Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = gas atomisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6486 KiB  
Article
Optimisation of Atomisation Parameters of Gas–Liquid Two-Phase Flow Nozzles and Application to Downhole Dust Reduction
by Jianguo Wang, Xinni He and Shilong Luo
Processes 2025, 13(8), 2396; https://doi.org/10.3390/pr13082396 - 28 Jul 2025
Viewed by 211
Abstract
Considering the serious hazard of respiratory dust in underground coal mines and the low efficiency of traditional dust-reduction technology, this study optimizes the atomisation parameters of the gas–liquid two-phase flow nozzle through numerical simulation and experimental testing, and designs an on-board dust-reduction system. [...] Read more.
Considering the serious hazard of respiratory dust in underground coal mines and the low efficiency of traditional dust-reduction technology, this study optimizes the atomisation parameters of the gas–liquid two-phase flow nozzle through numerical simulation and experimental testing, and designs an on-board dust-reduction system. Based on the Fluent software (version 2023 R2), a flow field model outside the nozzle was established, and the effects of the air supply pressure, gas-phase inlet velocity, and droplet mass flow rate on the atomisation characteristics were analyzed. The results show that increasing the air supply pressure can effectively reduce the droplet particle size and increase the range and atomisation angle, and that the dust-reduction efficiency is significantly improved with the increase in pressure. The dust-reduction efficiency reached 69.3% at 0.6 MPa, which was the economically optimal operating condition. Based on the parameter optimization, this study designed an annular airborne gas–liquid two-phase flow dust-reduction system, and a field test showed that the dust-reduction efficiency of this system could reach up to 86.0%, which is 53.5% higher than that of traditional high-pressure spraying, and that the dust concentration was reduced to less than 6 mg/m3. This study provides an efficient and reliable technical solution for the management of underground coal mine dust and guidance for promoting the development of the coal industry. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 3999 KiB  
Article
Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
by Marvin Diamantopoulos and Christoph Hochenauer
Appl. Sci. 2025, 15(14), 7992; https://doi.org/10.3390/app15147992 - 17 Jul 2025
Viewed by 197
Abstract
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic [...] Read more.
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic experimental approach was used, varying nozzle geometry—specifically apex angle, gas nozzle diameter, and number of gas nozzles—to identify the optimal nozzle configuration (ONC). The spray qualities of the nozzle configurations were evaluated via high-speed imaging at 75,000 FPS. Shadowgraphy was employed for the optical characterisation of the spray, determining the optimal volumetric air-to-liquid ratio (ALR), a key parameter influencing energy efficiency and operational cost, and for assessing droplet size distributions under varying ALR and viscosity of PDMS. The ONC yielded a Sauter mean diameter d32 of 570 × 10−6m, at an ALR of 8532 and a zero-shear viscosity of 15.9 Pa s. The results are relevant for researchers and engineers developing twin fluid atomisation systems for challenging industrial fluids with similar physical properties, such as those in wastewater treatment and coal–water slurry atomisation (CWS). This study provides design guidelines for external twin fluid atomisers to enhance atomisation efficiency under such conditions. Full article
Show Figures

Figure 1

16 pages, 3332 KiB  
Article
Pulmonary Inhalation of Biotherapeutics: A Systematic Approach to Understanding the Effects of Atomisation Gas Flow Rate on Particle Physiochemical Properties and Retained Bioactivity
by Laura Foley, Ahmad Ziaee, Gavin Walker and Emmet O’Reilly
Pharmaceutics 2024, 16(8), 1020; https://doi.org/10.3390/pharmaceutics16081020 - 1 Aug 2024
Viewed by 1227
Abstract
The identification of spray-drying processing parameters capable of producing particles suitable for pulmonary inhalation with retained bioactivity underpins the development of inhalable biotherapeutics. Effective delivery of biopharmaceuticals via pulmonary delivery routes such as dry powder inhalation (DPI) requires developing techniques that engineer particles [...] Read more.
The identification of spray-drying processing parameters capable of producing particles suitable for pulmonary inhalation with retained bioactivity underpins the development of inhalable biotherapeutics. Effective delivery of biopharmaceuticals via pulmonary delivery routes such as dry powder inhalation (DPI) requires developing techniques that engineer particles to well-defined target profiles while simultaneously minimising protein denaturation. This study examines the simultaneous effects of atomisation gas flow rate on particle properties and retained bioactivity for the model biopharmaceutical lysozyme. The results show that optimising the interplay between atomisation gas flow rate and excipient concentration enables the production of free-flowing powder with retained bioactivity approaching 100%, moisture content below 4%, and D50 < 4 µm, at yields exceeding 50%. The developed methodologies inform the future design of protein-specific spray-drying parameters for inhalable biotherapeutics. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

16 pages, 9080 KiB  
Article
High-Quality Spherical Silver Alloy Powder for Laser Powder Bed Fusion Using Plasma Rotating Electrode Process
by Hao Li, Shenghuan Zhang, Qiaoyu Chen, Zhaoyang Du, Xingyu Chen, Xiaodan Chen, Shiyi Zhou, Shuwen Mei, Linda Ke, Qinglei Sun, Zuowei Yin, Jie Yin and Zheng Li
Micromachines 2024, 15(3), 396; https://doi.org/10.3390/mi15030396 - 14 Mar 2024
Cited by 5 | Viewed by 2532
Abstract
The plasma rotating electrode process (PREP) is an ideal method for the preparation of metal powders such as nickel-based, titanium-based, and iron-based alloys due to its low material loss and good degree of sphericity. However, the preparation of silver alloy powder by PREP [...] Read more.
The plasma rotating electrode process (PREP) is an ideal method for the preparation of metal powders such as nickel-based, titanium-based, and iron-based alloys due to its low material loss and good degree of sphericity. However, the preparation of silver alloy powder by PREP remains challenging. The low hardness of the mould casting silver alloy leads to the bending of the electrode rod when subjected to high-speed rotation during PREP. The mould casting silver electrode rod can only be used in low-speed rotation, which has a negative effect on particle refinement. This study employed continuous casting (CC) to improve the surface hardness of S800 Ag (30.30% higher than mould casting), which enables a high rotation speed of up to 37,000 revolutions per minute, and silver alloy powder with an average sphericity of 0.98 (5.56% higher than gas atomisation) and a sphericity ratio of 97.67% (36.28% higher than gas atomisation) has been successfully prepared. The dense S800 Ag was successfully fabricated by laser powder bed fusion (LPBF), which proved the feasibility of preparing high-quality powder by the “CC + PREP” method. The samples fabricated by LPBF have a Vickers hardness of up to 271.20 HV (3.66 times that of mould casting), leading to a notable enhancement in the strength of S800 Ag. In comparison to GA, the S800 Ag powder prepared by “CC + PREP” exhibits greater sphericity, a higher sphericity ratio and less satellite powder, which lays the foundation for dense LPBF S800 Ag fabrication. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

13 pages, 4198 KiB  
Article
Deciphering Microstructures and Phases of Gas-Atomised Novel Al-Fe-Si-Cr-Ni Alloys
by Bhaskaranand Bhatt, Alessandra Martucci, Enrico Virgillito, Federico Gobber, Federica Bondioli, Diego Manfredi, Mariangela Lombardi and Paolo Fino
Metals 2024, 14(1), 17; https://doi.org/10.3390/met14010017 - 22 Dec 2023
Cited by 2 | Viewed by 2320
Abstract
Rapid solidification techniques, such as gas atomisation, have been widely implemented in metallic alloys/composites to increase solid solubility, avoid or mitigate segregation phenomena, and favour metastable phase formation to enhance performance. Particularly, gas atomisation can enhance the solid solubility of low diffusion coefficient [...] Read more.
Rapid solidification techniques, such as gas atomisation, have been widely implemented in metallic alloys/composites to increase solid solubility, avoid or mitigate segregation phenomena, and favour metastable phase formation to enhance performance. Particularly, gas atomisation can enhance the solid solubility of low diffusion coefficient elements like Fe, Ni, Mn, Zr, and Cr in the α-Al matrix, yielding metastable phases. As a result, Al alloys exhibit excellent strength at high temperatures. In this study, the AISI 304L alloy was employed to introduce Fe, Ni, and Cr elements into the AlSi10Mg alloy through gas atomisation, resulting in the formation of two distinct hypereutectic AlFe-based alloys: AlFe9Si8Cr2Ni and AlFe18Si8Cr5Ni2. Gas-atomised alloy powders were separated into different size fractions by sieving and characterised using X-ray diffraction, differential scanning calorimetry, optical microscopy, and scanning electron microscopy. Microstructural analyses revealed dendritic patterns with distinct phases, highlighting the influence of the alloying element content on the solidification processes. Furthermore, a synergic evaluation of the XRD and EDS analysis results allowed the identification of intermetallic phases and their distribution in the two systems. Full article
Show Figures

Figure 1

19 pages, 11883 KiB  
Article
Electric Aerospace Actuator Manufactured by Laser Powder Bed Fusion
by Borja Lizarribar, Borja Prieto, Miren Aristizabal, Jose Manuel Martín, Miguel Martínez-Iturralde, Ekain San José, Ione Golvano and Sergio Montes
Aerospace 2023, 10(9), 813; https://doi.org/10.3390/aerospace10090813 - 17 Sep 2023
Cited by 3 | Viewed by 2675
Abstract
Recent advances in manufacturing methods have accelerated the exploration of new materials and advantageous shapes that could not be produced by traditional methods. In this context, additive manufacturing is gaining strength among manufacturing methods for its versatility and freedom in the geometries that [...] Read more.
Recent advances in manufacturing methods have accelerated the exploration of new materials and advantageous shapes that could not be produced by traditional methods. In this context, additive manufacturing is gaining strength among manufacturing methods for its versatility and freedom in the geometries that can be produced. Taking advantage of these possibilities, this research presents a case study involving an electric aerospace actuator manufactured using additive manufacturing. The main objectives of this research work are to assess the feasibility of additively manufacturing electric actuators and to evaluate potential gains in terms of weight, volume, power consumption and cost over conventional manufacturing technologies. To do so and in order to optimise the actuator design, a thorough material study is conducted in which three different magnetic materials are gas-atomised (silicon iron, permendur and supermalloy) and test samples of the most promising materials (silicon iron and permendur) are processed by laser powder bed fusion. The final actuator design is additively manufactured in permendur for the stator and rotor iron parts and in 316L stainless steel for the housing. The electric actuator prototype is tested, showing compliance with design requirements in terms of torque production, power consumption and heating. Finally, a design intended to be manufactured via traditional methods (i.e., punching and stacking for the stator laminations and machining for the housing) is presented and compared to the additively manufactured design. The comparison shows that additive manufacturing is a viable alternative to traditional manufacturing for the application presented, as it highly reduces the weight of the actuator and facilitates the assembly, while the cost difference between the two designs is minimal. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing for Aerospace Applications)
Show Figures

Figure 1

15 pages, 9927 KiB  
Article
Characterization of Al-12Si Thin-Wall Properties Fabricated with Laser Direct Energy Deposition
by Raihan Rumman, Mallaiah Manjaiah, Stéphane Touzé, Ruby Alice Sims, Jean-Yves Hascoët and Jamie Scott Quinton
Sustainability 2023, 15(17), 12806; https://doi.org/10.3390/su151712806 - 24 Aug 2023
Cited by 4 | Viewed by 1968
Abstract
Additive manufacturing is an emerging process that is used to manufacture industrial parts layer by layer and can produce a wide range of geometries for various applications. AM parts are adopted for aerospace, automobiles, antennas, gyroscopes, and waveguides in electronics. However, there are [...] Read more.
Additive manufacturing is an emerging process that is used to manufacture industrial parts layer by layer and can produce a wide range of geometries for various applications. AM parts are adopted for aerospace, automobiles, antennas, gyroscopes, and waveguides in electronics. However, there are several challenges existing in manufacturing Al components using the AM process, and their mechanical and microstructural properties are not yet fully validated. In the present study, a gas-atomised powder of a eutectic Al-12Si alloy was used as feedstock for the Laser Direct Energy Deposition (LDED) process. A SEM analysis of Al-12Si powder used for processing illustrated that particles possess appropriate morphology for LDED. A numerical control system was used to actuate the deposition head towards printing positions. The deposited samples revealed the presence of Al-rich and Al-Si eutectic regions. The porosity content in the samples was found to be around 2.6%. Surface profile roughness measurements and a microstructural analysis of the samples were also performed to assess the fabricated sample in terms of the roughness, porosity, and distribution of Al and Al/Si eutectic phases. The tensile properties of fabricated thin walls were better compared to casted Al alloys due to the uniform distribution of Si in each layer. Micro-hardness tests on the deposited samples showed a hardness of 95 HV, which is equivalent to casted and powder bed fusion melting samples. The gas atomised Al-12Si powders are highly reflective to a laser and also quick oxidation takes place, which causes defects, porosity, and the balling effect during fabrication. The results can be used as a base guide for the further fabrication of aerospace component design with high structural integrity. Full article
Show Figures

Figure 1

21 pages, 10774 KiB  
Article
Hydrogen Embrittlement of Inconel 718 Manufactured by Laser Powder Bed Fusion Using Sustainable Feedstock: Effect of Heat Treatment and Microstructural Anisotropy
by Naveen Karuthodi Mohandas, Alex Giorgini, Matteo Vanazzi, Ton Riemslag, Sean Paul Scott and Vera Popovich
Metals 2023, 13(2), 418; https://doi.org/10.3390/met13020418 - 17 Feb 2023
Cited by 10 | Viewed by 5357
Abstract
This study investigated the in-situ gaseous (under 150 bar) hydrogen embrittlement behaviour of additively manufactured (AM) Inconel 718 produced from sustainable feedstock. Here, sustainable feedstock refers to the Inconel 718 powder produced by vacuum induction melting inert gas atomisation of failed printed parts [...] Read more.
This study investigated the in-situ gaseous (under 150 bar) hydrogen embrittlement behaviour of additively manufactured (AM) Inconel 718 produced from sustainable feedstock. Here, sustainable feedstock refers to the Inconel 718 powder produced by vacuum induction melting inert gas atomisation of failed printed parts or waste from CNC machining. All Inconel 718 samples, namely AM-as-processed, AM-heat-treated and conventional samples showed severe hydrogen embrittlement. Additionally, it was found that despite its higher yield strength (1462 ± 8 MPa) and the presence of δ phase, heat-treated AM Inconel 718 demonstrates 64% lower degree of hydrogen embrittlement compared to the wrought counterpart (Y.S. 1069 ± 4 MPa). This was linked to the anisotropic microstructure induced by the AM process, which was found to cause directional embrittlement unlike the wrought samples showing isotropic embrittlement. In conclusion, this study shows that AM Inconel 718 produced from recycled feedstock shows better hydrogen embrittlement resistance compared to the wrought sample. Furthermore, the unique anisotropic properties, seen in this study for Inconel 718 manufactured by laser powder bed fusion, could be considered further in component design to help minimise the degree of hydrogen embrittlement. Full article
(This article belongs to the Special Issue Additive Manufacturing of High Temperature Alloys)
Show Figures

Figure 1

16 pages, 6909 KiB  
Article
Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy
by Sudipta Pramanik, Anatolii Andreiev, Kay-Peter Hoyer, Jan Tobias Krüger, Florian Hengsbach, Alexander Kircheis, Weiyu Zhao, Jörg Fischer-Bühner and Mirko Schaper
Powders 2023, 2(1), 59-74; https://doi.org/10.3390/powders2010005 - 16 Jan 2023
Cited by 1 | Viewed by 3634
Abstract
The current investigation shows the feasibility of 316L steel powder production via three different argon gas atomisation routes (closed coupled atomisation, free fall atomisation with and without hot gas), along with subsequent sample production by laser powder bed fusion (PBF-LB). Here, a mixture [...] Read more.
The current investigation shows the feasibility of 316L steel powder production via three different argon gas atomisation routes (closed coupled atomisation, free fall atomisation with and without hot gas), along with subsequent sample production by laser powder bed fusion (PBF-LB). Here, a mixture of pure Fe and atomised 316L steel powder is used for PBF-LB to induce a chemical composition gradient in the microstructure. Optical microscopy and μ-CT investigations proved that the samples processed by PBF-LB exhibit very little porosity. Combined EBSD-EDS measurements show the chemical composition gradient leading to the formation of a local fcc-structure. Upon heat treatment (1100 °C, 14 h), the chemical composition is homogeneous throughout the microstructure. A moderate decrease (1060 to 985 MPa) in the sample’s ultimate tensile strength (UTS) is observed after heat treatment. However, the total elongation of the as-built and heat-treated samples remains the same (≈22%). Similarly, a slight decrease in the hardness from 341 to 307 HV1 is observed upon heat treatment. Full article
(This article belongs to the Special Issue Feature Papers in Powders)
Show Figures

Figure 1

18 pages, 17412 KiB  
Article
Oxide Free Wire Arc Sprayed Coatings—An Avenue to Enhanced Adhesive Tensile Strength
by Manuel Rodriguez Diaz, Maik Szafarska, René Gustus, Kai Möhwald and Hans Jürgen Maier
Metals 2022, 12(4), 684; https://doi.org/10.3390/met12040684 - 16 Apr 2022
Cited by 12 | Viewed by 2887
Abstract
Conventionally, thermal spraying processes are almost exclusively carried out in an air atmosphere. This results in oxidation of the particles upon thermal spraying, and thus, the interfaces of the splats within the coating are oxidized as well. Hence, a full material bond strength [...] Read more.
Conventionally, thermal spraying processes are almost exclusively carried out in an air atmosphere. This results in oxidation of the particles upon thermal spraying, and thus, the interfaces of the splats within the coating are oxidized as well. Hence, a full material bond strength cannot be established. To overcome this issue, a mixture of monosilane and nitrogen was employed in the present study as the atomising and environment gas. With this approach, an oxygen partial pressure corresponding to an extreme-high vacuum was established in the environment and oxide-free coatings could be realized. It is shown that the oxide-free particles have an improved substrate wetting behaviour, which drastically increases the adhesive tensile strength of the wire arc sprayed copper coatings. Moreover, the altered deposition conditions also led to a significant reduction of the coating porosity. Full article
(This article belongs to the Special Issue Advances in Metal-Based Thermal Spray Coatings)
Show Figures

Figure 1

17 pages, 15291 KiB  
Article
Design and Production of a New FeCoNiCrAlCu High-Entropy Alloy: Influence of Powder Production Method on Sintering
by Eduardo Reverte, Monique Calvo-Dahlborg, Ulf Dahlborg, Monica Campos, Paula Alvaredo, Pablo Martin-Rodriguez, Elena Gordo and Juan Cornide
Materials 2021, 14(15), 4342; https://doi.org/10.3390/ma14154342 - 3 Aug 2021
Cited by 3 | Viewed by 3128
Abstract
The structure of FeCoNiCrAl1.8Cu0.5 high-entropy alloys (HEA) obtained by two different routes has been studied. The selection of the composition has followed the Hume–Rothery approach in terms of number of itinerant electrons (e/a) and average atomic radius to control the formation of specific [...] Read more.
The structure of FeCoNiCrAl1.8Cu0.5 high-entropy alloys (HEA) obtained by two different routes has been studied. The selection of the composition has followed the Hume–Rothery approach in terms of number of itinerant electrons (e/a) and average atomic radius to control the formation of specific phases. The alloys were obtained either from a mixture of elemental powders or from gas-atomised powders, being consolidated in both cases by uniaxial pressing and vacuum sintering at temperatures of 1200 °C and 1300 °C. The characterization performed in the sintered samples from both types of powder includes scanning electron microscopy, X-ray diffraction, differential thermal analysis, and density measurements. It was found that the powder production techniques give similar phases content. However, the sintering at 1300 °C destroys the achieved phase stability of the samples. The phases identified by all techniques and confirmed by Thermo-Calc calculations are the following: a major Co-Ni-Al-rich (P1) BCC phase, which stays stable after 1300 °C sintering and homogenising TT treatments; a complex Cr-Fe-rich (P2) B2 type phase, which transforms into a sigma phase after the 1300 °C sintering and homogenising TT treatments; and a very minor Al-Cu-rich (P3) FCC phase, which also transforms into Domain II and Domain III phases during the heating at 1300 °C and homogenising TT treatments. Full article
(This article belongs to the Special Issue Materials Sintering)
Show Figures

Figure 1

10 pages, 1837 KiB  
Article
CoCrFeNi High-Entropy Alloy Thin Films Synthesised by Magnetron Sputter Deposition from Spark Plasma Sintered Targets
by Holger Schwarz, Thomas Uhlig, Niels Rösch, Thomas Lindner, Fabian Ganss, Olav Hellwig, Thomas Lampke, Guntram Wagner and Thomas Seyller
Coatings 2021, 11(4), 468; https://doi.org/10.3390/coatings11040468 - 17 Apr 2021
Cited by 17 | Viewed by 4330
Abstract
Two magnetron sputter targets of CoCrFeNi High-Entropy Alloy (HEA), both in equal atomic ratio, were prepared by spark plasma sintering. One of the targets was fabricated from a homogeneous HEA powder produced via gas atomisation; for the second target, a mixture of pure [...] Read more.
Two magnetron sputter targets of CoCrFeNi High-Entropy Alloy (HEA), both in equal atomic ratio, were prepared by spark plasma sintering. One of the targets was fabricated from a homogeneous HEA powder produced via gas atomisation; for the second target, a mixture of pure element powders was used. Economic benefits can be achieved by mixing pure powders in the intended ratio in comparison to the gas atomisation of the specific alloy composition. In this work, thin films deposited via magnetron sputtering from both targets are analysed. The surface elemental composition is investigated by X-ray photoelectron spectroscopy, whereas the bulk stoichiometry is measured by X-ray fluorescence spectroscopy. Phase information and surface microstructure are investigated using X-ray diffraction and scanning electron microscopy, respectively. It is demonstrated that the stoichiometry, phase composition and microscopic structure of the as-deposited HEA thin films are almost identical if the same deposition parameters are used. Full article
Show Figures

Figure 1

22 pages, 2215 KiB  
Review
Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review
by Heena Panchasara and Nanjappa Ashwath
Energies 2021, 14(4), 794; https://doi.org/10.3390/en14040794 - 3 Feb 2021
Cited by 51 | Viewed by 5460
Abstract
Bio-oils produced by biomass pyrolysis are substantially different from those produced by petroleum-based fuels and biodiesel. However, they could serve as valuable alternatives to fossil fuels to achieve carbon neutral future. The literature review indicates that the current use of bio-oils in gas [...] Read more.
Bio-oils produced by biomass pyrolysis are substantially different from those produced by petroleum-based fuels and biodiesel. However, they could serve as valuable alternatives to fossil fuels to achieve carbon neutral future. The literature review indicates that the current use of bio-oils in gas turbines and compression-ignition (diesel) engines is limited due to problems associated with atomisation and combustion. The review also identifies the progress made in pyrolysis bio-oil spray combustion via standardisation of fuel properties, optimising atomisation and combustion, and understanding long-term reliability of engines. The key strategies that need to be adapted to efficiently atomise and combust bio-oils include, efficient atomisation techniques such as twin fluid atomisation, pressure atomisation and more advanced and novel effervescent atomisation, fuel and air preheating, flame stabilization using swrilers, and filtering the solid content from the pyrolysis oils. Once these strategies are implemented, bio-oils can enhance combustion efficiency and reduce greenhouse gas (GHG) emission. Overall, this study clearly indicates that pyrolysis bio-oils have the ability to substitute fossil fuels, but fuel injection problems need to be tackled in order to insure proper atomisation and combustion of the fuel. Full article
(This article belongs to the Special Issue Current Trends in Biomass Pyrolysis for Biofuel Production )
Show Figures

Figure 1

12 pages, 4261 KiB  
Article
Development of a Novel High-Temperature Al Alloy for Laser Powder Bed Fusion
by Filippo Belelli, Riccardo Casati, Martina Riccio, Alessandro Rizzi, Mevlüt Y. Kayacan and Maurizio Vedani
Metals 2021, 11(1), 35; https://doi.org/10.3390/met11010035 - 26 Dec 2020
Cited by 34 | Viewed by 4189
Abstract
The number of available materials for Laser Powder Bed Fusion is still limited due to the poor processability of many standard alloys. In particular, the lack of high-strength aluminium alloys, widely used in aerospace and automotive industries, remains a big issue for the [...] Read more.
The number of available materials for Laser Powder Bed Fusion is still limited due to the poor processability of many standard alloys. In particular, the lack of high-strength aluminium alloys, widely used in aerospace and automotive industries, remains a big issue for the spread of beam-based additive manufacturing technologies. In this study, a novel high-strength aluminium alloy for high temperature applications having good processability was developed. The design of the alloy was done based on the chemical composition of the widely used EN AW 2618. This Al-Cu-Mg-Ni-Fe alloy was modified with Ti and B in order to promote the formation of TiB2 nuclei in the liquid phase able to stimulate heterogeneous nucleation of grains and to decrease the hot cracking susceptibility of the material. The new Al alloy was manufactured by gas atomisation and processed by Laser Powder Bed Fusion. Samples produced with optimised parameters featured relative density of 99.91%, with no solidification cracks within their microstructure. After aging, the material revealed upper yield strength and ultimate tensile strength of 495 MPa and 460 MPa, respectively. In addition, the alloy showed tensile strength higher than wrought EN AW 2618 at elevated temperatures. Full article
(This article belongs to the Special Issue Materials for Sustainable Beam-Based Additive Manufacturing)
Show Figures

Figure 1

21 pages, 13756 KiB  
Article
Effects of Powder Atomisation on Microstructural and Mechanical Behaviour of L-PBF Processed Steels
by Marawan Abdelwahed, Riccardo Casati, Sven Bengtsson, Anna Larsson, Martina Riccio and Maurizio Vedani
Metals 2020, 10(11), 1474; https://doi.org/10.3390/met10111474 - 5 Nov 2020
Cited by 11 | Viewed by 3114
Abstract
In this research, steel alloys based on the Fe-Cr-Mo, Fe-Cr-Mn and Fe-Cr-Mo-Mn-Ni systems have been designed, produced by different atomisation techniques, and processed by laser powder bed fusion (L-PBF) to investigate their microstructural and mechanical behaviour. Both gas atomisation and water atomisation were [...] Read more.
In this research, steel alloys based on the Fe-Cr-Mo, Fe-Cr-Mn and Fe-Cr-Mo-Mn-Ni systems have been designed, produced by different atomisation techniques, and processed by laser powder bed fusion (L-PBF) to investigate their microstructural and mechanical behaviour. Both gas atomisation and water atomisation were considered for powder preparation. The resulting different flowability of powders, hence a different densification behaviour during processing, could be compensated by tuning the L-PBF parameters and by the application of a post treatment to improve flowability of the water atomised powders. In agreement with thermodynamic calculations, small-size oxide-based nonmetallic inclusions of the type SiO2, MnO-SiO2, Cr2O3-SiO2 were found within the steel matrix and on the fracture surfaces of the water atomised L-PBF alloys, featuring higher amounts of oxygen than the gas-atomised steels. Analyses on microstructure and hardness of the hardenable as-built steels suggested that during laser processing, the multilayer L-PBF structure undergoes an in-situ tempering treatment. Furthermore, the mechanical properties of the L-PBF steels could be widely tuned depending on the post-thermal treatment conditions. Full article
(This article belongs to the Special Issue Materials for Sustainable Beam-Based Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop