Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (475)

Search Parameters:
Keywords = fleet managers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 941 KiB  
Article
Managing Surcharge Risk in Strategic Fleet Deployment: A Partial Relaxed MIP Model Framework with a Case Study on China-Built Ships
by Yanmeng Tao, Ying Yang and Shuaian Wang
Appl. Sci. 2025, 15(15), 8582; https://doi.org/10.3390/app15158582 (registering DOI) - 1 Aug 2025
Abstract
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study [...] Read more.
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study addresses the heterogeneous ship routing and demand acceptance problem, aiming to maximize two conflicting objectives: weekly profit and total transport volume. We formulate the problem as a bi-objective mixed-integer programming model and prove that the ship chartering constraint matrix is totally unimodular, enabling the reformulation of the model into a partially relaxed MIP that preserves optimality while improving computational efficiency. We further analyze key mathematical properties showing that the Pareto frontier consists of a finite union of continuous, piecewise linear segments but is generally non-convex with discontinuities. A case study based on a realistic liner shipping network confirms the model’s effectiveness in capturing the trade-off between profit and transport volume. Sensitivity analyses show that increasing freight rates enables higher profits without large losses in volume. Notably, this paper provides a practical risk management framework for shipping companies to enhance their adaptability under shifting regulatory landscapes. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 (registering DOI) - 1 Aug 2025
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

17 pages, 1142 KiB  
Article
Logistical Challenges in Home Health Care: A Comparative Analysis Between Portugal and Brazil
by William Machado Emiliano, Thalyta Cristina Mansano Schlosser, Vitor Eduardo Molina Júnior, José Telhada and Yuri Alexandre Meyer
Logistics 2025, 9(3), 101; https://doi.org/10.3390/logistics9030101 - 31 Jul 2025
Abstract
Background: This study aims to compare the logistical challenges of Home Health Care (HHC) services in Portugal and Brazil, highlighting the structural and operational differences between both systems. Methods: Guided by an abductive research approach, data were collected using a semi-structured [...] Read more.
Background: This study aims to compare the logistical challenges of Home Health Care (HHC) services in Portugal and Brazil, highlighting the structural and operational differences between both systems. Methods: Guided by an abductive research approach, data were collected using a semi-structured survey with open-ended questions, applied to 13 HHC teams in Portugal and 18 in Brazil, selected based on national coordination recommendations. The data collection process was conducted in person, and responses were analyzed using descriptive statistics and qualitative content analysis. Results: The results reveal that Portugal demonstrates higher productivity, stronger territorial coverage, and a more integrated inventory management system, while Brazil presents greater multidisciplinary team integration, more flexible fleet logistics, and more advanced digital health records. Despite these strengths, both countries continue to address key logistical aspects, such as scheduling, supply distribution, and data management, largely through empirical strategies. Conclusions: This research contributes to the theoretical understanding of international HHC logistics by emphasizing strategic and systemic aspects often overlooked in operational studies. In practical terms, it offers insights for public health managers to improve resource allocation, fleet coordination, and digital integration in aging societies. Full article
(This article belongs to the Section Humanitarian and Healthcare Logistics)
Show Figures

Figure 1

19 pages, 2289 KiB  
Article
Multicriteria Framework for Risk Assessment of Power Transformers
by João Marcondes Corrêa Guimarães, Ligia Cintra Pereira, Antonio Faria Neto, Agnelo Marotta Cassula and Talita Mariane Cristino
Energies 2025, 18(15), 4049; https://doi.org/10.3390/en18154049 - 30 Jul 2025
Viewed by 18
Abstract
Transformers are critical assets for power system reliability, as they connect different voltage levels across generation, transmission, and distribution. Their failure can lead to significant impacts on multiple aspects. Given the aging transformer fleet, supply chain challenges, and constrained investment capacity, the adoption [...] Read more.
Transformers are critical assets for power system reliability, as they connect different voltage levels across generation, transmission, and distribution. Their failure can lead to significant impacts on multiple aspects. Given the aging transformer fleet, supply chain challenges, and constrained investment capacity, the adoption of risk-based strategies is essential to support long-term maintenance planning and investment. This paper proposes a multicriteria framework to assess the probability and impact of transformer failure, enabling a more comprehensive and data-driven risk evaluation. The method was applied to a sample fleet, enabling the identification and prioritization of the most critical units through a risk plot. The framework enhances asset management by identifying critical units within a transformer fleet, promoting efficiency, reliability, and long-term planning based on objective risk indicators. Full article
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 232
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 231
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 233
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

37 pages, 863 KiB  
Systematic Review
Sustainable Water Resource Management to Achieve Net-Zero Carbon in the Water Industry: A Systematic Review of the Literature
by Jorge Alejandro Silva
Water 2025, 17(14), 2136; https://doi.org/10.3390/w17142136 - 17 Jul 2025
Viewed by 370
Abstract
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This [...] Read more.
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This paper, using a systematic literature review that complies with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA), aims to propose sustainable water resource management (SWRM) strategies that may assist water utilities in decarbonizing their value chains and achieving net-zero carbon. In total, 31 articles were included from SCOPUS, ResearchGate, ScienceDirect, and Springer. The findings show that water utilities are responsible for 3% of global greenhouse gas emissions and could reduce these emissions by more than 45% by employing a few strategies, including the electrification of transport fleets, the use of renewables, advanced oxidation processes (AOPs) and energy-efficient technologies. A broad-based case study from Scottish Water shows a 254,000-ton CO2 reduction in the period since 2007, indicative of the potential of these measures. The review concludes that net-zero carbon is feasible through a mix of decarbonization, wastewater reuse, smart systems and policy-led innovation, especially if customized to both large and small utilities. To facilitate a wider and a more scalable transition, research needs to focus on development of low-cost and flexible strategies for underserved utilities. Full article
Show Figures

Figure 1

32 pages, 5175 KiB  
Article
Scheduling and Routing of Device Maintenance for an Outdoor Air Quality Monitoring IoT
by Peng-Yeng Yin
Sustainability 2025, 17(14), 6522; https://doi.org/10.3390/su17146522 - 16 Jul 2025
Viewed by 266
Abstract
Air quality monitoring IoT is one of the approaches to achieving a sustainable future. However, the large area of IoT and the high number of monitoring microsites pose challenges for device maintenance to guarantee quality of service (QoS) in monitoring. This paper proposes [...] Read more.
Air quality monitoring IoT is one of the approaches to achieving a sustainable future. However, the large area of IoT and the high number of monitoring microsites pose challenges for device maintenance to guarantee quality of service (QoS) in monitoring. This paper proposes a novel maintenance programming model for a large-area IoT containing 1500 monitoring microsites. In contrast to classic device maintenance, the addressed programming scenario considers the division of appropriate microsites into batches, the determination of the batch maintenance date, vehicle routing for the delivery of maintenance services, and a set of hard constraints such as QoS in air quality monitoring, the maximum number of labor working hours, and an upper limit on the total CO2 emissions. Heuristics are proposed to generate the batches of microsites and the scheduled maintenance date for the batches. A genetic algorithm is designed to find the shortest routes by which to visit the batch microsites by a fleet of vehicles. Simulations are conducted based on government open data. The experimental results show that the maintenance and transportation costs yielded by the proposed model grow linearly with the number of microsites if the fleet size is also linearly related to the microsite number. The mean time between two consecutive cycles is around 17 days, which is generally sufficient for the preparation of the required maintenance materials and personnel. With the proposed method, the decision-maker can circumvent the difficulties in handling the hard constraints, and the allocation of maintenance resources, including budget, materials, and engineering personnel, is easier to manage. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

26 pages, 891 KiB  
Article
Modeling the Interactions Between Smart Urban Logistics and Urban Access Management: A System Dynamics Perspective
by Gaetana Rubino, Domenico Gattuso and Manfred Gronalt
Appl. Sci. 2025, 15(14), 7882; https://doi.org/10.3390/app15147882 - 15 Jul 2025
Viewed by 294
Abstract
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach [...] Read more.
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach to investigate how urban logistics and access management policies may interact. At the center, there is a Causal Loop Diagram (CLD) that illustrates dynamic interdependencies among fleet composition, access regulations, logistics productivity, and environmental externalities. The CLD is a conceptual basis for future stock-and-flow simulations to support data-driven decision-making. The approach highlights the importance of route optimization, dynamic access control, and smart parking management systems as strategic tools, increasingly enabled by Industry 4.0 technologies, such as IoT, big data analytics, AI, and cyber-physical systems, which support real-time monitoring and adaptive planning. In alignment with the Industry 5.0 paradigm, this technological integration is paired with social and environmental sustainability goals. The study also emphasizes public–private collaboration in designing access policies and promoting alternative fuel vehicle adoption, supported by specific incentives. These coordinated efforts contribute to achieving the objectives of the 2030 Agenda, fostering a cleaner, more efficient, and inclusive urban logistics ecosystem. Full article
Show Figures

Figure 1

39 pages, 1775 KiB  
Article
A Survey on UAV Control with Multi-Agent Reinforcement Learning
by Chijioke C. Ekechi, Tarek Elfouly, Ali Alouani and Tamer Khattab
Drones 2025, 9(7), 484; https://doi.org/10.3390/drones9070484 - 9 Jul 2025
Viewed by 1243
Abstract
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned Aerial Vehicles (UAVs). Traditional control techniques often fall short in dynamic, uncertain, or large-scale environments where decentralized decision-making and inter-agent cooperation are crucial. A potentially effective technique used for UAV fleet operation is Multi-Agent Reinforcement Learning (MARL). MARL offers a powerful framework for addressing these challenges by enabling UAVs to learn optimal behaviors through interaction with the environment and each other. Despite significant progress, the field remains fragmented, with a wide variety of algorithms, architectures, and evaluation metrics spread across domains. This survey aims to systematically review and categorize state-of-the-art MARL approaches applied to UAV control, identify prevailing trends and research gaps, and provide a structured foundation for future advancements in cooperative aerial robotics. The advantages and limitations of these techniques are discussed along with suggestions for further research to improve the effectiveness of MARL application to UAV fleet management. Full article
Show Figures

Figure 1

9 pages, 550 KiB  
Case Report
Psychotic Disorder Secondary to Cerebral Venous Thrombosis Caused by Primary Thrombophilia in a Pediatric Patient with Protein S Deficiency and an MTHFR p.Ala222Val Variant: A Case Report
by Darío Martínez-Pascual, Alejandra Dennise Solis-Mendoza, Jacqueline Calderon-García, Bettina Sommer, Eduardo Calixto, María E. Martinez-Enriquez, Arnoldo Aquino-Gálvez, Hector Solis-Chagoyan, Luis M. Montaño, Bianca S. Romero-Martinez, Ruth Jaimez and Edgar Flores-Soto
Hematol. Rep. 2025, 17(4), 34; https://doi.org/10.3390/hematolrep17040034 - 3 Jul 2025
Viewed by 455
Abstract
Background and Clinical Significance: Herein, we describe the clinical case of a 17-year-old patient with psychotic disorder secondary to cerebral venous thrombosis due to primary thrombophilia, which was related to protein S deficiency and a heterozygous MTHFR gene mutation with the p.Ala222Val variant. [...] Read more.
Background and Clinical Significance: Herein, we describe the clinical case of a 17-year-old patient with psychotic disorder secondary to cerebral venous thrombosis due to primary thrombophilia, which was related to protein S deficiency and a heterozygous MTHFR gene mutation with the p.Ala222Val variant. Case presentation: A 17-year-old female, with no history of previous illnesses, was admitted to the emergency service department due to a psychotic break. Psychiatric evaluation detected disorganized thought, euphoria, ideas that were fleeting and loosely associated, psychomotor excitement, and deviant judgment. On the fifth day, an inflammatory process in the parotid gland was detected, pointing out a probable viral meningoencephalitis, prompting antiviral and antimicrobial treatment. One week after antiviral and steroidal anti-inflammatory treatments, the symptoms’ improvement was minimal, which led to further neurological workup. MRI venography revealed a filling defect in the transverse sinus, consistent with cerebral venous thrombosis. Consequently, anticoagulation treatment with enoxaparin was initiated. The patient’s behavior improved, revealing that the encephalopathic symptoms were secondary to thrombosis of the venous sinus. Hematological studies indicated the cause of the venous sinus thrombosis was a primary thrombophilia caused by a heterozygous MTHFR mutation variant p.Ala222Val and a 35% decrease in plasmatic protein S. Conclusions: This case highlights the possible relationship between psychiatric and thrombotic disorders, suggesting that both the MTHFR mutation and protein S deficiency could lead to psychotic disorders. Early detection of thrombotic risk factors in early-onset psychiatric disorders is essential for the comprehensive management of patients. Full article
Show Figures

Figure 1

14 pages, 244 KiB  
Article
How Capital Leases Affect Firm Performance: An Analysis in the Shipping Industry
by Ioannis C. Negkakis
J. Risk Financial Manag. 2025, 18(7), 371; https://doi.org/10.3390/jrfm18070371 - 3 Jul 2025
Viewed by 356
Abstract
This study examines the effects of capital lease arrangements on the operating performance of shipping firms as proxied by Return on Assets (ROA). The maritime industry is highly capital-intensive, often requiring substantial investments in fleet acquisition and maintenance, making ROA particularly relevant as [...] Read more.
This study examines the effects of capital lease arrangements on the operating performance of shipping firms as proxied by Return on Assets (ROA). The maritime industry is highly capital-intensive, often requiring substantial investments in fleet acquisition and maintenance, making ROA particularly relevant as it captures the effectiveness of firms in utilizing their leased and owned assets to generate operating income. As such, many firms rely on lease arrangements to access necessary resources while preserving liquidity and financial flexibility. Using an international sample of 209 shipping firms, we estimate fixed effects regressions to assess the relationship between lease intensity and performance of the shipping firms. The findings reveal that capital lease intensity is positively associated with operating performance, indicating that leasing can be a value-enhancing financing strategy in this sector. However, the performance benefits of capital leases diminish under IFRS 16 reporting, particularly for firms with higher leverage. These findings offer important implications for investors, regulators, and managers evaluating capital structure decisions and financial reporting strategies in capital-intensive industries post-IFRS 16 implementation. Full article
(This article belongs to the Special Issue Bridging Financial Integrity and Sustainability)
18 pages, 5755 KiB  
Proceeding Paper
Rule-Based Decisional Assistance for Sustainable Tire Management in the Transportation Sector
by Issam Mallouk, Fatimaezahraa Aboumejd, Chaima Zormati, Yves Sallez, Badr Abou El Majd, Ali El Oualidi and Mustapha Ahlaqqach
Eng. Proc. 2025, 97(1), 47; https://doi.org/10.3390/engproc2025097047 - 2 Jul 2025
Viewed by 202
Abstract
The transportation sector is considered the number one consumer of tires worldwide. At present, 1.1 billion vehicles relying on this industry, although this number is increasing significantly following supply chain demands and the rapid economic growth. Among the main selection standards for fleet-operating [...] Read more.
The transportation sector is considered the number one consumer of tires worldwide. At present, 1.1 billion vehicles relying on this industry, although this number is increasing significantly following supply chain demands and the rapid economic growth. Among the main selection standards for fleet-operating enterprises are the quality, durability, and sustainability of tires, in efforts to ensure efficiency and safety for continuous operations. Lifecycle assessments (LCAs) are the optimal solution to optimize tire usage for extended performance and increased lifespan. In this paper, we developed a prediction model aiming at managing tires during the middle-of-life phase (use phase) while minimizing the negative environmental impact. Full article
Show Figures

Figure 1

15 pages, 1042 KiB  
Article
Balanced Truck Dispatching Strategy for Inter-Terminal Container Transportation with Demand Outsourcing
by Yucheng Zhao, Yuxiong Ji and Yujing Zheng
Mathematics 2025, 13(13), 2163; https://doi.org/10.3390/math13132163 - 2 Jul 2025
Viewed by 264
Abstract
This study proposes a balanced truck dispatching strategy for inter-terminal transportation (ITT) in large ports, incorporating proactive demand outsourcing to address stochastic and imbalanced ITT demand. A portion of ITT tasks are intentionally outsourced to third-party public trucks at a higher cost, so [...] Read more.
This study proposes a balanced truck dispatching strategy for inter-terminal transportation (ITT) in large ports, incorporating proactive demand outsourcing to address stochastic and imbalanced ITT demand. A portion of ITT tasks are intentionally outsourced to third-party public trucks at a higher cost, so that self-owned trucks can be reserved for more critical tasks. The ITT system is modeled as a closed Jackson network, in which self-owned trucks circulate among terminals and routes. An optimization model is developed to determine the optimal proactive outsourcing ratios for origin–destination terminal pairs and the appropriate fleet size of self-owned trucks, aiming to minimize total transportation costs. Reactive outsourcing is also included to handle occasional truck shortages. A mean value analysis method is used to evaluate system performance with given decisions, and a differential evolution algorithm is employed for optimization. The case study of Shanghai Yangshan Port demonstrates that the proposed strategy reduces total system cost by 9.8% compared to reactive outsourcing. The results also highlight the importance of jointly optimizing outsourcing decisions and fleet size. This study provides theoretical insights and practical guidance for ITT system management under demand uncertainty. Full article
(This article belongs to the Special Issue Queueing Systems Models and Their Applications)
Show Figures

Figure 1

Back to TopTop