Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fumarylacetoacetate hydrolase deficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3280 KiB  
Article
Validation of Clinical-Grade Electroporation Systems for CRISPR-Cas9-Mediated Gene Therapy in Primary Hepatocytes for the Correction of Inherited Metabolic Liver Disease
by Justin Gibson, Abishek Dhungana, Menam Pokhrel, Benjamin Arthur, Pramita Suresh, Olumide Adebayo and Renee N. Cottle
Cells 2025, 14(10), 711; https://doi.org/10.3390/cells14100711 - 14 May 2025
Viewed by 878
Abstract
Hepatocyte transplantation (HTx) combined with ex vivo gene therapy has garnered significant interest due to its potential for treating many inherited metabolic liver diseases. The biggest obstacle for HTx is achieving sufficient engraftment levels to rescue diseased phenotypes, which becomes more challenging when [...] Read more.
Hepatocyte transplantation (HTx) combined with ex vivo gene therapy has garnered significant interest due to its potential for treating many inherited metabolic liver diseases. The biggest obstacle for HTx is achieving sufficient engraftment levels to rescue diseased phenotypes, which becomes more challenging when combined with ex vivo gene editing techniques. However, recent technological advancements have improved electroporation delivery efficiency, cell viability, and scalability for cell therapy. We recently demonstrated the impacts of electroporation for cell-based gene therapy in a mouse model of hereditary tyrosinemia type 1 (HT1). Here, we explore the use of the clinical-grade electroporator, the MaxCyte ExPERT GTx, utilized in the first FDA-approved CRISPR therapy, Casgevy, and evaluate its potential in primary hepatocytes in terms of delivery efficiency and cell viability. We assessed the gene editing efficiency and post-transplantation engraftment of hepatocytes from mTmG mice electroporated with CRISPR-Cas9-ribonucleoproteins (RNPs) targeting 4-hydroxyphenylpyruvate dioxygenase (Hpd) in a fumarylacetoacetate hydrolase (Fah)-deficient mouse model of HT1. After surgery, Fah-/- graft recipients were cycled off and on nitisinone to achieve independence from drug-induced Hpd inhibition, an indicator of HT1 disease correction. Transplanted hepatocytes subjected to electroporation using the GTx system had a cell viability of 89.9% and 100% on-target gene editing efficiency. Recipients transplanted with GTx-electroporated cells showed a smaller weight reduction than controls transplanted with untransfected cells (7.9% and 13.8%, respectively). Further, there were no mortalities in the GTx-recipient mice, whereas there was 25% mortality in the control recipients. Mean donor cell engraftment was significantly higher in GTx-recipient mice compared to untransfected control recipients (97.9% and 81.6%, respectively). Our results indicate that the GTx system does not negatively impact hepatocyte functionality and engraftment potential, thereby demonstrating the promise of GTx electroporation in hepatocytes as a viable cell therapy for treating genetic diseases that affect the liver. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing in Translational Research—Third Edition)
Show Figures

Figure 1

9 pages, 769 KiB  
Case Report
A Lithuanian Case of Tyrosinemia Type 1 with a Literature Review: A Rare Cause of Acute Liver Failure in Childhood
by Rūta Rokaitė, Agnė Čibirkaitė, Vykinta Zeleckytė, Gabija Lazdinytė and Mindaugas Dženkaitis
Medicina 2024, 60(1), 135; https://doi.org/10.3390/medicina60010135 - 11 Jan 2024
Cited by 1 | Viewed by 2572
Abstract
Hereditary type 1 tyrosinemia (HT1) is a rare inherited autosomal recessive disorder of tyrosine metabolism, characterized by progressive liver damage, dysfunction of kidney tubules, and neurological crises. In the course of this disease, due to the deficiency of the enzyme fumarylacetoacetate hydrolase (FAH), [...] Read more.
Hereditary type 1 tyrosinemia (HT1) is a rare inherited autosomal recessive disorder of tyrosine metabolism, characterized by progressive liver damage, dysfunction of kidney tubules, and neurological crises. In the course of this disease, due to the deficiency of the enzyme fumarylacetoacetate hydrolase (FAH), toxic intermediate metabolites of tyrosine breakdown, such as fumarylacetoacetate (FAA), succinylacetoacetate (SAA), and succinylacetone (SA), accumulate in liver and kidney cells, causing cellular damage. Because of this, an increased SA concentration in the blood or urine is pathognomonic of HT1. In the year 2000, HT1 was diagnosed in Lithuania for the first time, and this was the first time when a specific treatment for HT1 was administered in the country. Over two decades, four cases of this disease have been diagnosed in Lithuania. In the first of these patients, the disease was diagnosed in infancy, manifesting as liver damage with liver failure. Treatment with nitisinone was initiated, which continues to be administered, maintaining normal liver function. Liver transplantation was performed on two subsequent patients due to complications of HT1. It is crucial to diagnose HT1 as early as possible in order to reduce or completely eliminate complications related to the disease, including progressive liver failure and kidney dysfunction, among others. This can only be achieved by conducting a universal newborn screening for tyrosinemia and by starting treatment with nitisinone (NTBC) before the age of 1 month in all cases of HT1. However, in those countries where this screening is not being carried out, physicians must be aware of and consider this highly rare disorder. They should be vigilant, paying attention to even minimal changes in a few specific laboratory test results—such as unexplained anemia alongside neutropenia and thrombocytopenia—and should conduct more detailed examinations to determine the causes of these changes. In this article, we present the latest clinical case of HT1 in Lithuania, diagnosed at the Children’s Diseases’ Clinic of the Lithuanian University of Health Sciences (LUHS) Hospital Kaunas Clinics. The case manifested as life-threatening acute liver failure in early childhood. This article explores and discusses the peculiarities of diagnosing this condition in the absence of universal newborn screening for tyrosinemia in the country, as well as the course, treatment, and ongoing monitoring of patients with this disorder. Full article
(This article belongs to the Special Issue Medical Imaging in Hepatology)
Show Figures

Figure 1

15 pages, 2536 KiB  
Article
Hereditary Tyrosinemia Type 1 Mice under Continuous Nitisinone Treatment Display Remnants of an Uncorrected Liver Disease Phenotype
by Jessie Neuckermans, Sien Lequeue, Paul Claes, Anja Heymans, Juliette H. Hughes, Haaike Colemonts-Vroninks, Lionel Marcélis, Georges Casimir, Philippe Goyens, Geert A. Martens, James A. Gallagher, Tamara Vanhaecke, George Bou-Gharios and Joery De Kock
Genes 2023, 14(3), 693; https://doi.org/10.3390/genes14030693 - 11 Mar 2023
Cited by 2 | Viewed by 6202
Abstract
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic [...] Read more.
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC. Full article
(This article belongs to the Special Issue Identifying the Molecular Basis of Rare Genetic Diseases)
Show Figures

Figure 1

13 pages, 1236 KiB  
Article
Therapeutic Targeting of Fumaryl Acetoacetate Hydrolase in Hereditary Tyrosinemia Type I
by Jon Gil-Martínez, Iratxe Macias, Luca Unione, Ganeko Bernardo-Seisdedos, Fernando Lopitz-Otsoa, David Fernandez-Ramos, Ana Lain, Arantza Sanz-Parra, José M Mato and Oscar Millet
Int. J. Mol. Sci. 2021, 22(4), 1789; https://doi.org/10.3390/ijms22041789 - 11 Feb 2021
Cited by 7 | Viewed by 3572
Abstract
Fumarylacetoacetate hydrolase (FAH) is the fifth enzyme in the tyrosine catabolism pathway. A deficiency in human FAH leads to hereditary tyrosinemia type I (HT1), an autosomal recessive disorder that results in the accumulation of toxic metabolites such as succinylacetone, maleylacetoacetate, and fumarylacetoacetate in [...] Read more.
Fumarylacetoacetate hydrolase (FAH) is the fifth enzyme in the tyrosine catabolism pathway. A deficiency in human FAH leads to hereditary tyrosinemia type I (HT1), an autosomal recessive disorder that results in the accumulation of toxic metabolites such as succinylacetone, maleylacetoacetate, and fumarylacetoacetate in the liver and kidney, among other tissues. The disease is severe and, when untreated, it can lead to death. A low tyrosine diet combined with the herbicidal nitisinone constitutes the only available therapy, but this treatment is not devoid of secondary effects and long-term complications. In this study, we targeted FAH for the first-time to discover new chemical modulators that act as pharmacological chaperones, directly associating with this enzyme. After screening several thousand compounds and subsequent chemical redesign, we found a set of reversible inhibitors that associate with FAH close to the active site and stabilize the (active) dimeric species, as demonstrated by NMR spectroscopy. Importantly, the inhibitors are also able to partially restore the normal phenotype in a newly developed cellular model of HT1. Full article
Show Figures

Figure 1

16 pages, 4355 KiB  
Article
Oxidative Stress, Glutathione Metabolism, and Liver Regeneration Pathways Are Activated in Hereditary Tyrosinemia Type 1 Mice upon Short-Term Nitisinone Discontinuation
by Haaike Colemonts-Vroninks, Jessie Neuckermans, Lionel Marcelis, Paul Claes, Steven Branson, Georges Casimir, Philippe Goyens, Geert A. Martens, Tamara Vanhaecke and Joery De Kock
Genes 2021, 12(1), 3; https://doi.org/10.3390/genes12010003 - 22 Dec 2020
Cited by 9 | Viewed by 7573
Abstract
Hereditary tyrosinemia type 1 (HT1) is an inherited condition in which the body is unable to break down the amino acid tyrosine due to mutations in the fumarylacetoacetate hydrolase (FAH) gene, coding for the final enzyme of the tyrosine degradation pathway. As a [...] Read more.
Hereditary tyrosinemia type 1 (HT1) is an inherited condition in which the body is unable to break down the amino acid tyrosine due to mutations in the fumarylacetoacetate hydrolase (FAH) gene, coding for the final enzyme of the tyrosine degradation pathway. As a consequence, HT1 patients accumulate toxic tyrosine derivatives causing severe liver damage. Since its introduction, the drug nitisinone (NTBC) has offered a life-saving treatment that inhibits the upstream enzyme 4-hydroxyphenylpyruvate dioxygenase (HPD), thereby preventing production of downstream toxic metabolites. However, HT1 patients under NTBC therapy remain unable to degrade tyrosine. To control the disease and side-effects of the drug, HT1 patients need to take NTBC as an adjunct to a lifelong tyrosine and phenylalanine restricted diet. As a consequence of this strict therapeutic regime, drug compliance issues can arise with significant influence on patient health. In this study, we investigated the molecular impact of short-term NTBC therapy discontinuation on liver tissue of Fah-deficient mice. We found that after seven days of NTBC withdrawal, molecular pathways related to oxidative stress, glutathione metabolism, and liver regeneration were mostly affected. More specifically, NRF2-mediated oxidative stress response and several toxicological gene classes related to reactive oxygen species metabolism were significantly modulated. We observed that the expression of several key glutathione metabolism related genes including Slc7a11 and Ggt1 was highly increased after short-term NTBC therapy deprivation. This stress response was associated with the transcriptional activation of several markers of liver progenitor cells including Atf3, Cyr61, Ddr1, Epcam, Elovl7, and Glis3, indicating a concreted activation of liver regeneration early after NTBC withdrawal. Full article
Show Figures

Figure 1

17 pages, 10577 KiB  
Article
E3 Ubiquitin Ligase APC/CCdh1 Negatively Regulates FAH Protein Stability by Promoting Its Polyubiquitination
by Kamini Kaushal, Sang Hyeon Woo, Apoorvi Tyagi, Dong Ha Kim, Bharathi Suresh, Kye-Seong Kim and Suresh Ramakrishna
Int. J. Mol. Sci. 2020, 21(22), 8719; https://doi.org/10.3390/ijms21228719 - 18 Nov 2020
Cited by 3 | Viewed by 3567
Abstract
Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), [...] Read more.
Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein. Thus, we envision that Cdh1 might be a key factor in the maintenance of FAH protein level to regulate FAH-mediated physiological functions. Full article
Show Figures

Figure 1

12 pages, 1948 KiB  
Article
A Compensatory U1snRNA Partially Rescues FAH Splicing and Protein Expression in a Splicing-Defective Mouse Model of Tyrosinemia Type I
by Dario Balestra, Daniela Scalet, Mattia Ferrarese, Silvia Lombardi, Nicole Ziliotto, Chrystal C. Croes, Naomi Petersen, Piter Bosma, Federico Riccardi, Franco Pagani, Mirko Pinotti and Stan F. J. van de Graaf
Int. J. Mol. Sci. 2020, 21(6), 2136; https://doi.org/10.3390/ijms21062136 - 20 Mar 2020
Cited by 13 | Viewed by 4177
Abstract
The elucidation of aberrant splicing mechanisms, frequently associated with disease has led to the development of RNA therapeutics based on the U1snRNA, which is involved in 5′ splice site (5′ss) recognition. Studies in cellular models have demonstrated that engineered U1snRNAs can rescue different [...] Read more.
The elucidation of aberrant splicing mechanisms, frequently associated with disease has led to the development of RNA therapeutics based on the U1snRNA, which is involved in 5′ splice site (5′ss) recognition. Studies in cellular models have demonstrated that engineered U1snRNAs can rescue different splicing mutation types. However, the assessment of their correction potential in vivo is limited by the scarcity of animal models with the targetable splicing defects. Here, we challenged the U1snRNA in the FAH5961SB mouse model of hepatic fumarylacetoacetate hydrolase (FAH) deficiency (Hereditary Tyrosinemia type I, HT1) due to the FAH c.706G>A splicing mutation. Through minigene expression studies we selected a compensatory U1snRNA (U1F) that was able to rescue this mutation. Intriguingly, adeno-associated virus-mediated delivery of U1F (AAV8-U1F), but not of U1wt, partially rescued FAH splicing in mouse hepatocytes. Consistently, FAH protein was detectable only in the liver of AAV8-U1F treated mice, which displayed a slightly prolonged survival. Moreover, RNA sequencing revealed the negligible impact of the U1F on the splicing profile and overall gene expression, thus pointing toward gene specificity. These data provide early in vivo proof-of-principle of the correction potential of compensatory U1snRNAs in HTI and encourage further optimization on a therapeutic perspective, and translation to other splicing-defective forms of metabolic diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

13 pages, 2363 KiB  
Article
Blood and Brain Biochemistry and Behaviour in NTBC and Dietary Treated Tyrosinemia Type 1 Mice
by Willem G. van Ginkel, Danique van Vliet, Els van der Goot, Martijn H. J. R. Faassen, Arndt Vogel, M. Rebecca Heiner-Fokkema, Eddy. A. van der Zee and Francjan J. van Spronsen
Nutrients 2019, 11(10), 2486; https://doi.org/10.3390/nu11102486 - 16 Oct 2019
Cited by 7 | Viewed by 4145
Abstract
Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Neurocognitive deficiencies have been described in TT1 patients, that have, among others, been related to changes in plasma large neutral amino acids (LNAA) that could [...] Read more.
Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Neurocognitive deficiencies have been described in TT1 patients, that have, among others, been related to changes in plasma large neutral amino acids (LNAA) that could result in changes in brain LNAA and neurotransmitter concentrations. Therefore, this project aimed to investigate plasma and brain LNAA, brain neurotransmitter concentrations and behavior in C57 Bl/6 fumarylacetoacetate hydrolase deficient (FAH−/−) mice treated with 2-(2-nitro-4-trifluoromethylbenoyl)-1,3-cyclohexanedione (NTBC) and/or diet and wild-type mice. Plasma and brain tyrosine concentrations were clearly increased in all NTBC treated animals, even with diet (p < 0.001). Plasma and brain phenylalanine concentrations tended to be lower in all FAH−/− mice. Other brain LNAA, were often slightly lower in NTBC treated FAH−/− mice. Brain neurotransmitter concentrations were usually within a normal range, although serotonin was negatively correlated with brain tyrosine concentrations (p < 0.001). No clear behavioral differences between the different groups of mice could be found. To conclude, this is the first study measuring plasma and brain biochemistry in FAH−/− mice. Clear changes in plasma and brain LNAA have been shown. Further research should be done to relate the biochemical changes to neurocognitive impairments in TT1 patients. Full article
Show Figures

Figure 1

Back to TopTop