Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = fluidic circuit analogy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4625 KiB  
Article
A Lego-Like Reconfigurable Microfluidic Stabilizer System with Tunable Fluidic RC Constants and Stabilization Ratios
by Wuyang Zhuge, Weihao Li, Kaimin Wang, Zhuodan Chen, Chunhui Wu, Kyle Jiang, Jun Ding, Carl Anthony and Xing Cheng
Micromachines 2024, 15(7), 843; https://doi.org/10.3390/mi15070843 - 28 Jun 2024
Viewed by 1399
Abstract
In microfluidic systems, it is important to maintain flow stability to execute various functions, such as chemical reactions, cell transportation, and liquid injection. However, traditional flow sources, often bulky and prone to unpredictable fluctuations, limit the portability and broader application of these systems. [...] Read more.
In microfluidic systems, it is important to maintain flow stability to execute various functions, such as chemical reactions, cell transportation, and liquid injection. However, traditional flow sources, often bulky and prone to unpredictable fluctuations, limit the portability and broader application of these systems. Existing fluidic stabilizers, typically designed for specific flow sources, lack reconfigurability and adaptability in terms of the stabilization ratios. To address these limitations, a modular and standardized stabilizer system with tunable stabilization ratios is required. In this work, we present a Lego-like modular microfluidic stabilizer system, which is fabricated using 3D printing and offers multi-level stabilization combinations and customizable stabilization ratios through the control of fluidic RC constants, making it adaptable to various microfluidic systems. A simplified three-element circuit model is used to characterize the system by straightforwardly extracting the RC constant without intricate calculations of the fluidic resistance and capacitance. By utilizing a simplified three-element model, the stabilizer yields two well-fitted operational curves, demonstrating an R-square of 0.95, and provides an optimal stabilization ratio below 1%. To evaluate the system’s effectiveness, unstable input flow at different working frequencies is stabilized, and droplet generation experiments are conducted and discussed. The results show that the microfluidic stabilizer system significantly reduces flow fluctuations and enhances droplet uniformity. This system provides a new avenue for microfluidic stabilization with a tunable stabilization ratio, and its plug-and-play design can be effectively applied across diverse applications to finely tune fluid flow behaviors in microfluidic devices. Full article
Show Figures

Graphical abstract

11 pages, 4986 KiB  
Communication
Low-Cost Impedance Camera for Cell Distribution Monitoring
by Bo Tang, Mengxi Liu and Andreas Dietzel
Biosensors 2023, 13(2), 281; https://doi.org/10.3390/bios13020281 - 16 Feb 2023
Cited by 3 | Viewed by 3073
Abstract
Electrical impedance spectroscopy (EIS) is widely recognized as a powerful tool in biomedical research. For example, it allows detection and monitoring of diseases, measuring of cell density in bioreactors, and characterizing the permeability of tight junctions in barrier-forming tissue models. However, with single-channel [...] Read more.
Electrical impedance spectroscopy (EIS) is widely recognized as a powerful tool in biomedical research. For example, it allows detection and monitoring of diseases, measuring of cell density in bioreactors, and characterizing the permeability of tight junctions in barrier-forming tissue models. However, with single-channel measurement systems, only integral information is obtained without spatial resolution. Here we present a low-cost multichannel impedance measurement set-up capable of mapping cell distributions in a fluidic environment by using a microelectrode array (MEA) realized in 4-level printed circuit board (PCB) technology including layers for shielding, interconnections, and microelectrodes. The array of 8 × 8 gold microelectrode pairs was connected to home-built electric circuitry consisting of commercial components such as programmable multiplexers and an analog front-end module which allows the acquisition and processing of electrical impedances. For a proof-of-concept, the MEA was wetted in a 3D printed reservoir into which yeast cells were locally injected. Impedance maps were recorded at 200 kHz which correlate well with the optical images showing the yeast cell distribution in the reservoir. Blurring from parasitic currents slightly disturbing the impedance maps could be eliminated by deconvolution using an experimentally determined point spread function. The MEA of the impedance camera can in future be further miniaturized and integrated into cell cultivation and perfusion systems such as organ on chip devices to augment or even replace light microscopic monitoring of cell monolayer confluence and integrity during the cultivation in incubation chambers. Full article
(This article belongs to the Special Issue Impedance-Spectroscopy-Based Biosensors)
Show Figures

Figure 1

8 pages, 2087 KiB  
Article
Module-Fluidics: Building Blocks for Spatio-Temporal Microenvironment Control
by Bowen Ling and Ilenia Battiato
Micromachines 2022, 13(5), 774; https://doi.org/10.3390/mi13050774 - 14 May 2022
Cited by 2 | Viewed by 2595
Abstract
Generating the desired solute concentration signal in micro-environments is vital to many applications ranging from micromixing to analyzing cellular response to a dynamic microenvironment. We propose a new modular design to generate targeted temporally varying concentration signals in microfluidic systems while minimizing perturbations [...] Read more.
Generating the desired solute concentration signal in micro-environments is vital to many applications ranging from micromixing to analyzing cellular response to a dynamic microenvironment. We propose a new modular design to generate targeted temporally varying concentration signals in microfluidic systems while minimizing perturbations to the flow field. The modularized design, here referred to as module-fluidics, similar in principle to interlocking toy bricks, is constructed from a combination of two building blocks and allows one to achieve versatility and flexibility in dynamically controlling input concentration. The building blocks are an oscillator and an integrator, and their combination enables the creation of controlled and complex concentration signals, with different user-defined time-scales. We show two basic connection patterns, in-series and in-parallel, to test the generation, integration, sampling and superposition of temporally-varying signals. All such signals can be fully characterized by analytic functions, in analogy with electric circuits, and allow one to perform design and optimization before fabrication. Such modularization offers a versatile and promising platform that allows one to create highly customizable time-dependent concentration inputs which can be targeted to the specific application of interest. Full article
(This article belongs to the Special Issue Lab-on-a-Chip and Organ-on-a-Chip: Fabrications and Applications)
Show Figures

Figure 1

22 pages, 7216 KiB  
Article
Characterization and Benchmark of a Novel Capacitive and Fluidic Inclination Sensor
by Adrian Schwenck, Thomas Guenther and André Zimmermann
Sensors 2021, 21(23), 8030; https://doi.org/10.3390/s21238030 - 1 Dec 2021
Cited by 4 | Viewed by 3544
Abstract
In this paper, a fluidic capacitive inclination sensor is presented and compared to three types of silicon-based microelectromechanical system (MEMS) accelerometers. MEMS accelerometers are commonly used for tilt measurement. They can only be manufactured by large companies with clean-room technology due to the [...] Read more.
In this paper, a fluidic capacitive inclination sensor is presented and compared to three types of silicon-based microelectromechanical system (MEMS) accelerometers. MEMS accelerometers are commonly used for tilt measurement. They can only be manufactured by large companies with clean-room technology due to the high requirements during assembly. In contrast, the fluidic sensor can be produced by small- and medium-sized enterprises (SMEs) as well, since only surface mount technologies (SMT) are required. Three different variants of the fluidic sensor were investigated. Two variants using stacked printed circuit boards (PCBs) and one variant with 3D-molded interconnect devices (MIDs) to form the sensor element are presented. Allan deviation, non-repeatability, hysteresis, and offset temperature stability were measured to compare the sensors. Within the fluidic sensors, the PCB variant with two sensor cavities performed best regarding all the measurement results except non-repeatability. Regarding bias stability, white noise, which was determined from the Allan deviation, and hysteresis, the fluidic sensors outperformed the MEMS-based sensors. The accelerometer Analog Devices ADXL355 offers slightly better results regarding offset temperature stability and non-repeatability. The MEMS sensors Bosch BMA280 and TDK InvenSense MPU6500 do not match the performance of fluidic sensors in any category. Their advantages are the favorable price and the smaller package. From the investigations, it can be concluded that the fluidic sensor is competitive in the targeted price range, especially for applications with extended requirements regarding bias stability, noise, and hysteresis. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 1515 KiB  
Article
Design Applicable 3D Microfluidic Functional Units Using 2D Topology Optimization with Length Scale Constraints
by Yuchen Guo, Hui Pan, Eddie Wadbro and Zhenyu Liu
Micromachines 2020, 11(6), 613; https://doi.org/10.3390/mi11060613 - 24 Jun 2020
Cited by 6 | Viewed by 4338
Abstract
Due to the limits of computational time and computer memory, topology optimization problems involving fluidic flow frequently use simplified 2D models. Extruded versions of the 2D optimized results typically comprise the 3D designs to be fabricated. In practice, the depth of the fabricated [...] Read more.
Due to the limits of computational time and computer memory, topology optimization problems involving fluidic flow frequently use simplified 2D models. Extruded versions of the 2D optimized results typically comprise the 3D designs to be fabricated. In practice, the depth of the fabricated flow channels is finite; the limited flow depth together with the no-slip condition potentially make the fluidic performance of the 3D model very different from that of the simplified 2D model. This discrepancy significantly limits the usefulness of performing topology optimization involving fluidic flow in 2D—at least if special care is not taken. Inspired by the electric circuit analogy method, we limit the widths of the microchannels in the 2D optimization process. To reduce the difference of fluidic performance between the 2D model and its 3D counterpart, we propose an applicable 2D optimization model, and ensure the manufacturability of the obtained layout, combinations of several morphology-mimicking filters impose maximum or minimum length scales on the solid phase or the fluidic phase. Two typical Lab-on-chip functional units, Tesla valve and fluidic channel splitter, are used to illustrate the validity of the proposed application of length scale control. Full article
(This article belongs to the Special Issue Optimization of Microfluidic Devices)
Show Figures

Figure 1

11 pages, 2265 KiB  
Article
Standing Air Bubble-Based Micro-Hydraulic Capacitors for Flow Stabilization in Syringe Pump-Driven Systems
by Yidi Zhou, Jixiao Liu, Junjia Yan, Tong Zhu, Shijie Guo, Songjing Li and Tiejun Li
Micromachines 2020, 11(4), 396; https://doi.org/10.3390/mi11040396 - 10 Apr 2020
Cited by 18 | Viewed by 6203
Abstract
Unstable liquid flow in syringe pump-driven systems due to the low-speed vibration of the step motor is commonly observed as an unfavorable phenomenon, especially when the flow rate is relatively small. Upon the design of a convenient and cost-efficient microfluidic standing air bubble [...] Read more.
Unstable liquid flow in syringe pump-driven systems due to the low-speed vibration of the step motor is commonly observed as an unfavorable phenomenon, especially when the flow rate is relatively small. Upon the design of a convenient and cost-efficient microfluidic standing air bubble system, this paper studies the physical principles behind the flow stabilization phenomenon of the bubble-based hydraulic capacitors. A bubble-based hydraulic capacitor consists of three parts: tunable microfluidic standing air bubbles in specially designed crevices on the fluidic channel wall, a proximal pneumatic channel, and porous barriers between them. Micro-bubbles formed in the crevices during liquid flow and the volume of the bubble can be actively controlled by the pneumatic pressure changing in the proximal channel. When there is a flowrate fluctuation from the upstream, the flexible air-liquid interface would deform under the pressure variation, which is analogous to the capacitive charging/discharging process. The theoretical model based on Euler law and the microfluidic equivalent circuit was developed to understand the multiphysical phenomenon. Experimental data characterize the liquid flow stabilization performance of the flow stabilizer with multiple key parameters, such as the number and the size of microbubbles. The developed bubble-based hydraulic capacitor could minimize the flow pulses from syringe pumping by 75.3%. Furthermore, a portable system is demonstrated and compared with a commercial pressure-driven flow system. This study can enhance the understanding of the bubble-based hydraulic capacitors that would be beneficial in microfluidic systems where the precise and stable liquid flow is required. Full article
Show Figures

Figure 1

Back to TopTop