Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = gamete rescue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2456 KiB  
Review
Chromosome Transplantation: Opportunities and Limitations
by Angela La Grua, Ilaria Rao, Lucia Susani, Franco Lucchini, Elena Raimondi, Paolo Vezzoni and Marianna Paulis
Cells 2024, 13(8), 666; https://doi.org/10.3390/cells13080666 - 11 Apr 2024
Viewed by 3096
Abstract
There are thousands of rare genetic diseases that could be treated with classical gene therapy strategies such as the addition of the defective gene via viral or non-viral delivery or by direct gene editing. However, several genetic defects are too complex for these [...] Read more.
There are thousands of rare genetic diseases that could be treated with classical gene therapy strategies such as the addition of the defective gene via viral or non-viral delivery or by direct gene editing. However, several genetic defects are too complex for these approaches. These “genomic mutations” include aneuploidies, intra and inter chromosomal rearrangements, large deletions, or inversion and copy number variations. Chromosome transplantation (CT) refers to the precise substitution of an endogenous chromosome with an exogenous one. By the addition of an exogenous chromosome and the concomitant elimination of the endogenous one, every genetic defect, irrespective of its nature, could be resolved. In the current review, we analyze the state of the art of this technique and discuss its possible application to human pathology. CT might not be limited to the treatment of human diseases. By working on sex chromosomes, we showed that female cells can be obtained from male cells, since chromosome-transplanted cells can lose either sex chromosome, giving rise to 46,XY or 46,XX diploid cells, a modification that could be exploited to obtain female gametes from male cells. Moreover, CT could be used in veterinary biology, since entire chromosomes containing an advantageous locus could be transferred to animals of zootechnical interest without altering their specific genetic background and the need for long and complex interbreeding. CT could also be useful to rescue extinct species if only male cells were available. Finally, the generation of “synthetic” cells could be achieved by repeated CT into a recipient cell. CT is an additional tool for genetic modification of mammalian cells. Full article
(This article belongs to the Special Issue Rare Monogenic Diseases: Molecular Mechanism and Novel Therapies)
Show Figures

Graphical abstract

26 pages, 1694 KiB  
Review
Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses
by Raul A. Gonzalez-Castro and Elaine M. Carnevale
Vet. Sci. 2023, 10(12), 698; https://doi.org/10.3390/vetsci10120698 - 11 Dec 2023
Cited by 4 | Viewed by 4634
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of [...] Read more.
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses. Full article
(This article belongs to the Special Issue Sperm Biotechnology in Animals Reproduction)
Show Figures

Figure 1

19 pages, 3244 KiB  
Article
Treatment of Mouse Sperm with a Non-Catalytic Mutant of PLA2G10 Reveals That PLA2G10 Improves In Vitro Fertilization through Both Its Enzymatic Activity and as Ligand of PLA2R1
by Roland Abi Nahed, Magali Dhellemmes, Christine Payré, Emilie Le Blévec, Jean-Philippe Perrier, Sylviane Hennebicq, Jessica Escoffier, Pierre F. Ray, Corinne Loeuillet, Gérard Lambeau and Christophe Arnoult
Int. J. Mol. Sci. 2022, 23(14), 8033; https://doi.org/10.3390/ijms23148033 - 21 Jul 2022
Viewed by 2523
Abstract
The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In [...] Read more.
The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes’ PLA2R1 participates in fertilization optimization. Full article
(This article belongs to the Special Issue Novel Insights into the Biology of Spermatozoa)
Show Figures

Figure 1

11 pages, 3169 KiB  
Article
Expression of GEX1 Orthologs of Brassica rapa and Oryza sativa Rescued the Nuclear Fusion Defect of the Arabidopsis GEX1 Mutant
by Ayaka Yabe and Shuh-ichi Nishikawa
Plants 2022, 11(14), 1808; https://doi.org/10.3390/plants11141808 - 8 Jul 2022
Cited by 3 | Viewed by 2214
Abstract
Nuclear fusion is required for the sexual reproduction of various organisms, including angiosperms. During the life cycle of angiosperms, nuclear fusion occurs three times: once during female gametogenesis, when the two polar nuclei fuse in the central cell, and twice during double fertilization. [...] Read more.
Nuclear fusion is required for the sexual reproduction of various organisms, including angiosperms. During the life cycle of angiosperms, nuclear fusion occurs three times: once during female gametogenesis, when the two polar nuclei fuse in the central cell, and twice during double fertilization. Nuclear fusion in plant reproduction is achieved by sequential nuclear fusion events: outer and inner nuclear membrane fusion. Arabidopsis gamete expressed 1 (GEX1) is a nuclear membrane protein of gametes that is required for nuclear fusion during reproduction. Although orthologs of GEX1 have been identified in various land plants, sequence identities are not high, even between angiosperm GEX1 orthologs; the sequence identity between Arabidopsis GEX1 and Oryza sativa GEX1 ortholog is lower than 50%. Here, we found that the expression of GEX1 orthologs of O. sativa, as well as of Brassica rapa from the Arabidopsis GEX1 promoter, rescued the polar nuclear fusion defect of the gex1 mutant. We also found that the expression of these GEX1 orthologs rescued the lethality of the gex1 homozygous mutant, which is proposed to be caused by the sperm nuclear fusion defects upon fertilization. Our results indicate a functional conservation between Arabidopsis and O. sativa GEX1 orthologs, despite their relatively low sequence identities. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

12 pages, 551 KiB  
Case Report
Case Studies in Polar Bear (Ursus maritimus) Sperm Collection and Cryopreservation Techniques
by Jessye Wojtusik, Terri L. Roth and Erin Curry
Animals 2022, 12(4), 430; https://doi.org/10.3390/ani12040430 - 11 Feb 2022
Cited by 7 | Viewed by 3553
Abstract
Assisted reproductive technologies can aid conservation efforts via support of ex situ population management and preservation of genetic material. Data from 38 sperm collection attempts from 17 polar bears (1–5 procedures/bear) were evaluated. Sample collections were attempted via electroejaculation (EEJ; n = 6), [...] Read more.
Assisted reproductive technologies can aid conservation efforts via support of ex situ population management and preservation of genetic material. Data from 38 sperm collection attempts from 17 polar bears (1–5 procedures/bear) were evaluated. Sample collections were attempted via electroejaculation (EEJ; n = 6), urethral catheterization (UC; n = 25), or sperm rescue (SR; n = 7) during the breeding season (Jan. 1-May 21; n = 27) and nonbreeding season (May 22-Dec. 31; n = 11). Sperm retrieval was successful in 1 EEJ (16.7%), 18 UC (72.0%) and 4 SR (57.1%) collections. Initial sperm motility and viability were 50.0% and 77.0% for EEJ, 64.3 ± 7.4% and 80.9 ± 3.8% for UC, and 56.7 ± 8.8% and 80.5 ± 0.5% for SR. UC and SR were more likely to be successful during the breeding season (84.2–100%) than the nonbreeding season (25.0–33.3%). Testicular tumors were observed in four males (57%) during SR. In total, 13 samples were cryopreserved (n = 1 EEJ, 9 UC, and 3 SR) with egg-yolk-based equine extender (EQ) or OptiXcell (OP). For both extenders, post-thaw motility and viability were reduced by 20–60% and 30–65%, respectively. Further efforts to optimize procedures are warranted, but this summary provides data useful for enhancing the success of polar bear sperm collection and cryopreservation. Full article
(This article belongs to the Special Issue Biotechnologies for the Advancement of Wildlife Conservation)
Show Figures

Figure 1

11 pages, 1476 KiB  
Article
Comparison of Different Materials for Self-Pressurized Vitrification of Feline Oocytes—First Results
by Lorena Fernandez-Gonzalez, Jan Huebinger and Katarina Jewgenow
Animals 2021, 11(5), 1314; https://doi.org/10.3390/ani11051314 - 3 May 2021
Cited by 5 | Viewed by 2366
Abstract
Cryobanking is a crucial part on species conservation. Nowadays, there is no suitable protocol for vitrification of feline oocytes. Self-pressurized rapid freezing of different cell types proved to mimic the advantages of high pressure freezing. As this method could also be applied for [...] Read more.
Cryobanking is a crucial part on species conservation. Nowadays, there is no suitable protocol for vitrification of feline oocytes. Self-pressurized rapid freezing of different cell types proved to mimic the advantages of high pressure freezing. As this method could also be applied for gamete rescue under field conditions, the aim here was to analyse the impact of self-pressurized vitrification on feline cumulus-oocyte-complexes (COCs) and to determine the appropriate material. Therefore, COCs of domestic cat were randomly vitrified (n = 189) in metal tubes of different materials: Aluminium, silver, and titanium. No significant differences were found on oocytes’ competence after thawing. On average, 44% of the COCs presented normal morphology and 48.2% of them showed a polar body after in vitro maturation (IVM) and were subsequently fertilised. Aluminium tubes were positive on toxicity tests, producing the lowest cleavage rates. Silver tubes showed no toxic effect, but the cleavage rate was lower than with titanium tubes, and a previous association with embryotoxicity and biological alterations makes us aware of its indiscriminate use. Titanium seems to be the only inert material of them, presenting a slightly higher maturation (55.6%) and cleavage (20%) rates. Nevertheless, more studies should follow to increase embryo competence after warming. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

23 pages, 1305 KiB  
Review
Canid Reproductive Biology: Norm and Unique Aspects in Strategies and Mechanisms
by Jennifer B. Nagashima and Nucharin Songsasen
Animals 2021, 11(3), 653; https://doi.org/10.3390/ani11030653 - 1 Mar 2021
Cited by 23 | Viewed by 6759
Abstract
The reproductive physiology of canids is unique compared to other mammalian species. Specifically, the reproductive cycle of female canids is characterized by extended periods of proestrus and estrus followed by obligatory diestrus and protracted ovarian inactivity (anestrus). Although canid reproduction follows this general [...] Read more.
The reproductive physiology of canids is unique compared to other mammalian species. Specifically, the reproductive cycle of female canids is characterized by extended periods of proestrus and estrus followed by obligatory diestrus and protracted ovarian inactivity (anestrus). Although canid reproduction follows this general pattern, studies have shown variations in reproductive biology among species and geographic regions. Understanding of these differences is critical to the development of assisted reproductive technologies including estrus induction, gamete rescue, and embryo production techniques for canid conservation efforts. This review summarizes current knowledge of canid reproduction, including estrus cyclicity, seasonality, and seminal traits, with the emphasis on species diversity. The application of reproductive technologies in wild canid conservation will also be discussed. Full article
(This article belongs to the Special Issue New Insights in Canine Reproduction)
Show Figures

Figure 1

20 pages, 3508 KiB  
Article
Oviductal Extracellular Vesicles Improve Post-Thaw Sperm Function in Red Wolves and Cheetahs
by Marcia de Almeida Monteiro Melo Ferraz, Jennifer Beth Nagashima, Michael James Noonan, Adrienne E. Crosier and Nucharin Songsasen
Int. J. Mol. Sci. 2020, 21(10), 3733; https://doi.org/10.3390/ijms21103733 - 25 May 2020
Cited by 28 | Viewed by 5494
Abstract
Artificial insemination (AI) is a valuable tool for ex situ wildlife conservation, allowing the re-infusion and dissemination of genetic material, even after death of the donor. However, the application of AI to species conservation is still limited, due mainly to the poor survival [...] Read more.
Artificial insemination (AI) is a valuable tool for ex situ wildlife conservation, allowing the re-infusion and dissemination of genetic material, even after death of the donor. However, the application of AI to species conservation is still limited, due mainly to the poor survival of cryopreserved sperm. Recent work demonstrated that oviductal extracellular vesicles (oEVs) improved cat sperm motility and reduced premature acrosomal exocytosis. Here, we build on these findings by describing the protein content of dog and cat oEVs and investigating whether the incubation of cryopreserved red wolf and cheetah sperm with oEVs during thawing improves sperm function. Both red wolf and cheetah sperm thawed with dog and cat oEVs, respectively, had more intact acrosomes than the non-EV controls. Moreover, red wolf sperm thawed in the presence of dog oEVs better maintained sperm motility over time (>15%) though such an improvement was not observed in cheetah sperm. Our work demonstrates that dog and cat oEVs carry proteins important for sperm function and improve post-thaw motility and/or acrosome integrity of red wolf and cheetah sperm in vitro. The findings show how oEVs can be a valuable tool for improving the success of AI with cryopreserved sperm in threatened species. Full article
(This article belongs to the Special Issue Extracellular Vesicles in Reproduction)
Show Figures

Figure 1

Back to TopTop