. Quite commonly, BCCs (basal cell carcinomas), bifid ribs, palmar and plantar pits, and ectopic calcification of the falx cerebri can be found in the majority of patients. Currently, the mutation of the PTCH1 gene seems to be responsible for GGS occurrence, while the male-to-female ratio is 1:1. The following radiological study based on OPGs and CBCT confirmed multiple cystic lesions in jaw bones, confirmed to be OKCs in the histopathological evaluation with an occurrence of numerous skin BCC lesions. In cases of most oral OKC cystic lesions, either surgical removal, curettage, or enucleation with or without any bone grafting can be used with a good amount of success. Rarely, some stable bone osteosynthesis procedures have to be carried out to avoid pathological bone fractures after cyst removal. A special consideration should include the temporomandibular joint. TMJ surgery and the replacement of the joint with an alloplastic material can be performed to improve biting, chewing, proper mouth opening, and maintain good patient occlusion. The authors want to present how effective and simple a standard dental panoramic radiograph combined with CBCT is and how it is suitable for GGS detection. They also want to underline how a standard TMJ prosthesis can be used as an alternative to a custom-made prosthesis. Full article
(This article belongs to the Collection Interesting Images)
Show Figures

Figure 1

16 pages, 1748 KiB  
Article
IL-1 Receptor Antagonist Anakinra Inhibits the Effect of IL-1β- Mediated Osteoclast Formation by Periodontal Ligament Fibroblasts
by Elizabeth Steemers, Wael M. I. Talbi, Jolanda M. A. Hogervorst, Ton Schoenmaker and Teun J. de Vries
Biology 2025, 14(3), 250; https://doi.org/10.3390/biology14030250 - 28 Feb 2025
Viewed by 1066
Abstract
Rheumatoid arthritis and periodontitis are comorbidities that share mutual pathways. IL-1β is a pro-inflammatory cytokine that plays a crucial role in both diseases. One of the treatment options for rheumatoid arthritis is the use of an IL-1 receptor antagonist (IL-1RA) such as anakinra. [...] Read more.
Rheumatoid arthritis and periodontitis are comorbidities that share mutual pathways. IL-1β is a pro-inflammatory cytokine that plays a crucial role in both diseases. One of the treatment options for rheumatoid arthritis is the use of an IL-1 receptor antagonist (IL-1RA) such as anakinra. Anakinra tempers the disease by decreasing bone resorption and it could possibly stimulate bone formation. Here, we investigate the effect of anakinra in a periodontal disease setting on osteoclastogenesis by co-culturing periodontal ligament fibroblasts (PDLFs) and peripheral blood mononuclear cells (PBMCs) that contain monocytes, a source of osteoclast precursors, as well as by culturing PBMCs alone. The effect of anakinra on PDLF-mediated osteogenesis was studied under mineralization conditions. To mimic a chronic infection such as that prevalent in periodontitis, 10 ng/mL of IL-1β was added either alone or with 10 µg/mL of anakinra. Osteoclastogenesis experiments were performed using co-cultures of PDLF and PBMCs and PBMCs only. Osteoclastogenesis was determined through the formation of multinucleated cells in co-cultures of PDLF and PBMCs, as well as PBMCs alone, at day 21, and gene expression through qPCR at day 14. Osteogenesis was determined by measuring alkaline phosphatase activity (ALP) per cell at day 14. Anakinra is effective in downregulating IL-1β mediated leukocyte clustering and osteoclastogenesis in the co-cultures of both PDLF and PMBCs and PBMCs alone. Gene expression analysis shows that IL-1β increases the expression of the osteoclastogenic marker RANKL and its own expression. This higher expression of IL-1β at the RNA level is reduced by anakinra. Moreover, IL-1β downregulates OPG expression, which is upregulated by anakinra. No effects of anakinra on osteogenesis were seen. Clinically, these findings suggest that anakinra could have a beneficial systemic effect on periodontal breakdown in rheumatoid arthritis patients taking anakinra. Full article
(This article belongs to the Special Issue Bone Cell Biology)
Show Figures

Graphical abstract

19 pages, 5703 KiB  
Article
Establishment and Molecular Characterization of a Human Stem Cell Line from a Primary Cell Culture Obtained from an Ectopic Calcified Lesion of a Tumoral Calcinosis Patient Carrying a Novel GALNT3 Mutation
by Simone Donati, Gaia Palmini, Cinzia Aurilia, Irene Falsetti, Francesca Marini, Gianna Galli, Roberto Zonefrati, Teresa Iantomasi, Lorenzo Margheriti, Alessandro Franchi, Giovanni Beltrami, Laura Masi, Arcangelo Moro and Maria Luisa Brandi
Genes 2025, 16(3), 263; https://doi.org/10.3390/genes16030263 - 24 Feb 2025
Viewed by 735
Abstract
Background/Objectives: Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying [...] Read more.
Background/Objectives: Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying a previously undescribed GALNT3 mutation. Here, we researched whether a stem cell (SC) subpopulation, which may play a critical role in TC progression, could be present within these lesions. Methods: A putative SC subpopulation was initially isolated by the sphere assay (marked as TC1-SC line) and characterized for its stem-like phenotype through several cellular and molecular assays, including colony forming unit assay, immunofluorescence staining for mesenchymal SC (MSC) markers, gene expression analyses for embryonic SC (ESC) marker genes, and multidifferentiation capacity. In addition, a preliminary expression pattern of osteogenesis-related pathways miRNAs and genes were assessed in the TC1-SC by quantitative Real-Time PCR (qPCR). Results: These cells were capable of differentiating into both the adipogenic and the osteogenic lineages. Moreover, they showed the presence of the MSC and ESC markers, confirmed respectively by using immunofluorescence and qualitative reverse transcriptase PCR (RT-PCR), and a good rate of clonogenic capacity. Finally, qPCR data revealed a signature of miRNAs (i.e., miR-21, miR-23a-3p, miR-26a, miR-27a-3p, miR-27b-3p, and miR-29b-3p) and osteogenic marker genes (i.e., ALP, RUNX2, COLIA1, OPG, OCN, and CCN2) characteristic for the established TC1-SC line. Conclusions: The establishment of this in vitro cell model system could advance the understanding of mechanisms underlying TC pathogenesis, thereby paving the way for the discovery of new diagnostic and novel gene-targeted therapeutic approaches for TC. Full article
(This article belongs to the Special Issue MicroRNA in Cancers)
Show Figures

Figure 1

12 pages, 235 KiB  
Review
Investigating the Role of Genetic Polymorphisms in External Apical Root Resorption Among Orthodontic Patients: Implications for Treatment Outcomes—A Literature Review
by Christina Charisi, Vasileios Zisis, Konstantinos Poulopoulos, Stefanos Zisis, Athanasios Poulopoulos and Dieter Müßig
Reports 2025, 8(1), 14; https://doi.org/10.3390/reports8010014 - 24 Jan 2025
Viewed by 1039
Abstract
Background: Among the various forms of root resorption, External Apical Root Resorption (EARR) has garnered particular attention due to its prevalence and potential complications associated with orthodontic interventions. Methods: An electronic search of literature was performed between September 2024 and December 2024 to [...] Read more.
Background: Among the various forms of root resorption, External Apical Root Resorption (EARR) has garnered particular attention due to its prevalence and potential complications associated with orthodontic interventions. Methods: An electronic search of literature was performed between September 2024 and December 2024 to identify all articles investigating the Role of Genetic Polymorphisms in External Apical Root Resorption Among Orthodontic Patients: Implications for Treatment Outcomes. The search was conducted using MEDLINE (National Library of Medicine)-PubMed with restrictions concerning the date of publication. In particular, we focused on the period 2014–2024 using the following keywords: gene polymorphisms AND orthodontic treatment AND apical root resorption OR external apical root resorption. This was followed by a manual search, and references were used to identify relevant articles. Results: The review showed that certain variations of the following genes may be positively associated with OIEARR: Osteopontin gene, P2RX7, IL-1β, IL-6, IL1RN, OPG, RANK, STAG2, RP1-30E17.2, SSP1, SFRP2, TNFSF11, TNFRSF11A, TNFRSF11B, VDR, CYP27B1, ACT3N, TSC2, WNT3A, LRP1, LRP6. Conversely, the IRAK1 gene has a protective function against the development of OIEARR. Conclusions: Despite these advancements, it is still not feasible to establish new guidelines and clinical protocols based on the existing research findings. The integration of genetic considerations into orthodontic practice has the potential to revolutionize treatment strategies, ensuring that they are not only effective but also respectful of each patient’s unique biological landscape. Full article
21 pages, 1714 KiB  
Review
The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential
by Janan Husain Radhi, Ahmed Mohsen Abbas El-Hagrasy, Sayed Husain Almosawi, Abdullatif Alhashel and Alexandra E. Butler
Cancers 2025, 17(3), 337; https://doi.org/10.3390/cancers17030337 - 21 Jan 2025
Cited by 1 | Viewed by 1457
Abstract
Introduction: Osteoprotegerin (OPG), encoded by the TNFRSF11B gene, is linked to the development of breast cancer via several pathways, including interactions with the receptor activator of nuclear factor-κB (RANK) ligands, apoptosis-inducing proteins like TRAIL, and genetic variations such as single nucleotide polymorphisms (SNPs), [...] Read more.
Introduction: Osteoprotegerin (OPG), encoded by the TNFRSF11B gene, is linked to the development of breast cancer via several pathways, including interactions with the receptor activator of nuclear factor-κB (RANK) ligands, apoptosis-inducing proteins like TRAIL, and genetic variations such as single nucleotide polymorphisms (SNPs), directly altering gene expression. This review aims to investigate the role of OPG expression in breast cancer. Methods: A comprehensive literature search was conducted using PubMed Medline, Google Scholar, and ScienceDirect. Only full-text English publications from inception to September 2024 were included. Results: Studies have demonstrated that certain SNPs in the OPG gene, specifically rs3102735 and rs2073618, are linked to a higher risk of breast cancer development. Additionally, OPG’s function as a TRAIL decoy receptor may inhibit the death of cancer cells. Furthermore, OPG in the serum and its interactions with BRCA mutations are being investigated for their potential influence on breast cancer progression. Studies have found that OPG promotes tumorigenesis by enhancing cell proliferation, angiogenesis, and aneuploidy in normal mammary epithelial cells. Moreover, OPG mediates the tumor-promoting effects of interleukin-1 beta and may serve as a biomarker for breast cancer risk, particularly in BRCA1 mutation carriers, through its role in dysregulated RANK signaling. Lastly, the use of recombinant OPG in mouse models has been found to exert anti-tumor effects. Conclusions: In this review, the role of OPG in breast cancer is examined. OPG has a multifaceted role in breast cancer tumorigenesis and exerts its effects through genetic variations (SNPs), interactions with TNF-related apoptosis-inducing ligand (TRAIL), and the modulation of the pro-tumorigenic microenvironment effects of angiogenesis, cell survival, and metastasis. Additionally, OPG’s dual role as a tumor suppressor and promoter serves as a possible therapeutic target to enhance apoptosis, limit bone metastasis, and modulate the tumor microenvironment. Whilst much is now known, further studies are necessary to fully delineate the role of OPG. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

19 pages, 1060 KiB  
Review
A Review of the Molecular Understanding of the Mpox Virus (MPXV): Genomics, Immune Evasion, and Therapeutic Targets
by Edgar Manuel Cambaza
Zoonotic Dis. 2025, 5(1), 3; https://doi.org/10.3390/zoonoticdis5010003 - 16 Jan 2025
Cited by 3 | Viewed by 3733
Abstract
The Mpox virus (MPXV), a zoonotic pathogen from the Orthopoxvirus genus, has emerged as a significant global public health concern, especially after the unprecedented outbreak in 2022. This review synthesizes the MPXV’s molecular features, focusing on its genomic structure, replication mechanisms, immune evasion [...] Read more.
The Mpox virus (MPXV), a zoonotic pathogen from the Orthopoxvirus genus, has emerged as a significant global public health concern, especially after the unprecedented outbreak in 2022. This review synthesizes the MPXV’s molecular features, focusing on its genomic structure, replication mechanisms, immune evasion strategies, and implications for diagnostics and therapeutics. The study examines the virus’s genomic organization utilizing recent peer-reviewed literature, highlighting essential genes like OPG027 and D1L, which contribute to host adaptation, increased transmissibility, and immune evasion. Advances in molecular diagnostics, including real-time PCR and genome sequencing, are reviewed, emphasizing their critical role in outbreak monitoring and control. However, challenges persist, such as diagnostic limitations in resource-constrained settings and the lack of targeted vaccines and antivirals. This review discusses new antiviral candidates, confirmed through computational and in vitro techniques, identifying thymidine kinase and VP39 as key therapeutic targets. Emphasizing the need for genomic surveillance to track adaptive evolution, results show that particular mutations, such as in the OPG027 and D1L genes, increase the transmissibility and immune evasion of the MPXV. These molecular revelations highlight the urgent necessity for better diagnostics catered towards addressing present constraints and developing focused treatments that reduce the effect of the virus. This study emphasizes how these results underscore the need for combined public health plans to handle the changing MPXV epidemiology properly. Full article
Show Figures

Figure 1

22 pages, 2869 KiB  
Article
Investigation of Oxidative-Stress Impact on Human Osteoblasts During Orthodontic Tooth Movement Using an In Vitro Tension Model
by Samira Hosseini, Julia Diegelmann, Matthias Folwaczny, Hisham Sabbagh, Sven Otto, Tamara Katharina Kakoschke, Andrea Wichelhaus, Uwe Baumert and Mila Janjic Rankovic
Int. J. Mol. Sci. 2024, 25(24), 13525; https://doi.org/10.3390/ijms252413525 - 17 Dec 2024
Viewed by 1253
Abstract
In recent years, there has been a growing number of adult orthodontic patients with periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS). Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified. Therefore, we [...] Read more.
In recent years, there has been a growing number of adult orthodontic patients with periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS). Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified. Therefore, we applied an OS in vitro-model utilizing H2O2 to study its effect on tension-induced mechanotransduction in human osteoblasts (hOBs). Experimental parameters were established based on cell viability and proliferation. Apoptosis detection was based on caspase-3/7 activity. Gene expression related to bone-remodeling (RUNX2, P2RX7, TNFRSF11B/OPG), inflammation (CXCL8/IL8, IL6, PTRGS2/COX2), autophagy (MAP1LC3A/LC3, BECN1), and apoptosis (CASP3, CASP8) was analyzed by RT-qPCR. IL6 and PGE2 secretion were determined by ELISA. Tension increased the expression of PTRGS2/COX2 in all groups, especially after stimulation with higher H2O2 concentration. This corresponds also to the measured PGE2 concentrations. CXCL8/IL8 was upregulated in all groups. Cells subjected to tension alone showed a general upregulation of osteogenic differentiation-related genes; however, pre-stimulation with OS did not induce significant changes especially towards downregulation. MAP1LC3A/LC3, BECN1 and CASP8 were generally upregulated in cells without OS pre-stimulation. Our results suggest that OS might have considerable impacts on cellular behavior during OTM. Full article
Show Figures

Figure 1

22 pages, 2584 KiB  
Article
Investigation of Impact of Oxidative Stress on Human Periodontal Ligament Cells Exposed to Static Compression
by Samira Hosseini, Julia Diegelmann, Matthias Folwaczny, Iris Frasheri, Andrea Wichelhaus, Hisham Sabbagh, Corrina Seidel, Uwe Baumert and Mila Janjic Rankovic
Int. J. Mol. Sci. 2024, 25(24), 13513; https://doi.org/10.3390/ijms252413513 - 17 Dec 2024
Viewed by 1227
Abstract
Oxidative stress (OS) is a common feature of many inflammatory diseases, oral pathologies, and aging processes. The impact of OS on periodontal ligament cells (PDLCs) in relation to oral pathologies, including periodontal diseases, has been investigated in different studies. However, its impact on [...] Read more.
Oxidative stress (OS) is a common feature of many inflammatory diseases, oral pathologies, and aging processes. The impact of OS on periodontal ligament cells (PDLCs) in relation to oral pathologies, including periodontal diseases, has been investigated in different studies. However, its impact on orthodontic tooth movement (OTM) remains poorly understood. This study used an in vitro model with human PDLCs previously exposed to H2O2 to investigate the effects of OS under a static compressive force which simulated the conditions of OTM. Human PDLCs were treated with varying concentrations of H2O2 to identify sub-lethal doses that affected viability minimally. To mimic compromised conditions resembling OTM under OS, the cells were pretreated with the selected H2O2 concentrations for 24 h. Using an in vitro loading model, a static compressive force (2 g/cm2) was applied for an additional 24 h. The cell viability, proliferation, and cytotoxicity were evaluated using live/dead and resazurin assays. Apoptosis induction was assessed based on caspase-3/7 activity. The gene expression related to bone remodeling (RUNX2, TNFRSF11B/OPG, BGLAP), inflammation (IL6, CXCL8/IL8, PTGS2/COX2), apoptosis (CASP3, CASP8), and autophagy (MAP1LC3A/LC3, BECN1) was analyzed using RT-qPCR. This study suggests an altering effect of previous OS exposure on static-compression-related mechanosensing. Further research is needed to fully elucidate these mechanisms. Full article
Show Figures

Figure 1

12 pages, 3049 KiB  
Article
Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice
by Fang Lv, Xiaoling Cai, Chu Lin, Wenjia Yang and Linong Ji
Pharmaceuticals 2024, 17(12), 1655; https://doi.org/10.3390/ph17121655 - 9 Dec 2024
Cited by 4 | Viewed by 5470
Abstract
Background/Objectives: Type 2 diabetes and weight loss are associated with detrimental skeletal health. Incretin-based therapies (GLP-1 receptor agonists, and dual GIP/GLP-1 receptor agonists) are used clinically to treat diabetes and obesity. The potential effects of semaglutide and tirzepatide on bone metabolism in type [...] Read more.
Background/Objectives: Type 2 diabetes and weight loss are associated with detrimental skeletal health. Incretin-based therapies (GLP-1 receptor agonists, and dual GIP/GLP-1 receptor agonists) are used clinically to treat diabetes and obesity. The potential effects of semaglutide and tirzepatide on bone metabolism in type 2 diabetic mice remain uncertain. Methods: Combined streptozotocin and high fat feeding were employed in female C57BL/6J mice to promote hyperglycemia. Mice were administered for 4 weeks with a saline vehicle (sc., once-daily), semaglutide (40 μg/kg/d, sc., every three days), or tirzepatide (10 nmol/kg, sc., once-daily). Bone strength was assessed by three-point bending. Femur microarchitecture was determined by micro-CT, and bone formation and resorption parameters were measured by histomorphometric analysis. Serum was collected to measure bone resorption (C-telopeptide fragments of type I collagen, CTX) and formation (procollagen type 1 N-terminal propeptide, P1NP) biomarkers, respectively. The expression of bone metabolism-related genes was evaluated in the bone using RT-PCR. Results: Glucose levels significantly reduced after 4 weeks of semaglutide and tirzepatide treatment (both p < 0.05) compared with vehicle treatment. Tirzepatide led to more weight loss than semaglutide. Compared to saline-treated diabetic mice, the mean femur length was shorter in the tirzepatide group. After treatment with tirzepatide or semaglutide, cortical bone and trabecular bone parameters did not change significantly compared to saline-treated diabetic mice, except that cortical thickness was lower in the semaglutide group compared to the saline group (p = 0.032). Though CTX and P1NP levels decreased, however, the change in CTX and P1NP levels did not differ among the four groups during the 4 weeks of treatment (all p > 0.05). Semaglutide affected RANKL and OPG mRNA expression and increased the ratio of OPG/RANKL. No significant difference was found in the quantity of Col1a1, RANKL, OPG, and RUNX2 between tirzepatide- and saline-treated diabetic mice. Conclusions: The 4-week treatment with semaglutide and tirzepatide had a neutral effect on bone mass compared with the controls, and most of the bone microarchitecture parameters were also comparable between groups in diabetic mice. A better understanding of incretin-based therapies on bone metabolism in patients with diabetes requires further evaluation in large clinical trials. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

19 pages, 3650 KiB  
Review
Unlocking the Therapeutic Potential of Adipose-Derived Stem Cell Secretome in Oral and Maxillofacial Medicine: A Composition-Based Perspective
by Chiara Giannasi, Francesca Cadelano, Elena Della Morte, Camilla Baserga, Camilla Mazzucato, Stefania Niada and Alessandro Baj
Biology 2024, 13(12), 1016; https://doi.org/10.3390/biology13121016 - 5 Dec 2024
Cited by 1 | Viewed by 1659
Abstract
The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodulatory and regenerative properties, yet its potential in maxillofacial medicine remains largely underexplored. This review takes a composition-driven approach, beginning with a list of chemokines, cytokines, receptors, and inflammatory and growth factors [...] Read more.
The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodulatory and regenerative properties, yet its potential in maxillofacial medicine remains largely underexplored. This review takes a composition-driven approach, beginning with a list of chemokines, cytokines, receptors, and inflammatory and growth factors quantified in the ADSC secretome to infer its potential applications in this medical field. First, a review of the literature confirmed the presence of 107 bioactive factors in the secretome of ADSCs or other types of mesenchymal stem cells. This list was then analyzed using the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) software, revealing 844 enriched biological processes. From these, key processes were categorized into three major clinical application areas: immunoregulation (73 factors), bone regeneration (13 factors), and wound healing and soft tissue regeneration (27 factors), with several factors relevant to more than one area. The most relevant molecules were discussed in the context of existing literature to explore their therapeutic potential based on available evidence. Among these, TGFB1, IL10, and CSF2 have been shown to modulate immune and inflammatory responses, while OPG, IL6, HGF, and TIMP1 contribute to bone regeneration and tissue repair. Although the ADSC secretome holds great promise in oral and maxillofacial medicine, further research is needed to optimize its application and validate its clinical efficacy. Full article
(This article belongs to the Special Issue Advances in Biological Research of Adipose-Derived Stem Cells)
Show Figures

Figure 1

Back to TopTop