Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = fluorogenic systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1430 KiB  
Article
Development and Characterization of pFluor50, a Fluorogenic-Based Kinetic Assay System for High-Throughput Inhibition Screening and Characterization of Time-Dependent Inhibition and Inhibition Type for Six Human CYPs
by Pratik Shriwas, Andre Revnew, Sarah Roo, Alex Bender, Kevin Miller, Christopher M. Hadad, Thomas R. Lane, Sean Ekins and Craig A. McElroy
Molecules 2025, 30(9), 2032; https://doi.org/10.3390/molecules30092032 - 2 May 2025
Viewed by 609
Abstract
Cytochrome P450s (CYPs) play an integral role in drug and xenobiotic metabolism in humans, and thus, understanding CYP inhibition and/or activation by new therapeutic candidates is an important step in the drug development process. Ideally, CYP inhibition/activation assays should be high-throughput, use commercially [...] Read more.
Cytochrome P450s (CYPs) play an integral role in drug and xenobiotic metabolism in humans, and thus, understanding CYP inhibition and/or activation by new therapeutic candidates is an important step in the drug development process. Ideally, CYP inhibition/activation assays should be high-throughput, use commercially available components, allow for analysis of metabolism by the majority of human CYPs, and allow for kinetic analysis of inhibition type and time-dependent inhibition. Here, we developed pFluor50, a 384-well microtiter plate-based fluorogenic kinetic enzyme assay system using substrates metabolized by six human CYPs to generate fluorescent products and determined the Michaelis–Menten kinetics constants (KM) and product formation rates (Vmax) for each substrate–CYP pair. The pFluor50 assay was also used to elucidate inhibition type and time-dependent inhibition for some inhibitors, demonstrating its utility for characterizing the observed inhibition, even mechanism-based inhibition. The pFluor50 assay system developed in this study using commercially available components should be very useful for high-throughput screening and further characterization of potential therapeutic candidates for inhibition/activation with the most prevalent human CYPs. Full article
Show Figures

Figure 1

21 pages, 9099 KiB  
Article
Polymerized Alizarin Red–Inorganic Hybrid Nanoarchitecture (PARIHN) as a Novel Fluorogenic Label for the Immunosorbent Assay of COVID-19
by Fatema Kaladari, Mahmoud El-Maghrabey, Naoya Kishikawa, Rania El-Shaheny and Naotaka Kuroda
Biosensors 2025, 15(4), 256; https://doi.org/10.3390/bios15040256 - 16 Apr 2025
Cited by 1 | Viewed by 787
Abstract
This study seeks to develop and implement a non-enzymatic fluorescent labeling for immunoassay and immunochromatographic assay (ICAs) targeting SARS-CoV-2, to meet the extensive interest and need for effective COVID-19 diagnosis. In this manuscript, we delineate the development, synthesis, and evaluation of a novel [...] Read more.
This study seeks to develop and implement a non-enzymatic fluorescent labeling for immunoassay and immunochromatographic assay (ICAs) targeting SARS-CoV-2, to meet the extensive interest and need for effective COVID-19 diagnosis. In this manuscript, we delineate the development, synthesis, and evaluation of a novel quinone polymer zinc hybrid nanoarchitecture, referred to as polymerized alizarin red–inorganic hybrid nanoarchitecture (PARIHN), which integrates an antibody for direct use in fluorescent immunoassays, offering enhanced sensitivity, reduced costs, and improved environmental sustainability. The designed nanoarchitecture can enhance the sensitivity of the immunoassay and enable rapid results without the complexities associated with enzymes, such as their low stability and high cost. At first, a chitosan–alizarin polymer was synthesized utilizing quinone–chitosan conjugation chemistry (QCCC). Then, the chitosan–alizarin polymer was embedded with the detection antibody using zinc ion, forming PARIHN, which was proven to be a stable label with the ability to enhance the assay stability and sensitivity of the immunoassay. PARIHN can react with phenylboronic acid (PBA) or boric acid through its alizarin content to produce fluorescence signals with an LOD of 15.9 and 2.6 pm for PBA and boric acid, respectively, which is the first use of a boric acid derivative in signal generation in the immunoassay. Furthermore, PARIHN demonstrated high practicality in detecting SARS-CoV-2 nucleoprotein in fluorescence (PBA and boric acid) systems with an LOD of 0.76 and 10.85 pm, respectively. Furthermore, owing to the high brightness of our PARIHN fluorogenic reaction, our labeling approach was extended to immunochromatographic assays for SARS-CoV-2 with high sensitivity down to 9.45 pg/mL. Full article
Show Figures

Graphical abstract

21 pages, 45460 KiB  
Article
The Type III Intermediate Filament Protein Peripherin Regulates Lysosomal Degradation Activity and Autophagy
by Roberta Romano, Paola Cordella and Cecilia Bucci
Int. J. Mol. Sci. 2025, 26(2), 549; https://doi.org/10.3390/ijms26020549 - 10 Jan 2025
Cited by 1 | Viewed by 1256
Abstract
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and [...] Read more.
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery. Moreover, peripherin silencing affects lysosomal activity, inhibiting EGFR degradation and the degradation of a fluorogenic substrate for proteases. Furthermore, we demonstrate that peripherin silencing affects lysosomal biogenesis by reducing the TFEB and TFE3 contents. Finally, in peripherin-depleted cells, the autophagic flux is strongly inhibited. Therefore, these data indicate that peripherin has an important role in regulating lysosomal biogenesis, and positioning and functions of lysosomes, affecting both the endocytic and autophagic pathways. Considering that peripherin is the most abundant intermediate filament protein of peripheral neurons, its dysregulation, affecting its functions, could be involved in the onset of several neurodegenerative diseases of the peripheral nervous system characterized by alterations in the endocytic and/or autophagic pathways. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

42 pages, 16381 KiB  
Review
Synthetic Approaches Toward Phosphorus-Containing BODIPY and Squaraine Dyes: Enhancing Versatility of Small-Molecule Fluorophores
by Jeanne M. Favret and Sergei V. Dzyuba
Molecules 2025, 30(1), 116; https://doi.org/10.3390/molecules30010116 - 31 Dec 2024
Cited by 1 | Viewed by 2493
Abstract
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY [...] Read more.
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization. These modifications often influence key spectroscopic properties and molecular functionality by expanding their utility in bioimaging, sensing, photosensitization, and theranostic applications. By leveraging the tunable nature of phosphorus-containing moieties, these dyes hold immense promise for addressing current challenges in spectroscopy, imaging, and material designs while unlocking new opportunities for advanced functional systems in chemistry, biology, and medicine. Full article
(This article belongs to the Special Issue Recent Progress in Organophosphorus Chemistry)
Show Figures

Figure 1

18 pages, 6186 KiB  
Article
Nanoconfined Chlorine-Substituted Monomethine Cyanine Dye with a Propionamide Function Based on the Thiazole Orange Scaffold—Use of a Fluorogenic Probe for Cell Staining and Nucleic Acid Visualization
by Nikolay Ishkitiev, Maria Micheva, Marina Miteva, Stefaniya Gaydarova, Christo Tzachev, Vesela Lozanova, Valentin Lozanov, Diana Cheshmedzhieva, Meglena Kandinska, Sonia Ilieva, Raimundo Gargallo, Stanislav Baluschev, Stoyno Stoynov, Teodora Dyankova-Danovska, Marina Nedelcheva-Veleva, Katharina Landfester, Zornitsa Mihaylova and Aleksey Vasilev
Molecules 2024, 29(24), 6038; https://doi.org/10.3390/molecules29246038 - 21 Dec 2024
Cited by 1 | Viewed by 1483
Abstract
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular [...] Read more.
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated. The synthesis of a new dicationic asymmetric monomethine cyanine dye with benzo[d]thiazolium-N-propionamide and chloroquinoline end groups is presented. The photophysical properties of the newly synthesized dye were examined through the combined application of spectroscopic and theoretical methods. The applicability of the dye as a fluorogenic nucleic acid probe was proven by UV-VIS spectroscopy and fluorescence titration. The dye–nucleic acid interaction mode was investigated by UV-Vis and CD spectroscopy. The newly synthesized dicationic dye, like other similar fluorogenic structures, limited permeability, which restricts its use as a probe for RNA and DNA. To enhance cellular delivery, we utilized a patented technology that employs solid, insoluble lipid nanoparticles. This method ensures the complete introduction of the dye into cells while minimizing activity outside the cells. In our study involving two human cell lines, we observed improved penetration through the cell membrane and distinctive selectivity in visualizing nucleic acids within the cytoplasm and nucleus. Full article
Show Figures

Graphical abstract

14 pages, 3475 KiB  
Article
Validation of a Novel Strategy for Fluorescence Quenching for a Self-Quenching Fluorogenic Probe and Its Application for Visual Loop-Mediated Isothermal Amplification Detection During Food Safety Analysis
by Sisi Huang, Shihui Wang, Tianlong Wang, Hongwei Song, Yan Guo, Xiong Xiong and Libin Wang
Foods 2024, 13(23), 3816; https://doi.org/10.3390/foods13233816 - 26 Nov 2024
Viewed by 1356
Abstract
The self-quenching fluorogenic probe facilitates precise identification of LAMP (loop-mediated isothermal amplification) amplicons, unaffected by non-specific products resulting from primer dimers. However, low quenching efficiency by surrounding nucleobases leads to high background signal, posing significant challenges for visual inspection with the naked eye. [...] Read more.
The self-quenching fluorogenic probe facilitates precise identification of LAMP (loop-mediated isothermal amplification) amplicons, unaffected by non-specific products resulting from primer dimers. However, low quenching efficiency by surrounding nucleobases leads to high background signal, posing significant challenges for visual inspection with the naked eye. The present study aims to identify an oligonucleotide sequence that is complementary to the self-quenching fluorogenic probe, and to employ the fluorescence super-quenching mechanism of double-stranded DNA to establish a visualization system for the LAMP assay. The results indicated that the incorporation of a sequence fully complementary to the probe could significantly reduce the system’s background fluorescence (p < 0.05). When the melting temperature exceeds room temperature, truncating the complementary sequence from the 3′ end does not compromise the probe’s quenching efficiency. The LAMP visualization system, using a 10–13-base complementary sequence of the loop primer-based probe, could effectively minimize background fluorescence and yield straightforward visual results post-reaction. Applied to rainbow trout and Atlantic salmon detection, the system detected 1 pg DNA in a closed-tube format. In conclusion, a suitable complementary sequence can reduce the background fluorescence of the self-quenching fluorogenic probe. Employing this sequence alongside the self-quenching fluorogenic probe to develop a low-background fluorescence LAMP system demonstrates great potential for successful visual detection and holds considerable promotional merit. Full article
(This article belongs to the Special Issue Food Safety Detection Analysis and Sensors)
Show Figures

Figure 1

87 pages, 15241 KiB  
Review
2,1,3-Benzothiadiazoles Are Versatile Fluorophore Building Blocks for the Design of Analyte-Sensing Optical Devices
by Gleiston Gonçalves Dias, Francielly Thaís Souto and Vanderlei Gageiro Machado
Chemosensors 2024, 12(8), 156; https://doi.org/10.3390/chemosensors12080156 - 7 Aug 2024
Cited by 5 | Viewed by 3105
Abstract
BTDs (2,1,3-benzothiadiazoles) are fluorescent heterocycles widely used in different applications, including biomarkers, sensing optical devices, OLEDs, organic transistors, and solar cells. This review mainly focuses on the current progress in the design of compounds derived from the BTD core, aiming for their [...] Read more.
BTDs (2,1,3-benzothiadiazoles) are fluorescent heterocycles widely used in different applications, including biomarkers, sensing optical devices, OLEDs, organic transistors, and solar cells. This review mainly focuses on the current progress in the design of compounds derived from the BTD core, aiming for their use as chromogenic and/or fluorogenic devices for detecting anionic, cationic, and neutral analytes. Reactions and synthetic strategies that show the synthetic versatility of BTDs are initially presented, to provide a better understanding regarding the assembly of optical detection systems. The photophysical mechanisms of the detection are also described. A discussion is also presented on the target analytes for which the optical detection devices based on BTD were planned. The examples discussed here will offer the sensors community perspectives for developing new optical detection devices based on BTD for different types of analytes of importance for the most diverse areas of knowledge. Full article
(This article belongs to the Special Issue The Recent Progress and Applications of Optical Chemical Sensors)
Show Figures

Scheme 1

31 pages, 3609 KiB  
Review
Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives
by Janine Kehrli, Claire Husser and Michael Ryckelynck
Biosensors 2024, 14(8), 376; https://doi.org/10.3390/bios14080376 - 1 Aug 2024
Cited by 2 | Viewed by 3850
Abstract
Small molecules are highly relevant targets for detection and quantification. They are also used to diagnose and monitor the progression of disease and infectious processes and track the presence of contaminants. Fluorogenic RNA-based biosensors (FRBs) represent an appealing solution to the problem of [...] Read more.
Small molecules are highly relevant targets for detection and quantification. They are also used to diagnose and monitor the progression of disease and infectious processes and track the presence of contaminants. Fluorogenic RNA-based biosensors (FRBs) represent an appealing solution to the problem of detecting these targets. They combine the portability of molecular systems with the sensitivity and multiplexing capacity of fluorescence, as well as the exquisite ligand selectivity of RNA aptamers. In this review, we first present the different sensing and reporting aptamer modules currently available to design an FRB, together with the main methodologies used to discover modules with new specificities. We next introduce and discuss how both modules can be functionally connected prior to exploring the main applications for which FRB have been used. Finally, we conclude by discussing how using alternative nucleotide chemistries may improve FRB properties and further widen their application scope. Full article
Show Figures

Figure 1

21 pages, 6852 KiB  
Article
Shifting Mycobacterial Serine Hydrolase Activity Visualized Using Multi-Layer In-Gel Activity Assays
by Allison L. Goss, Renee E. Shudick and R. Jeremy Johnson
Molecules 2024, 29(14), 3386; https://doi.org/10.3390/molecules29143386 - 18 Jul 2024
Viewed by 1525
Abstract
The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating [...] Read more.
The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating mycobacterial cultures. To rapidly measure substrate-dependent shifts in mycobacterial serine hydrolase activity, we combined a robust mycobacterial growth system of nitrogen limitation and variable carbon availability with nimble in-gel fluorogenic enzyme measurements. Using this methodology, we rapidly analyzed a range of ester substrates, identified multiple hydrolases concurrently, observed functional enzyme shifts, and measured global substrate preferences. Within every growth condition, mycobacterial hydrolases displayed the full, dynamic range of upregulated, downregulated, and constitutively active hydrolases independent of the ester substrate. Increasing the alkyl chain length of the ester substrate also allowed visualization of distinct hydrolase activity likely corresponding with lipases most responsible for lipid breakdown. The most robust expression of hydrolase activity was observed under the highest stress growth conditions, reflecting the induction of multiple metabolic pathways scavenging for energy to survive under this high stress. The unique hydrolases present under these high-stress conditions could represent novel drug targets for combination treatment with current front-line therapeutics. Combining diverse fluorogenic esters with in-gel activity measurements provides a rapid, customizable, and sensitive detection method for mycobacterial serine hydrolase activity. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

7 pages, 1391 KiB  
Communication
Analysis of 26S Proteasome Activity across Arabidopsis Tissues
by Jagadeesan Ganapathy, Katherine A. Hand and Nitzan Shabek
Plants 2024, 13(12), 1696; https://doi.org/10.3390/plants13121696 - 19 Jun 2024
Cited by 3 | Viewed by 1929
Abstract
Plants utilize the ubiquitin proteasome system (UPS) to orchestrate numerous essential cellular processes, including the rapid responses required to cope with abiotic and biotic stresses. The 26S proteasome serves as the central catalytic component of the UPS that allows for the proteolytic degradation [...] Read more.
Plants utilize the ubiquitin proteasome system (UPS) to orchestrate numerous essential cellular processes, including the rapid responses required to cope with abiotic and biotic stresses. The 26S proteasome serves as the central catalytic component of the UPS that allows for the proteolytic degradation of ubiquitin-conjugated proteins in a highly specific manner. Despite the increasing number of studies employing cell-free degradation assays to dissect the pathways and target substrates of the UPS, the precise extraction methods of highly potent tissues remain unexplored. Here, we utilize a fluorogenic reporting assay using two extraction methods to survey proteasomal activity in different Arabidopsis thaliana tissues. This study provides new insights into the enrichment of activity and varied presence of proteasomes in specific plant tissues. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

2 pages, 144 KiB  
Abstract
Rapid, Portable, and Low-Cost Water Quality Assessment Device Based on Machine Learning
by Andrés Saavedra-Ruiz and Pedro J. Resto-Irizarry
Proceedings 2024, 104(1), 6; https://doi.org/10.3390/proceedings2024104006 - 28 May 2024
Viewed by 798
Abstract
Water quality has a significant impact on public health. Inadequate water conditions are associated with diseases such as cholera, dysentery (shigella), hepatitis, and typhoid fever. Established techniques like Membrane Filtration (MF), Multiple Tube Fermentation (MTF), and enzyme-based defined substrate technology (DST) assays are [...] Read more.
Water quality has a significant impact on public health. Inadequate water conditions are associated with diseases such as cholera, dysentery (shigella), hepatitis, and typhoid fever. Established techniques like Membrane Filtration (MF), Multiple Tube Fermentation (MTF), and enzyme-based defined substrate technology (DST) assays are used tomonitor bacteriological water quality, measuring indicators like Enterococcus faecalis (E. faecalis), Escherichia coli (E. coli), and total coliforms. Despite their high sensitivity and specificity, these methods take 24 to 48 h to produce results, as well as requiring access to laboratory facilities, specialized equipment, sample preparation steps, and trained personnel. This study presents a portable and low-cost UV-LED/RGB water quality sensor which includes a microfluidic device, a fluorogenic defined substrate assay for the detection of E. faecalis, RGB sensors for fluorescent data acquisition, ultraviolet-light-emitting diode (UV-LED) for sample excitation, a portable incubation system, and embedded systems for data storage and processing. The microfluidic device has a number of independent wells used to carry out Most Probable Number (MPN) analysis for bacteria quantification. The device is pre-loaded with the defined substrate assay and is self-loading when immersed in the target water sample for sample-preparation-free analysis. RGB sensors detect fluorescence from each well to automate the MPN results. Results from fluorescence-versus-time curves are used to generate a comprehensive database. Machine learning (ML) algorithms and real-time RGB data are used to predict whether each individual well will be positive or negative using only the first three hours of fluorescent data. Coupled with MPN, this method significantly reduces the timeframe of bacteria detection and quantification, making it a cost-effective and efficient solution for on-the-go water quality monitoring, addressing critical public health concerns, and underscoring the importance of swift and reliable water quality assessments. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
19 pages, 11372 KiB  
Review
Recent Progress in Fluorescent Probes for the Detection and Research of Hydrogen Sulfide in Cells
by Weier Liang, Yong Zhang, Shaoqing Xiong and Dongdong Su
Chemosensors 2023, 11(6), 333; https://doi.org/10.3390/chemosensors11060333 - 4 Jun 2023
Cited by 6 | Viewed by 4030
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays an important role in regulating various physiological activities in biological systems. As the fundamental structural and functional unit of organisms, cells are closely related to the homeostasis of their internal environment. [...] Read more.
Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays an important role in regulating various physiological activities in biological systems. As the fundamental structural and functional unit of organisms, cells are closely related to the homeostasis of their internal environment. The levels of H2S in different organelles maintain a certain balance, and any disruption of this balance will lead to various functional abnormalities that affect the health of organisms. Fluorescent imaging technology provides unique merits, such as simplicity, non-invasiveness, and real-time monitoring, and has become a powerful approach for the detection of molecules in biological systems. Based on the special physicochemical properties of H2S, numerous H2S-specific fluorogenic probes have been designed with different recognition mechanisms that enable rapid and accurate detection of H2S in cells. Therefore, this review briefly illustrates the design strategies, response principles, and biological applications of H2S-specific fluorescent probes and aims to provide relevant researchers with insight for future research. Full article
Show Figures

Graphical abstract

24 pages, 4416 KiB  
Article
The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans Worms
by Valeria Parrales-Macias, Patrick P. Michel, Aurore Tourville, Rita Raisman-Vozari, Stéphane Haïk, Stéphane Hunot, Nicolas Bizat and Annie Lannuzel
Cells 2023, 12(9), 1336; https://doi.org/10.3390/cells12091336 - 7 May 2023
Cited by 10 | Viewed by 3809
Abstract
Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson’s disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key [...] Read more.
Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson’s disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD. Full article
(This article belongs to the Collection Advances in Neurodegenerative Disease)
Show Figures

Graphical abstract

15 pages, 5571 KiB  
Article
Critical Analysis of Association Constants between Calixarenes and Nitroaromatic Compounds Obtained by Fluorescence. Implications for Explosives Sensing
by Alexandre S. Miranda, Paula M. Marcos, José R. Ascenso, Mário N. Berberan-Santos, Peter J. Cragg, Rachel Schurhammer and Christophe Gourlaouen
Molecules 2023, 28(7), 3052; https://doi.org/10.3390/molecules28073052 - 29 Mar 2023
Cited by 2 | Viewed by 2001
Abstract
The binding behaviour of two ureido-hexahomotrioxacalix[3]arene derivatives bearing naphthyl (1) and pyrenyl (2) fluorogenic units at the lower rim towards selected nitroaromatic compounds (NACs) was evaluated. Their affinity, or lack of it, was determined by UV-Vis absorption, fluorescence and [...] Read more.
The binding behaviour of two ureido-hexahomotrioxacalix[3]arene derivatives bearing naphthyl (1) and pyrenyl (2) fluorogenic units at the lower rim towards selected nitroaromatic compounds (NACs) was evaluated. Their affinity, or lack of it, was determined by UV-Vis absorption, fluorescence and NMR spectroscopy. Different computational methods were also used to further investigate any possible complexation between the calixarenes and the NACs. All the results show no significant interaction between calixarenes 1 and 2 and the NACs in either dichloromethane or acetonitrile solutions. Moreover, the fluorescence quenching observed is only apparent and merely results from the absorption of the NACs at the excitation wavelength (inner filter effect). This evidence is in stark contrast with reports in the literature for similar calixarenes. A naphthyl urea dihomooxacalix[4]arene (3) is also subject to the inner filter effect and is shown to form a stable complex with trinitrophenol; however, the equilibrium association constant is greatly overestimated if no correction is applied (9400 M−1 vs 3000 M−1), again stressing the importance of taking into account the inner filter effect in these systems. Full article
(This article belongs to the Special Issue Calixarene Complexes: Synthesis, Properties and Applications II)
Show Figures

Figure 1

23 pages, 5407 KiB  
Article
Rescue of Dopamine Neurons from Iron-Dependent Ferroptosis by Doxycycline and Demeclocycline and Their Non-Antibiotic Derivatives
by Aurore Tourville, Sarah Viguier, Florencia González-Lizárraga, Rodrigo Hernán Tomas-Grau, Paola Ramirez, Jean-Michel Brunel, Mauricio Dos Santos Pereira, Elaine Del-Bel, Rosana Chehin, Laurent Ferrié, Rita Raisman-Vozari, Bruno Figadère and Patrick Pierre Michel
Antioxidants 2023, 12(3), 575; https://doi.org/10.3390/antiox12030575 - 24 Feb 2023
Cited by 14 | Viewed by 4337
Abstract
Several studies have reported that the tetracycline (TC) class antibiotic doxycycline (DOX) is effective against Parkinson’s disease (PD) pathomechanisms. The aim of the present work was three-fold: (i) Establish a model system to better characterize neuroprotection by DOX; (ii) Compare [...] Read more.
Several studies have reported that the tetracycline (TC) class antibiotic doxycycline (DOX) is effective against Parkinson’s disease (PD) pathomechanisms. The aim of the present work was three-fold: (i) Establish a model system to better characterize neuroprotection by DOX; (ii) Compare the rescue effect of DOX to that of other TC antibiotics; (iii) Discover novel neuroprotective TCs having reduced antibiotic activity. For that, we used cultures of mouse midbrain dopamine (DA) neurons and experimental conditions that model iron-mediated oxidative damage, a key mechanism in PD pathobiology. We found that DOX and the other TC antibiotic, demeclocycline (DMC), provided sustained protection to DA neurons enduring iron-mediated insults, whereas chlortetracycline and non-TC class antibiotics did not. Most interestingly, non-antibiotic derivatives of DOX and DMC, i.e., DDOX and DDMC, respectively, were also robustly protective for DA neurons. Interestingly, DOX, DDOX, DMC, and DDMC remained protective for DA neurons until advanced stages of neurodegeneration, and the rescue effects of TCs were observable regardless of the degree of maturity of midbrain cultures. Live imaging studies with the fluorogenic probes DHR-123 and TMRM revealed that protective TCs operated by preventing intracellular oxidative stress and mitochondrial membrane depolarization, i.e., cellular perturbations occurring in this model system as the ultimate consequence of ferroptosis-mediated lipid peroxidation. If oxidative/mitochondrial insults were generated acutely, DOX, DDOX, DMC, and DDMC were no longer neuroprotective, suggesting that these compounds are mostly effective when neuronal damage is chronic and of low-intensity. Overall, our data suggest that TC derivatives, particularly those lacking antibiotic activity, might be of potential therapeutic utility to combat low-level oxidative insults that develop chronically in the course of PD neurodegeneration. Full article
(This article belongs to the Collection Feature Papers in ROS, RNS, RSS)
Show Figures

Graphical abstract

Back to TopTop