Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = fungal trunk pathogens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6707 KiB  
Article
Diplodia fraxini: The Main Pathogen Involved in the Ash Dieback of Fraxinus angustifolia in Croatia
by Jelena Kranjec Orlović, Carlo Bregant, Benedetto T. Linaldeddu, Lucio Montecchio, Ida Volenec, Katarina Uidl and Danko Diminić
Microorganisms 2025, 13(6), 1238; https://doi.org/10.3390/microorganisms13061238 - 28 May 2025
Viewed by 402
Abstract
Fraxinus angustifolia, the main ash species in Croatia in terms of economic and ecological importance, is affected by a severe dieback initially attributed to the fungal pathogen Hymenoscyphus fraxineus. Recently, another pathogen, Diplodia fraxini, has been shown to play a [...] Read more.
Fraxinus angustifolia, the main ash species in Croatia in terms of economic and ecological importance, is affected by a severe dieback initially attributed to the fungal pathogen Hymenoscyphus fraxineus. Recently, another pathogen, Diplodia fraxini, has been shown to play a key role in ash dieback in several European countries. Therefore, because the dieback symptoms of ash trees observed in Croatia are typical of Botryosphaeriaceae attacks, the aim of this study was to define the etiology of F. angustifolia dieback. To this end, symptomatic shoots and branches and cross-sections of the main stem were sampled from 20 symptomatic trees at eight locations and analyzed for the presence of D. fraxini and other possible fungal pathogens. Diplodia fraxini was the fungus most frequently associated with branch cankers and dieback; it was isolated from 17 trees in all sites monitored, and its pathogenicity towards F. angustifolia was confirmed. The fungus was also associated with wood necrosis at the base of the trunk in two trees. Other fungi, namely H. fraxineus, Diaporthe eres, Diplodia seriata, Botryosphaeria dothidea, Armillaria gallica, and Lentinus tigrinus, were isolated sporadically. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions—3rd Edition)
Show Figures

Figure 1

17 pages, 2679 KiB  
Article
First Report of Trametes hirsuta, Causal Agent White Rot in Avocado Trees Grown in the State of Michoacán, México
by Juan Mendoza-Churape, Ma. Blanca Nieves Lara-Chávez, Rosario Ramírez-Mendoza, César Ramiro Martínez-González, Hexon Angel Contreras-Cornejo, Yurixhi Atenea Raya-Montaño, Teresita del Carmen Ávila-Val and Margarita Vargas-Sandoval
Pathogens 2025, 14(6), 532; https://doi.org/10.3390/pathogens14060532 - 26 May 2025
Viewed by 581
Abstract
México is the world’s leading producer of avocado, with 2,540,715 tons in the last year. Trametes spp. are macromycete fungi that rot wood. In 2022, in the state of Michoacán, México, sporomas of Trametes sp. were found in the trunks of avocado trees [...] Read more.
México is the world’s leading producer of avocado, with 2,540,715 tons in the last year. Trametes spp. are macromycete fungi that rot wood. In 2022, in the state of Michoacán, México, sporomas of Trametes sp. were found in the trunks of avocado trees (Persea americana var. Hass) of 10 years old and older. The trees showed disease symptoms including yellowing of leaves, widespread defoliation, and wilting. It was observed that 10% of the infected trees were felled after heavy rains. In the place where the fungus settled, abundant cream-colored and cottony mycelium developed, causing “white rot”. The incidence of the disease in the sampled orchards was 60% in the tree population per hectare with 350 trees. The symptomatic trees studied were randomly selected from seven orchards. The collected fungal samples show typical structures corresponding to Trametes sp., including large sporomas, a pileus with a surface of concentric zones of various ocher tones, and a porous hymenium. The samples showed a 99% match with the species Trametes hirsuta. Laboratory bioassays of inoculation in fresh wood segments of avocado formed typical sporomas of the pathogen. Finally, the fungus was recovered and reisolated in vitro in PDA, and its identity was confirmed through the morphological characteristics and molecular tests. To the best of our knowledge, this article reports for the first time that P. americana cv. Hass and Mendez are new hosts for T. hirsuta. Therefore, the environmental and horticultural management conditions that favor the proliferation of T. hirsuta must be investigated. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Graphical abstract

23 pages, 5049 KiB  
Article
Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine
by Diyanira Castillo-Novales, Paulina Vega-Celedón, Alejandra Larach, Michael Seeger and Ximena Besoain
Plants 2025, 14(7), 1043; https://doi.org/10.3390/plants14071043 - 27 Mar 2025
Viewed by 790
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and [...] Read more.
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17–90%); younger grapevines (1–5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

15 pages, 620 KiB  
Article
Host Jumps and Pathogenicity of Botryosphaeriaceae Species on Grapevines (Vitis vinifera) in Chile
by Yadira Hernández, Mauricio Lolas, Karina Elfar, Akif Eskalen, Felipe Gainza-Cortés and Gonzalo A. Díaz
Microorganisms 2025, 13(2), 331; https://doi.org/10.3390/microorganisms13020331 - 3 Feb 2025
Cited by 1 | Viewed by 1123
Abstract
Botryosphaeria dieback disease is a significant grapevine trunk disease (GTD) caused by species of Botryosphaeriaceae in Chile and worldwide. Moreover, Botryosphaeriaceae have been described attacking fruit and nut crops in Chile. However, it remains unknown whether fungal isolates from tree hosts have the [...] Read more.
Botryosphaeria dieback disease is a significant grapevine trunk disease (GTD) caused by species of Botryosphaeriaceae in Chile and worldwide. Moreover, Botryosphaeriaceae have been described attacking fruit and nut crops in Chile. However, it remains unknown whether fungal isolates from tree hosts have the potential to infect grapevines in Chile. The aggressiveness and potential cross infection of species of Botryosphaeriaceae collected from crops (grapevines, apples, blueberries, and walnuts), was assessed on grapevines. Plant materials, including nursery cuttings, lignified canes, and green shoots of grapevine cultivars (Cabernet Sauvignon, Syrah, Sauvignon Blanc, Malbec, Aspirant Bouschet, and Merlot), were inoculated with Diplodia mutila, D. seriata, Dothiorella sarmentorum, Lasiodiplodia theobromae, Neofusicoccum arbuti, and N. parvum, under greenhouse and vineyard conditions. Regardless of the origin of the isolates, most species of Botryosphaeriaceae were pathogenic on plant materials, causing necrotic lesions of mean lengths from 11.9 to 86.2 mm using mycelial suspension and from 24.8 to 253.7 mm with mycelial plugs. Notably, Neofusicoccum species were the most aggressive, regardless of host origin. Other less aggressive species included L. theobromae, D. mutila, and D. seriata isolated from apple and walnut. This study highlights the potential of species of Botryosphaeriaceae from alternative fruit hosts as inoculum sources for grapevines in Chile. Full article
(This article belongs to the Special Issue Plant Pathogens: Monitoring, Identification and Biological Control)
Show Figures

Figure 1

22 pages, 7508 KiB  
Article
Diversity of Cytospora Species Associated with Trunk Diseases of Prunus persica (Peach) in Northern China
by Zhizheng He, Pranami D. Abeywickrama, Linna Wu, Yueyan Zhou, Wei Zhang, Jiye Yan, Qiaoxia Shang, Ying Zhou and Shifang Li
J. Fungi 2024, 10(12), 843; https://doi.org/10.3390/jof10120843 - 5 Dec 2024
Cited by 3 | Viewed by 1546
Abstract
Peach (Prunus persica) is widely cultivated in China, but fungal diseases, particularly Cytospora canker, significantly impact tree health, reducing fruit yield and economic value. This disease mainly weakens tree branches and trunks, sometimes leading to tree death. There are no updated [...] Read more.
Peach (Prunus persica) is widely cultivated in China, but fungal diseases, particularly Cytospora canker, significantly impact tree health, reducing fruit yield and economic value. This disease mainly weakens tree branches and trunks, sometimes leading to tree death. There are no updated studies on the diversity of Cytospora species associated with peach Cytospora canker in northern China. To determine the Cytospora species associated with this disease, we surveyed five provinces from 2022 to 2023, collecting 72 disease samples with symptoms including branches with black fruiting bodies, cankers, cracking, dieback, and gummosis. Through morphology and multi-loci phylogeny, 127 isolates were identified into four known (C. ailanthicola, C. erumpens, C. leucostoma, and C. leucosperma) and two previously undescribed species (C. gansuensis sp. nov. and C. qinanensis sp. nov.). Cytospora leucostoma (73.60%) was the most abundant. Pathogenicity tests indicated that except for C. ailanthicola, all other species were pathogenic to peach, with C. erumpens being the most aggressive. This study is the first to report the novel host association of C. erumpens on peaches globally and represents the first comprehensive investigation of Cytospora species associated with canker diseases in the main peach production area in northern China, offering a foundation for developing effective disease management strategies. Full article
(This article belongs to the Special Issue Biodiversity, Systematics, and Evolution of Plant Pathogenic Fungi)
Show Figures

Figure 1

17 pages, 12899 KiB  
Article
The Sweet Cherry Tree Genotype Restricts the Aggressiveness of the Wood Decay Fungi Cytospora sorbicola and Calosphaeria pulchella
by Claudio Osorio-Navarro, Constanza Saez, Felipe Durán, Mauricio Rubilar, Paula Reyes-Bravo, Madelaine Azócar, Verónica Estrada, Marcela Esterio and Jaime Auger
Microorganisms 2024, 12(12), 2456; https://doi.org/10.3390/microorganisms12122456 - 29 Nov 2024
Viewed by 1156
Abstract
The wood decay fungi Cytospora sorbicola and Calosphaeria pulchella severely threaten the worldwide cultivation of sweet cherry trees (Prunus avium L.). Both fungi cause similar symptoms, including vascular necrosis, which leads to branch and twig dieback. In advanced stages of the disease, [...] Read more.
The wood decay fungi Cytospora sorbicola and Calosphaeria pulchella severely threaten the worldwide cultivation of sweet cherry trees (Prunus avium L.). Both fungi cause similar symptoms, including vascular necrosis, which leads to branch and twig dieback. In advanced stages of the disease, cankers are visible on tree branches and trunks. The sweet cherry is the most widely planted fruit tree in Chile, with 74,000 hectares in 2023. According to the planted surface, the predominant sweet cherry varieties are Lapins, Santina, Regina, and Bing. Variety-dependent susceptibility studies on Cyt. sorbicola and Cal. pulchella are lacking. The main entry points for wood necrosis-causing fungi are pruning wounds; therefore, we evaluated the aggressiveness of Cyt. sorbicola and Cal. pulchella in one-year-old sweet cherry plants. Santina and Lapins showed the lowest necrotic lesion caused by Cyt. sorbicola (13.6 and 14.31 mm, respectively), followed by Bing (19.51 mm) and Regina (26.14 mm). All plants infected by Cyt. sorbicola showed shoot blight regardless of the variety. In addition, there was a varying susceptibility to Cal. pulchella, with Lapins (21.6 mm), Bing (22.83 mm), Santina (27.62 mm), and Regina (30.8 mm) showing increasing levels of observed necrosis. The lesion caused by Cal. pulchella was more significant than that observed for Cyt. sorbicola, regardless of the cherry tree genotype. We identified each fungal growth from the wood necrosis progression area using two independent novel PCR-HRM strategies based on the ITS fungal region, which allowed us to differentiate each pathogen of interest individually or simultaneously. This study demonstrates different levels of susceptibility of sweet cherry tree genotypes to wood-degrading pathogens, emphasizing the need to include these factors in phytosanitary management programs. Full article
Show Figures

Figure 1

17 pages, 9077 KiB  
Article
Diversity and Virulence of Diaporthe Species Associated with Peach Trunk Diseases in China
by Ying Zhou, Wei Zhang, Pranami D. Abeywickrama, Zhizheng He, Zhixiang Zhang, Yonghua Li, Shifang Li, Zaifeng Fan and Jiye Yan
Plants 2024, 13(22), 3238; https://doi.org/10.3390/plants13223238 - 18 Nov 2024
Cited by 1 | Viewed by 1498
Abstract
Peach (Prunus persica L.) is one of the most important and oldest stone fruits grown in China. Though Diaporthe species have more commonly been reported as plant pathogens, endophytes and saprophytes with a wide range of plant hosts, little is known about [...] Read more.
Peach (Prunus persica L.) is one of the most important and oldest stone fruits grown in China. Though Diaporthe species have more commonly been reported as plant pathogens, endophytes and saprophytes with a wide range of plant hosts, little is known about the Diaporthe species associated with peach trunk diseases in China. In the present study, forty-four Diaporthe isolates were obtained from trees with peach branch canker, shoot blight and gummosis symptoms in four provinces in China. Based on a combination of morphology and multi-locus sequence analysis of the rDNA internal transcribed spacer region (ITS), calmodulin (cal), translation elongation factor 1-α (tef1) and β-tubulin (tub2), these Diaporthe isolates were assigned to four species. Detailed descriptions and illustrations of all of the species, D. arecae, D. caulivora, D. discoidispora and D. eres, are provided. This study further reports the first host association of D. caulivora and D. discoidispora on peaches worldwide. The pathogenicity experiment results revealed that D. arecae was the most aggressive species, whereas D. discoidispora was the least aggressive on detached peach shoots. This study provides new insights into the fungi associated with peach trunk diseases in China, and the results of this study may help to facilitate routine diagnosis and planning of suitable plant disease management strategies. Full article
(This article belongs to the Special Issue Mycology and Plant Pathology)
Show Figures

Figure 1

15 pages, 6271 KiB  
Article
Fungi Associated with Olive Tree (cv. ‘Nocellara del Belice’) Decay in Trapani Province (Sicily, Italy)
by Marika Lamendola, Giulia Mirabile, Josè Muratore and Livio Torta
Pathogens 2024, 13(11), 932; https://doi.org/10.3390/pathogens13110932 - 25 Oct 2024
Viewed by 1040
Abstract
Recently, in several locations in the province of Trapani (Sicily, Italy), olive growers have reported cases of decaying olive trees of cv. ‘Nocellara del Belice’, showing symptoms of defoliation, branch drying, xylem browning, and reduced production. Internal symptoms include white and brown wood [...] Read more.
Recently, in several locations in the province of Trapani (Sicily, Italy), olive growers have reported cases of decaying olive trees of cv. ‘Nocellara del Belice’, showing symptoms of defoliation, branch drying, xylem browning, and reduced production. Internal symptoms include white and brown wood rot, starting from the base of the trunk. These alterations have been observed in trees irrigated using a pipe system at the trunk with spray sprinklers. To identify the causal agents of decay, some trees were eradicated and dissected, and woody samples were processed to isolate and identify the associated fungal micro-organisms. The most common colonies were identified using morphological (macro- and microscopical observation) and molecular (PCR amplification of the rDNA-ITS region) analyses. Nine fungal taxa were identified, of which four were associated with this decay syndrome (Coriolopsis gallica, Fomitiporia mediterranea, Kirschsteiniothelia sp., and Pleurostoma richardsiae), three were considered ubiquitous and opportunistic fungi (Alternaria spp., Aspergillus amstelodami, and Trichoderma sp.), and the other two were mycelia sterilia. Artificial inoculation satisfied Koch’s postulates, confirming the pathogenicity of the aforementioned fungi, even though the infections in the fields seem to be related to the irrigation system. This hypothesis would seem to be confirmed by the progression of decay over time in the trees subjected to the irrigation system described but not reported in olive groves differently managed. It is therefore considered appropriate to conduct further and more in-depth investigations aimed at studying the correlation between the irrigation system, presence of fungal agents, and manifestation of the syndrome. A further ongoing investigation is aimed at the use of biostimulants (Agrusaver, Savory Sun, VA LLC) on symptomatic trees, with the aim of both improving the vegetative performance of the host and limiting the symptoms detected in the field. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

13 pages, 10521 KiB  
Article
Characterization of Fungal Species Isolated from Cankered Apple Barks Demonstrates the Alternaria alternata Causing Apple Canker Disease
by Zhiqiang Li, Hao Li, Jiating Zhang, Shikai Zhang, Qi Zhao, Chunzhen Cheng and Yongyan Zhang
J. Fungi 2024, 10(8), 536; https://doi.org/10.3390/jof10080536 - 31 Jul 2024
Cited by 4 | Viewed by 2189
Abstract
Apple canker disease, also named as apple Valsa canker, is one of the most destructive diseases for apples (Malus domestica Borkh.). Cytospora/Valsa spp. are the dominant causal agent of this disease, but many studies have revealed that fungi from some [...] Read more.
Apple canker disease, also named as apple Valsa canker, is one of the most destructive diseases for apples (Malus domestica Borkh.). Cytospora/Valsa spp. are the dominant causal agent of this disease, but many studies have revealed that fungi from some other genus can also cause typical apple canker symptoms. In this study, we performed fungal pathogen isolation from cankered ‘Fuji’ apple barks. Six representative morphologically different fungi (Strain 1–6) were further subjected to ITS sequencing and evolutionary analysis. Molecular identification results revealed that Strains 1–6 are Cytospora mali, Fusarium cf. solani, Alternaria alternata, C. mali, Diplodia seriata and F. proliferatum, respectively. All these fungi have been reported to be causal agents of apple diseases. By inoculating fungal plugs onto trunks of ‘Fuji’ apple trees, the pathogenicity of the six fungi were accessed. Only the inoculations of the two C. mali strains (Strain 1 and Strain 4) and the A. alternata strain (Strain 3) resulted in typical apple canker symptoms in trunks. It is worth noting that Strain 1 caused much more severe canker symptoms and higher pathogenicity incidence than the other two fungi. A. alternata has been identified as a pathogen causing diseases on apple fruits and leaves. By further assessing its pathogenicity on apple fruits and leaves, we verified that it can also cause typical fruit rot and leaf spot symptoms. To the best of our knowledge, this is the first report on apple canker disease caused by A. alternata in China. Our present study can provide a theoretical foundation for the prevention and control of apple canker disease. Full article
(This article belongs to the Special Issue Fungal Plant Pathogens)
Show Figures

Figure 1

14 pages, 6153 KiB  
Article
Characterizing the Palm Pathogenic Thielaviopsis Species from Florida
by Marie-Gabrielle Ayika, Avril Rosano, Jacqueline Valiente, Seemanti Chakrabarti, Jeffrey A. Rollins and Braham Dhillon
J. Fungi 2024, 10(4), 247; https://doi.org/10.3390/jof10040247 - 26 Mar 2024
Cited by 1 | Viewed by 3461
Abstract
Thielaviopsis paradoxa sensu lato is a soilborne fungal pathogen that causes Thielaviopsis trunk rot and heart rot in palms. The loss of structural integrity resulting from trunk rot can cause the palm trunk to collapse suddenly and poses a serious threat to life [...] Read more.
Thielaviopsis paradoxa sensu lato is a soilborne fungal pathogen that causes Thielaviopsis trunk rot and heart rot in palms. The loss of structural integrity resulting from trunk rot can cause the palm trunk to collapse suddenly and poses a serious threat to life and property. Even though rudimentary knowledge about the Thielaviopsis infection process in palms is available, nothing is known about the T. paradoxa species complex in the US. The aim of this study was to characterize T. paradoxa s. lat. isolates collected from diseased palms grown in Florida. Multi-locus phylogeny using three genes, ITS, β-tubulin, and tef1-α, revealed that the isolates separate into two distinct clades with high bootstrap support. The majority of the isolates clustered with the species T. ethacetica, while two isolates formed a separate clade, distinct from T. musarum, and might represent an undescribed Thielaviopsis species. One representative isolate from each clade, when grown on three distinct media and at four different temperatures, showed differences in gross colony morphology, as well as growth rates. The T. ethacetica isolate TP5448 and the Thielaviopsis sp. isolate PLM300 grew better at opposite ends of the temperature spectrum tested in this study, i.e., 35 °C and 10 °C, respectively. In pathogenicity assays on whole plants, the T. ethacetica isolate proved to be more aggressive than Thielaviopsis sp. isolate PLM300, as it produced larger lesions when inoculated on wounded leaflets. An unequal distribution was observed for the mating-type locus of T. ethacetica, as 12 isolates carried the MAT1-1-1 allele, while the status for four isolates remained undefined. Variation in mycelial growth in response to different fungicides was also observed between the two clades. These results demonstrate the existence of two Thielaviopsis clades that can infect palms in Florida and underscore the need for targeted sampling to help uncover the diversity of Thielaviopsis species across palm-growing regions in the US. Full article
Show Figures

Figure 1

18 pages, 5321 KiB  
Article
Grapevine Trunk Diseases in Greece: Disease Incidence and Fungi Involved in Discrete Geographical Zones and Varieties
by Stefanos I. Testempasis, Emmanouil A. Markakis, Georgia I. Tavlaki, Stefanos K. Soultatos, Christos Tsoukas, Danai Gkizi, Aliki K. Tzima, Epameinondas Paplomatas and Georgios S. Karaoglanidis
J. Fungi 2024, 10(1), 2; https://doi.org/10.3390/jof10010002 - 20 Dec 2023
Cited by 4 | Viewed by 3091
Abstract
A three-year survey was conducted to estimate the incidence of grapevine trunk diseases (GTDs) in Greece and identify fungi associated with the disease complex. In total, 310 vineyards in different geographical regions in northern, central, and southern Greece were surveyed, and 533 fungal [...] Read more.
A three-year survey was conducted to estimate the incidence of grapevine trunk diseases (GTDs) in Greece and identify fungi associated with the disease complex. In total, 310 vineyards in different geographical regions in northern, central, and southern Greece were surveyed, and 533 fungal strains were isolated from diseased vines. Morphological, physiological and molecular (5.8S rRNA gene-ITS sequencing) analyses revealed that isolates belonged to 35 distinct fungal genera, including well-known (e.g., Botryosphaeria sp., Diaporthe spp., Eutypa sp., Diplodia sp., Fomitiporia sp., Phaeoacremonium spp., Phaeomoniella sp.) and lesser-known (e.g., Neosetophoma sp., Seimatosporium sp., Didymosphaeria sp., Kalmusia sp.) grapevine wood inhabitants. The GTDs-inducing population structure differed significantly among the discrete geographical zones. Phaeomoniella chlamydospora (26.62%, n = 70), Diaporthe spp. (18.25%, n = 48) and F. mediterranea (10.27%, n = 27) were the most prevalent in Heraklion, whereas D. seriata, Alternaria spp., P. chlamydospora and Fusarium spp. were predominant in Nemea (central Greece). In Amyntaio and Kavala (northern Greece), D. seriata was the most frequently isolated species (>50% frequency). Multi-genes (rDNA-ITS, LSU, tef1-α, tub2, act) sequencing of selected isolates, followed by pathogenicity tests, revealed that Neosetophoma italica, Seimatosporium vitis, Didymosphaeria variabile and Kalmusia variispora caused wood infection, with the former being the most virulent. To the best of our knowledge, this is the first report of N. italica associated with GTDs worldwide. This is also the first record of K. variispora, S. vitis and D. variabile associated with wood infection of grapevine in Greece. The potential associations of disease indices with vine age, cultivar, GTD-associated population structure and the prevailing meteorological conditions in different viticultural zones in Greece are presented and discussed. Full article
(This article belongs to the Special Issue Monitoring, Detection and Surveillance of Fungal Plant Pathogens)
Show Figures

Figure 1

19 pages, 22552 KiB  
Review
Pityriasis Versicolor—A Narrative Review on the Diagnosis and Management
by Nina Łabędź, Cristian Navarrete-Dechent, Honorata Kubisiak-Rzepczyk, Monika Bowszyc-Dmochowska, Anna Pogorzelska-Antkowiak and Paweł Pietkiewicz
Life 2023, 13(10), 2097; https://doi.org/10.3390/life13102097 - 22 Oct 2023
Cited by 18 | Viewed by 17953
Abstract
This narrative review presents a comprehensive overview of the diagnosis and management of pityriasis versicolor (PV), a common superficial fungal infection caused by the yeast Malassezia. PV is characterised by scaly hypopigmented or hyperpigmented patches, primarily affecting the upper trunk, neck, and upper [...] Read more.
This narrative review presents a comprehensive overview of the diagnosis and management of pityriasis versicolor (PV), a common superficial fungal infection caused by the yeast Malassezia. PV is characterised by scaly hypopigmented or hyperpigmented patches, primarily affecting the upper trunk, neck, and upper arms. Regarding commensal interactions, Malassezia utilises nutrient sources without affecting the human host. In cases of pathogenicity, Malassezia can directly harm the host via virulence factors or toxins, or indirectly by triggering damaging host responses. The diagnosis typically relies on recognising characteristic clinical features. Due to the wide variability in its clinical presentation, recognising the differential diagnosis is critical. In this paper, we discuss the clinical differentials, with their dermatoscopic presentation, but also describe a range of helpful diagnostic techniques (microscopy, conventional and ultraviolet-induced fluorescence dermatoscopy, and confocal microscopy). Topical therapies are the primary treatment for PV, encompassing non-specific antifungal agents like sulphur with salicylic acid, selenium sulphide 2.5%, and zinc pyrithione. Additionally, specific topical antifungal medications with either fungicidal or fungistatic properties may also be incorporated into the topical treatment regimen, such as imidazoles, allylamines, and ciclopirox olamine. Systemic therapies might occasionally be used. Patient education and the promotion of good personal hygiene are pivotal to reduce the risk of recurrence. In recurrent cases, particularly during warmer and more humid periods, prolonged prophylaxis with topical agents should be considered. Full article
(This article belongs to the Special Issue Applications of Dermatoscopy in Skin Diseases)
Show Figures

Figure 1

14 pages, 9462 KiB  
Article
Molecular Identification and Pathogenicity of Diaporthe eres and D. hongkongensis (Diaporthales, Ascomycota) Associated with Cherry Trunk Diseases in China
by Pengzhao Chen, Pranami D. Abeywickrama, Shuxian Ji, Yueyan Zhou, Xinghong Li, Wei Zhang and Jiye Yan
Microorganisms 2023, 11(10), 2400; https://doi.org/10.3390/microorganisms11102400 - 26 Sep 2023
Cited by 11 | Viewed by 2840
Abstract
This study aimed to identify fungal species associated with trunk diseases of sweet cherries (Prunus avium) in several commercial cherry orchards in Beijing, Guizhou and Shandong provinces, China. In total, eighteen fungal strains that fitted well into the species concept of [...] Read more.
This study aimed to identify fungal species associated with trunk diseases of sweet cherries (Prunus avium) in several commercial cherry orchards in Beijing, Guizhou and Shandong provinces, China. In total, eighteen fungal strains that fitted well into the species concept of Diaporthe were isolated. Based on both morphological and multi-locus phylogenetic analyses of internal transcribed spacer region (ITS), beta-tubulin (tub-2), calmodulin (Cal) and translation elongation factor 1-α (tef1–α) sequencing data, fourteen isolates were identified as Diaporthe eres, while four isolates were classified as D. hongkongensis. Here, we report D. hongkongensis causing sweet cherry branch dieback disease and, further, we confirmed the host association of D. eres with sweet cherries in China. A pathogenicity assay revealed the ability of both D. eres and D. hongkongensis to cause shoot necrosis and stem lesions on Prunus avium cv. ‘Brooks’ (mean lesion lengths of 1.86 cm and 1.56 cm, respectively). The optimal temperature for the growth of both Diaporthe species was tested. The optimal growth temperature for D. hongkongensis was 30 °C, and the 25–28 °C temperatures were the most favorable for the growth of D. eres strains. This research advances the understanding of fungal trunk diseases in fruit crops, particularly gummosis and branch dieback disease in Chinese cherry orchards, and will aid growers in making decisions about cultural practices and disease management. Full article
(This article belongs to the Special Issue Molecular Identification and Phylogeny of Crops Pathogenic Fungi)
Show Figures

Figure 1

21 pages, 2311 KiB  
Article
Integrating Thermal Indices and Phenotypic Traits for Assessing Tree Health: A Comprehensive Framework for Conservation and Monitoring of Urban, Agricultural, and Forest Ecosystems
by Yiannis G. Zevgolis, Triantaphyllos Akriotis, Panayiotis G. Dimitrakopoulos and Andreas Y. Troumbis
Appl. Sci. 2023, 13(17), 9493; https://doi.org/10.3390/app13179493 - 22 Aug 2023
Cited by 2 | Viewed by 2198
Abstract
Successful conservation through monitoring of ecosystems and species, which entails the quantification of disturbances at the ecosystem, species, and population levels, presents significant challenges. Given the pivotal role of this information in formulating effective strategies for tree conservation, we establish an integrated methodological [...] Read more.
Successful conservation through monitoring of ecosystems and species, which entails the quantification of disturbances at the ecosystem, species, and population levels, presents significant challenges. Given the pivotal role of this information in formulating effective strategies for tree conservation, we establish an integrated methodological framework that characterizes the overall health state of trees in urban, agricultural, and forest ecosystems, at species and individual levels, by connecting various non-invasive techniques and field metrics. To accomplish this, we collected thermal and phenotypic information from 543 trees representing five prevalent tree species, distributed across urban, agricultural, and forest settings, within a typical Mediterranean environment, and we developed trunk thermal indicators to describe species’ responses to various disturbances. We (a) examined thermal pattern variations within and among the tree species, (b) explored the relationships between phenotypic traits and trunk thermal indices, (c) quantified the influence of these indices on leaf area index, and (d) classified trees that exhibit defects and fungal pathogens based on these indices. Results showed clear differentiation of thermal and LAI patterns both among tree species and based on the presence or absence of defects. The trunk thermal indices played a significant role in characterizing tree health and predicting LAI, exhibiting strong relationships with phenotypic traits, thereby demonstrating their potential as universal indicators of tree health. Additionally, the inclusion of cavities and fungal presence in the assessment of tree health provided valuable insights into the impact of structural abnormalities on the overall tree condition. Combining trees’ phenotypic traits, vitality indices, and trunk thermal indices allowed the successful classification of defects, cavities, and fungal infestation in 91.4%, 88%, and 88% of trees, respectively. By considering the inter-relationships among thermal indices and phenotypic traits, we can confidently identify and quantify tree health, contributing to the conservation of tree species in diverse ecosystems. Full article
(This article belongs to the Special Issue Recent Progress in Infrared Thermography)
Show Figures

Figure 1

24 pages, 5126 KiB  
Article
In Vitro Evaluation of Some Endophytic Bacillus to Potentially Inhibit Grape and Grapevine Fungal Pathogens
by Oana-Alina Boiu-Sicuia, Radu Cristian Toma, Camelia Filofteia Diguță, Florentina Matei and Călina Petruța Cornea
Plants 2023, 12(13), 2553; https://doi.org/10.3390/plants12132553 - 5 Jul 2023
Cited by 11 | Viewed by 2938
Abstract
Romania has a long history of grapevine culturing and winemaking. However, like any agricultural sector, viticulture faces devastating biological threats. Fungi responsible for grapevine trunk diseases (GTDs) and grape spoilage lead to considerable yield losses and a decline in grapevine quality. In the [...] Read more.
Romania has a long history of grapevine culturing and winemaking. However, like any agricultural sector, viticulture faces devastating biological threats. Fungi responsible for grapevine trunk diseases (GTDs) and grape spoilage lead to considerable yield losses and a decline in grapevine quality. In the actual context, many countries, including Romania, have reoriented their approaches to minimize chemical inputs, which have been proven to be toxic and to have negative impacts on the environment, and to replace them with sustainable biocontrol strategies for the wine-growing sector. Within biocontrol strategies, Bacillus spp. is a well-known plant-protective bacteria with antifungal properties. Within this paper, six endophytic bacteria from various plant sources were studied. The bacterial strains were identified as B. pumilus, B. subtilis, and B. velezensis by sequencing their 16S rDNA region. Regardless of the in vitro test methods (using living bacterial cells, bacterial-cell-free supernatant (CFS), and volatile active compounds (VOCs)), B. velezensis strains revealed strong and broad antifungal activity against grape and grapevine fungal pathogens such as Aspergillus spp., Botrytis cinerea, Penicillium expansum, Diplodia seriata, Eutypa lata, Fusarium spp., Clonostachys rosea, Neofusicoccum parvum, and Stereum hirsutum. The functional antifungal genes encoding for difficidin, fengycin, iturins, macrolactin, and mycosubtilin were molecularly detected, which could support the proven antifungal activity of the endophytic strains. Lytic enzymes involved in fungal growth inhibition, such as chitinase, cellulase, and proteases, were also revealed to be produced by some of these bacterial strains. Various other in vitro tests, such as phosphate and phytate solubilization, phytohormone synthesis, the production of enzymes involved in the polyamine biosynthetic pathway, and pH as well as temperature tolerance tests were carried out to reveal the plant-beneficial potential of these bacterial strains. These results revealed that the B. velezensis strains, especially BAHs1, are the most suitable endophytes for grapevine biologic control, which could lead to the future development of sustainable management strategies. Full article
(This article belongs to the Special Issue Grapevine Disease and Disease Management)
Show Figures

Figure 1

Back to TopTop