Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = fireline evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2563 KiB  
Article
Evaluation of Giant Knotweed Extract, Regalia, and Antibiotics in Control of Shoot Blight and Fire Blight Canker Phases on Apple
by Nathanial Boeckman, Matheus Correa Borba and Srđan G. Aćimović
Agronomy 2024, 14(10), 2216; https://doi.org/10.3390/agronomy14102216 - 26 Sep 2024
Viewed by 1101
Abstract
We evaluated the effectiveness of three different treatment groups at managing apple shoot blight, and the resulting canker incidence and canker length on wood caused by Erwinia amylovora. Preventative foliar sprays or trunk injections of giant knotweed extract (Regalia), oxytetracycline (Arbor-OTC or [...] Read more.
We evaluated the effectiveness of three different treatment groups at managing apple shoot blight, and the resulting canker incidence and canker length on wood caused by Erwinia amylovora. Preventative foliar sprays or trunk injections of giant knotweed extract (Regalia), oxytetracycline (Arbor-OTC or FireLine + Regulaid), or streptomycin (Agri-mycin/FireWall + Regulaid) were applied to mature ‘Fuji’ trees. Regalia and oxytetracycline were ineffective at reducing shoot blight severity, showing poor disease reductions of 18.2% and 24.3% compared to untreated controls across both years. Streptomycin was effective at controlling shoot blight severity when applied as a spray application, reducing necrosis by up to 93.9% across both years. Canker incidence was also poorly reduced by Regalia and oxytetracycline with an average decrease of 33.3% and 52.4%, respectively. Again, spray applications of streptomycin were most effective at reducing canker incidence (95.2%). When present, canker length was best controlled by spray applications of streptomycin, showing an average reduction of 95.7%. The effectiveness of Regalia and oxytetracycline was poor, reducing canker length by only 30.4% and 43.5%, respectively. Trunk injections of Regalia were consistently less effective than spray applications. Compared to their spray application counterpart, Regalia injections were, on average, 12.5%, 26.3%, and 25.1% less effective at reducing shoot blight severity, canker incidence, and canker length, respectively. Injected Arbor-OTC was more effective than spray applications of oxytetracycline. On average, Arbor-OTC injections were up to 28.3%, 40.1%, and 30% more effective at reducing shoot blight severity, canker incidence, and canker length compared to spray applications. Overall, Regalia and oxytetracycline were not as effective as streptomycin at controlling fire blight. The search for organic antibiotic alternatives for shoot blight and canker control continues, as cankers are increasing in economic importance by causing bearing wood and young tree death. Full article
(This article belongs to the Special Issue Detection and Control of Diseases and Pests in Fruits)
Show Figures

Figure 1

24 pages, 6340 KiB  
Article
Characterizing Forest Fuel Properties and Potential Wildfire Dynamics in Xiuwu, Henan, China
by Yan Shi, Changping Feng, Liwei Zhang, Wen Huang, Xin Wang, Shipeng Yang, Weiwei Chen and Wenjie Xie
Fire 2024, 7(1), 7; https://doi.org/10.3390/fire7010007 - 22 Dec 2023
Cited by 4 | Viewed by 2924
Abstract
As global climate change and human activities increasingly influence our world, forest fires have become more frequent, inflicting significant damage to ecosystems. This study conducted measurements of combustible materials (moisture content ratio, ignition point, and calorific value) across 14 representative sites. We employed [...] Read more.
As global climate change and human activities increasingly influence our world, forest fires have become more frequent, inflicting significant damage to ecosystems. This study conducted measurements of combustible materials (moisture content ratio, ignition point, and calorific value) across 14 representative sites. We employed Pearson correlation analysis to ascertain the significant differences in combustible properties and utilized entropy methods to evaluate the fire resistance of materials at these sites. Cluster analysis led to the development of four combustible models. Using BehavePlus software, we simulated their fire behaviors and investigated the effects of wind speed and slope on these behaviors through sensitivity analysis. The results revealed notable differences in the moisture content ratios among different types of combustibles, especially in sites 2, 3, 8, 9, and 13, indicating higher fire risks. It was also found that while humus has a higher ignition point and lower calorific value, making it less prone to ignite, the resultant fires could be highly damaging. The Pearson analysis underscored significant variations in the moisture content ratios among different combustibles, while the differences in ignition points and calorific values were not significant. Sites 5 and 6 demonstrated stronger fire resistance. The simulations indicated that fire-spread speed, fireline intensity, and flame length correlate with, and increase with, wind speed and slope. Sensitivity analysis confirmed the significant influence of these two environmental factors on fire behavior. This study provides critical insights into forest fire behavior, enhancing the capability to predict and manage forest fires. Our findings offer theoretical support for forest fire prediction and a scientific basis for fire management decision-making. Full article
(This article belongs to the Special Issue Forest Fuel Treatment and Fire Risk Assessment)
Show Figures

Figure 1

18 pages, 5724 KiB  
Article
Effects of Prescribed Burning on Surface Dead Fuel and Potential Fire Behavior in Pinus yunnanensis in Central Yunnan Province, China
by Jin Wang, Ruicheng Hong, Cheng Ma, Xilong Zhu, Shiying Xu, Yanping Tang, Xiaona Li, Xiangxiang Yan, Leiguang Wang and Qiuhua Wang
Forests 2023, 14(9), 1915; https://doi.org/10.3390/f14091915 - 20 Sep 2023
Cited by 4 | Viewed by 1871
Abstract
Prescribed burning is a widely used fuel management employed technique to mitigate the risk of forest fires. The Pinus yunnanensis Franch. forest, which is frequently prone to forest fires in southwestern China, serves as a prime example for investigating the effects of prescribed [...] Read more.
Prescribed burning is a widely used fuel management employed technique to mitigate the risk of forest fires. The Pinus yunnanensis Franch. forest, which is frequently prone to forest fires in southwestern China, serves as a prime example for investigating the effects of prescribed burning on the flammability of surface dead fuel. This research aims to establish a scientific foundation for managing dead fuel in forests, as well as fire prevention and control strategies. Field data was collected from P. yunnanensis forests located in central Yunnan Province in 2021 and 2022. The study implemented a randomized complete block design with two blocks and three treatments: an unburned control (UB), one year after the prescribed burning (PB1a), and three years after the prescribed burning (PB3a). These treatments were evaluated based on three indices: surface dead-bed structure, physicochemical properties, and potential fire behavior parameters. To analyze the stand characteristics of the sample plots, a paired t-test was conducted. The results indicated no significant differences in the stand characteristics of P. yunnanensis following prescribed burning (p > 0.05). Prescribed burning led to a significant decrease in the average surface dead fuel load from 10.24 t/ha to 3.70 t/ha, representing a reduction of 63.87%. Additionally, the average fire−line intensity decreased from 454 kw/m to 190 kw/m, indicating a decrease of 58.15%. Despite prescribed burning, there were no significant changes observed in the physical and chemical properties of dead fuels (p > 0.05). However, the bed structure of dead fuels and fire behavior parameters exhibited a significant reduction compared with the control sample site. The findings of this study provide essential theoretical support for the scientific implementation of prescribed burning programs and the accurate evaluation of ecological and environmental effects post burning. Full article
(This article belongs to the Special Issue Fire Ecology and Management in Forest)
Show Figures

Figure 1

15 pages, 2394 KiB  
Article
Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption
by Scott M. Ritter, Chad M. Hoffman, Mike A. Battaglia, Rodman Linn and William E. Mell
Fire 2023, 6(8), 321; https://doi.org/10.3390/fire6080321 - 18 Aug 2023
Cited by 10 | Viewed by 2585
Abstract
A deeper understanding of the influence of fine-scale fuel patterns on fire behavior is essential to the design of forest treatments that aim to reduce fire hazard, enhance structural complexity, and increase ecosystem function and resilience. Of particular relevance is the impact of [...] Read more.
A deeper understanding of the influence of fine-scale fuel patterns on fire behavior is essential to the design of forest treatments that aim to reduce fire hazard, enhance structural complexity, and increase ecosystem function and resilience. Of particular relevance is the impact of horizontal and vertical forest structure on potential tree torching and large-tree mortality. It may be the case that fire behavior in spatially complex stands differs from predictions based on stand-level descriptors of the fuel distribution and structure. In this work, we used a spatially explicit fire behavior model to evaluate how the vertical and horizontal distribution of fuels influences the potential for fire to travel from the surface into overstory tree crowns. Our results support the understanding that crown fuels (e.g., needles and small-diameter branchwood) close to the surface can aid in this transition; however, we add important nuance by showing the interactive effect of overstory horizontal fuel connectivity. The influence of fuels low in the canopy space was overridden by the effect of horizontal connectivity at surface fire-line intensities greater than 1415 kW/m. For example, tree groups with vertically continuous fuels and limited horizontal connectivity sustained less large-tree consumption than tree groups with a significant vertical gap between the surface and canopy but high-canopy horizontal connectivity. This effect was likely the result of reduced net vertical heat transfer as well as decreased horizontal heat transfer, or crown-to-crown spread, in the upper canopy. These results suggest that the crown fire hazard represented by vertically complex tree groups is strongly mediated by the density, or horizontal connectivity, of the tree crowns within the group, and therefore, managers may be able to mitigate some of the torching hazard associated with vertically heterogenous tree groups. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

1 pages, 196 KiB  
Abstract
Combining Wildfire Behaviour Simulations and Connectivity Metrics to Support Wildfire Management
by Bruno A. Aparício, José M. C. Pereira, Francisco C. Santos, Chiara Bruni and Ana C. L. Sá
Environ. Sci. Proc. 2022, 17(1), 66; https://doi.org/10.3390/environsciproc2022017066 - 11 Aug 2022
Viewed by 969
Abstract
The recent extreme wildfire seasons have overwhelmed the fire-suppression capabilities of national authorities, evidencing the need for a paradigm shift in wildfire management. Wildfire spread and behaviour simulations provide relevant information for the assessment of fire hazards and for guiding decision makers in [...] Read more.
The recent extreme wildfire seasons have overwhelmed the fire-suppression capabilities of national authorities, evidencing the need for a paradigm shift in wildfire management. Wildfire spread and behaviour simulations provide relevant information for the assessment of fire hazards and for guiding decision makers in implementing preventive fuel-reduction strategies. In this study, we introduce and combined a new graph-based connectivity index with fire-line intensity to quantify the influence of spatial arrangement of fuels on wildfire hazards. The analysis uses a new connectivity index complemented by well-established graph-based metrics, namely the centrality and size of the largest component. The developed approach was applied to Serra de Monchique, in Southwestern Portugal. Specifically, we used the connectivity metrics to: (i) quantify the effect of fire weather scenarios on fire hazard; and (ii) evaluate the potential effectiveness of local fuel-break networks in decreasing fuel connectivity. Our results show that the combination of new connectivity index and graph-based metrics allow the location of high wildfire and fuel connectivity areas (i.e., fire hubs); and anticipate the locations where wildfire suppression may be compromised under specific fire–weather conditions. We identified the most important fuel-break segments in the north and west of Serra Monchique, particularly in areas covered by eucalyptus plantations and oak woodlands. These highlighted fuel-break segments are the same regardless of the wind directions and fire–weather scenarios considered. We further show that fuel connectivity is sensitive to the planned fuel-reduction strategy and that active fuel management may decrease landscape connectivity during extreme weather conditions to levels of fire intensity similar to those of non-extreme fire–weather scenarios without management. We anticipate that these network metrics will be helpful to both land planners and wildfire researchers seeking to assess different fuel-reduction strategies in fire-prone regions. Full article
(This article belongs to the Proceedings of The Third International Conference on Fire Behavior and Risk)
23 pages, 3694 KiB  
Article
Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality
by Lila Ferrat, Frédéric Morandini and Gauthier Lapa
Forests 2021, 12(7), 915; https://doi.org/10.3390/f12070915 - 14 Jul 2021
Cited by 3 | Viewed by 2762
Abstract
Surface fuel removal is crucial to facilitate the mitigation of severe fires in forests. Prescribed burning is often used by forest managers, thanks to its low cost and high efficiency in hard-to-reach areas. The determination of heat transfer between fires and trees has [...] Read more.
Surface fuel removal is crucial to facilitate the mitigation of severe fires in forests. Prescribed burning is often used by forest managers, thanks to its low cost and high efficiency in hard-to-reach areas. The determination of heat transfer between fires and trees has rarely been carried out on living species and consequently, their long-term effects on tree physiology are still not fully understood. In this study, a multidisciplinary approach was conducted to evaluate the impact of a late spring (June) prescribed burning on a Mediterranean pine forest (Pinus nigra subsp. laricio). The surface fuels consisted of a 656 g m² needle litter, mixed with a few scattered living herbaceous strata. During the fire spread, measurements of the inner and outer trunk temperatures were made at the base of 12 trees with an average bark thickness of 19.4 ± 7.0 mm. The fireline intensity and flame residence time were in the range of 110–160 kW m−1 and 220–468 s, respectively. Despite a maximum heating rate at the cambial area of 4.37 °C min−1, the temperature of these tissues remained below 60 °C, a critical threshold above which thermal damage will occur. In addition, prior- and post-fire physiological monitoring was performed over a long time period (2.5 years) on 24 trees, using sap flow, chlorophyll fluorescence and gas exchange measurements. All parameters remain highly correlated and indicate that the burned trees did not suffer physiological damage. Moreover, drought resistance strategies were not altered by the prescribed burning. The thermal insulation capability of the bark allowed the functional tissues to experience low heat stress that did not affect tree vitality. Full article
Show Figures

Graphical abstract

24 pages, 5470 KiB  
Article
Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal
by Akli Benali, Ana C. L. Sá, João Pinho, Paulo M. Fernandes and José M. C. Pereira
Forests 2021, 12(5), 522; https://doi.org/10.3390/f12050522 - 23 Apr 2021
Cited by 45 | Viewed by 5643
Abstract
The extreme 2017 fire season in Portugal led to widespread recognition of the need for a paradigm shift in forest and wildfire management. We focused our study on Alvares, a parish in central Portugal located in a fire-prone area, which had 60% of [...] Read more.
The extreme 2017 fire season in Portugal led to widespread recognition of the need for a paradigm shift in forest and wildfire management. We focused our study on Alvares, a parish in central Portugal located in a fire-prone area, which had 60% of its area burned in 2017. We evaluated how different fuel treatment strategies may reduce wildfire hazard in Alvares through (i) a fuel break network with different extents corresponding to different levels of priority and (ii) random fuel treatments resulting from a potential increase in stand-level management intensity. To assess this, we developed a stochastic wildfire simulation system (FUNC-SIM) that integrates uncertainties in fuel distribution over the landscape. If the landscape remains unchanged, Alvares will have large burn probabilities in the north, northeast and center-east areas of the parish that are very often associated with high fireline intensities. The different fuel treatment scenarios decreased burned area between 12.1–31.2%, resulting from 1–4.6% increases in the annual treatment area and reduced the likelihood of wildfires larger than 5000 ha by 10–40%. On average, simulated burned area decreased 0.22% per each ha treated, and cost-effectiveness decreased with increasing area treated. Overall, both fuel treatment strategies effectively reduced wildfire hazard and should be part of a larger, holistic and integrated plan to reduce the vulnerability of the Alvares parish to wildfires. Full article
(This article belongs to the Special Issue Engaging Land Owners to Reduce Wildfire Risk at Landscape Level)
Show Figures

Figure 1

10 pages, 2736 KiB  
Proceeding Paper
An Operationally Relevant Framework for Mapping Spot Fire Transmission Potential
by Benjamin M. Gannon, Matthew P. Thompson and Yu Wei
Environ. Sci. Proc. 2021, 3(1), 13; https://doi.org/10.3390/IECF2020-08001 - 12 Nov 2020
Cited by 1 | Viewed by 1715
Abstract
Spotting is an important fire spread mechanism and cause of fireline breaches, yet current models provide only coarse metrics of spotting behavior that are underutilized in fire operations. We developed a spatial framework to quantify and map potential sources and sinks of spot [...] Read more.
Spotting is an important fire spread mechanism and cause of fireline breaches, yet current models provide only coarse metrics of spotting behavior that are underutilized in fire operations. We developed a spatial framework to quantify and map potential sources and sinks of spot fire transmission across control lines, based on models of ember production, ember transport, and receiving fuel bed ignition probability. The framework provides several spatially explicit measures of spotting potential (SP), conditional on fire extent and weather, that are designed to inform control line selection and resource allocation to tasks such as line prep, retardant application, and holding operations. We evaluated the utility of SP using two wildfire case studies with growth episodes attributed to spotting. SP captured the general trends in spotting behavior from these wind-driven fires. In its current form, SP may be useful for relative evaluation of control lines, and to help managers think prescriptively about the control tactics necessary on both the source and receiving sides of control lines to avoid spotting breaches. Future research priorities are refining the component models and empirical calibration of SP to spotting probability. Full article
Show Figures

Figure 1

19 pages, 4594 KiB  
Article
A Geospatial Framework to Assess Fireline Effectiveness for Large Wildfires in the Western USA
by Benjamin M. Gannon, Matthew P. Thompson, Kira Z. Deming, Jude Bayham, Yu Wei and Christopher D. O’Connor
Fire 2020, 3(3), 43; https://doi.org/10.3390/fire3030043 - 18 Aug 2020
Cited by 18 | Viewed by 5488
Abstract
Quantifying fireline effectiveness (FLE) is essential to evaluate the efficiency of large wildfire management strategies to foster institutional learning and improvement in fire management organizations. FLE performance metrics for incident-level evaluation have been developed and applied to a small set of wildfires, but [...] Read more.
Quantifying fireline effectiveness (FLE) is essential to evaluate the efficiency of large wildfire management strategies to foster institutional learning and improvement in fire management organizations. FLE performance metrics for incident-level evaluation have been developed and applied to a small set of wildfires, but there is a need to understand how widely they vary across incidents to progress towards targets or standards for performance evaluation. Recent efforts to archive spatially explicit fireline records from large wildfires facilitate the application of these metrics to a broad sample of wildfires in different environments. We evaluated fireline outcomes (burned over, held, not engaged) and analyzed incident-scale FLE for 33 large wildfires in the western USA from the 2017 and 2018 fire seasons. FLE performance metrics varied widely across wildfires and often aligned with factors that influence suppression strategy. We propose a performance evaluation framework based on both the held to engaged fireline ratio and the total fireline to perimeter ratio. These two metrics capture whether fireline was placed in locations with high probability of engaging with the wildfire and holding and the relative level of investment in containment compared to wildfire growth. We also identify future research directions to improve understanding of decision quality in a risk-based framework. Full article
Show Figures

Figure 1

8 pages, 476 KiB  
Article
Body Composition Changes of United States Smokejumpers during the 2017 Fire Season
by Callie N. Collins, Randall H. Brooks, Benjamin D. Sturz, Andrew S. Nelson and Robert F. Keefe
Fire 2018, 1(3), 48; https://doi.org/10.3390/fire1030048 - 1 Dec 2018
Cited by 5 | Viewed by 5177
Abstract
Wildland firefighting is arduous work with extreme physical and nutritional demands that often exceeds those of athletes competing in sports. The intensity and duration of job demands, impacts the amount of calories burned, which can influence body composition. The purpose of this study [...] Read more.
Wildland firefighting is arduous work with extreme physical and nutritional demands that often exceeds those of athletes competing in sports. The intensity and duration of job demands, impacts the amount of calories burned, which can influence body composition. The purpose of this study was to determine if the body composition of nine wildland firefighters working as smokejumpers changed throughout the 2017 fire season. Subjects (n = 9) for the study ranged in age from 24–49 (age 30.1 ± 8.3 y). Height (177 ± 18.8 cm) and weight (81.32 ± 6.39 kg) was recorded during initial body composition testing and body fat percentage was determined pre and post-season using Lange skinfold calipers. Outcomes were evaluated using a paired t-test. Body fat percentage was significantly different between pre and post-season (average body fat percentage increase = 1.31%; t = 2.31, p = 0.04, alpha = 0.05). Body weight increased slightly from pre to post-season (average increase in body weight: 0.17 kg), although the differences were not significant (t = 2.31, p = 0.78). Change in body fat percentage without change in body weight suggest that monitoring of WLFF body composition and fitness may be needed help inform dietary and fitness interventions to insure that nutritional demands of this population are sufficient to support physical work on the fireline. Full article
Show Figures

Figure 1

Back to TopTop