Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = finite size Lyapunov exponent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14515 KB  
Article
Variable-Step Semi-Implicit Solver with Adjustable Symmetry and Its Application for Chaos-Based Communication
by Vyacheslav Rybin, Ivan Babkin, Yulia Bobrova, Maksim Galchenko, Alexander Mikhailov and Timur Karimov
Mathematics 2025, 13(8), 1229; https://doi.org/10.3390/math13081229 - 9 Apr 2025
Cited by 4 | Viewed by 1100
Abstract
In this article, we introduce a novel approach to numerical integration based on a modified composite diagonal (CD) method, which is a variation of the semi-implicit Euler–Cromer method. This approach enables the finite-difference scheme to maintain the dynamic regime of the solution while [...] Read more.
In this article, we introduce a novel approach to numerical integration based on a modified composite diagonal (CD) method, which is a variation of the semi-implicit Euler–Cromer method. This approach enables the finite-difference scheme to maintain the dynamic regime of the solution while adjusting the integration time step. This makes it possible to implement variable-step integration. We present a variable-step MCD (VS-MCD) version with a simple and stable Hairer step size controller. We show that the VS-MCD method is capable of changing the dynamics of the solution by changing the symmetry coefficient (reflecting the ratio between two internal steps within the composition step), which is useful for tuning the dynamics of the obtained discrete model, with no influence of the appropriate step size. We illustrate the practical application of the developed method by constructing a direct chaotic communication system based on the Sprott Case S chaotic oscillator, demonstrating high values in the largest Lyapunov exponent (LLE). The tolerance parameter of the step size controller is used as the modulation parameter to insert a message into the chaotic time series. Through numerical experiments, we show that the proposed modulation scheme has competitive robustness to noise and return map attacks in comparison with those of modulation methods based on fixed-step solvers. It can also be combined with them to achieve an extended key space. Full article
Show Figures

Figure 1

26 pages, 603 KB  
Review
Chaotic Measures as an Alternative to Spectral Measures for Analysing Turbulent Flow
by Richard D. J. G. Ho, Daniel Clark and Arjun Berera
Atmosphere 2024, 15(9), 1053; https://doi.org/10.3390/atmos15091053 - 30 Aug 2024
Cited by 5 | Viewed by 2120
Abstract
Turbulence has associated chaotic features. In the past couple of decades, there has been growing interest in the study of these features as an alternative means of understanding turbulent systems. Our own input to this effort is in contributing to the initial studies [...] Read more.
Turbulence has associated chaotic features. In the past couple of decades, there has been growing interest in the study of these features as an alternative means of understanding turbulent systems. Our own input to this effort is in contributing to the initial studies of chaos in Eulerian flow using direct numerical simulation (DNS). In this review, we discuss the progress achieved in the turbulence community in understanding chaotic measures including our own work. A central relation between turbulence and chaos is one by Ruelle that connects the maximum Lyapunov exponent and the Reynolds number. The first DNS studies, ours amongst them, in obtaining this relation have shown the viability of chaotic simulation studies of Eulerian flow. Such chaotic measures and associated simulation methodology provides an alternative means to probe turbulent flow. Building on this, we analyze the finite-time Lyapunov exponent (FTLE) and study its fluctuations; we find that chaotic measures could be quantified accurately even at small simulation box sizes where for comparative sizes spectral measures would be inconclusive. We further highlight applications of chaotic measures in analyzing phase transition behavior in turbulent flow and two-dimensional thin-layer turbulent systems. This work shows that chaotic measures are an excellent tool that can be used alongside spectral measures in studying turbulent flow. Full article
(This article belongs to the Special Issue Isotropic Turbulence: Recent Advances and Current Challenges)
Show Figures

Figure 1

22 pages, 7765 KB  
Article
Optimization of Pin Type Single Screw Mixer for Fabrication of Functionally Graded Materials
by Shijie Wang, Jing Zhou and Guolin Duan
Appl. Sci. 2024, 14(3), 1308; https://doi.org/10.3390/app14031308 - 5 Feb 2024
Cited by 1 | Viewed by 2139
Abstract
The direct ink writing (DIW) process, used for creating components with functionally graded materials, holds significant promise for advancement in various advanced fields. However, challenges persist in achieving complex gradient variations in small-sized parts. In this study, we have developed a customized pin [...] Read more.
The direct ink writing (DIW) process, used for creating components with functionally graded materials, holds significant promise for advancement in various advanced fields. However, challenges persist in achieving complex gradient variations in small-sized parts. In this study, we have developed a customized pin shape for an active screw mixer using a combination of quadratic B-Spline, the response surface method, and global optimization. This tailored pin design was implemented in a two-material extrusion-based printing system. The primary objective is to facilitate the transformation of material components with shorter transition distances, overcoming size constraints and enhancing both printing flexibility and resolution. Moreover, we characterized the transition delay time for material component changes and the mixing uniformity of the extruded material by constructing a finite element simulation model based on computational fluid dynamics. Additionally, we employed a particle tracking method to obtain the Lyapunov exponent and Poincaré map of the mixing process. We employed these metrics to represent and compare the degree of chaotic mixing and dispersive mixing ability with two other structurally similar mixers. It was found that the optimized pin-type mixer can reduce the transition delay distance by approximately 30% compared to similar structures. Finally, comparative experiments were carried out to verify the printing performance of the optimized pin-type active mixer and the accuracy of the finite element model. Full article
(This article belongs to the Special Issue Advanced Manufacturing and Precision Machining)
Show Figures

Figure 1

15 pages, 11498 KB  
Article
Lagrangian Coherent Structure Analysis on the Vegetated Compound Channel with Numerical Simulation
by Seongeun Choi and Jin Hwan Hwang
Water 2022, 14(3), 406; https://doi.org/10.3390/w14030406 - 28 Jan 2022
Cited by 2 | Viewed by 3241
Abstract
Natural channels often consist of a mainstream near their thalwegs and shallow vegetated areas near shores. The compounded and partially vegetated cross-sections play a significantly role in determining the hydrodynamic characteristics of a channel. By employing the Lagrangian Coherent Structure (LCS) analysis, the [...] Read more.
Natural channels often consist of a mainstream near their thalwegs and shallow vegetated areas near shores. The compounded and partially vegetated cross-sections play a significantly role in determining the hydrodynamic characteristics of a channel. By employing the Lagrangian Coherent Structure (LCS) analysis, the present work unravels the effect of vegetation and geometry on the hydrodynamic interactions between mainstreams with the various depths and vegetated shallow areas. The LCS method is the concept of dynamical system analyses, which is determined by the finite-time Lyapunov exponents (FTLE) field of fluid particles. It enables to overcome the limitations of using the particle tracking method in cost and time for simulations. Since the LCSs represent material surfaces or asymptotic lines which particles approach, but do not pass through, they match well with the trajectories of particles or materials obtained by solving particle motion equations. Therefore, the temporal and spatial developments of the interfacial layers could be investigated by using the FTLE. As the difference of depth becomes appreciable, the values of FTLE are relatively larger farther from the vegetated area. It implies that the interfacial layer becomes wider with the larger size of vortex produced by the differences of velocities between the mainstreams and the vegetated areas. In other words, as depth differences become large, materials and momentum can be spread from the vegetated area to or collected from a wider area of the mainstream. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

13 pages, 3998 KB  
Article
The Finite Size Lyapunov Exponent and the Finite Amplitude Growth Rate
by Thomas Meunier and J. H. LaCasce
Fluids 2021, 6(10), 348; https://doi.org/10.3390/fluids6100348 - 2 Oct 2021
Cited by 5 | Viewed by 4349
Abstract
The finite size Lyapunov exponent (FSLE) has been used extensively since the late 1990s to diagnose turbulent regimes from Lagrangian experiments and to detect Lagrangian coherent structures in geophysical flows and two-dimensional turbulence. Historically, the FSLE was defined in terms of its computational [...] Read more.
The finite size Lyapunov exponent (FSLE) has been used extensively since the late 1990s to diagnose turbulent regimes from Lagrangian experiments and to detect Lagrangian coherent structures in geophysical flows and two-dimensional turbulence. Historically, the FSLE was defined in terms of its computational method rather than via a mathematical formulation, and the behavior of the FSLE in the turbulent inertial ranges is based primarily on scaling arguments. Here, we propose an exact definition of the FSLE based on conditional averaging of the finite amplitude growth rate (FAGR) of the particle pair separation. With this new definition, we show that the FSLE is a close proxy for the inverse structural time, a concept introduced a decade before the FSLE. The (in)dependence of the FSLE on initial conditions is also discussed, as well as the links between the FAGR and other relevant Lagrangian metrics, such as the finite time Lyapunov exponent and the second-order velocity structure function. Full article
(This article belongs to the Special Issue Instabilities and Nonlinear Dynamics in Oceanic Flows)
Show Figures

Figure 1

16 pages, 7726 KB  
Article
Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data
by Tung-Yao Hsu, Yi Chang, Ming-An Lee, Ren-Fen Wu and Shih-Chun Hsiao
Remote Sens. 2021, 13(5), 861; https://doi.org/10.3390/rs13050861 - 25 Feb 2021
Cited by 54 | Viewed by 8069
Abstract
Skipjack tuna are the most abundant commercial species in Taiwan’s pelagic purse seine fisheries. However, the rapidly changing marine environment increases the challenge of locating target fish in the vast ocean. The aim of this study was to identify the potential fishing grounds [...] Read more.
Skipjack tuna are the most abundant commercial species in Taiwan’s pelagic purse seine fisheries. However, the rapidly changing marine environment increases the challenge of locating target fish in the vast ocean. The aim of this study was to identify the potential fishing grounds of skipjack tuna in the Western and Central Pacific Ocean (WCPO). The fishing grounds of skipjack tuna were simulated using the habitat suitability index (HSI) on the basis of global fishing activities and remote sensing data from 2012 to 2015. The selected environmental factors included sea surface temperature and front, sea surface height, sea surface salinity, mixed layer depth, chlorophyll a concentration, and finite-size Lyapunov exponents. The final input factors were selected according to their percentage contribution to the total efforts. Overall, 68.3% of global datasets and 35.7% of Taiwanese logbooks’ fishing spots were recorded within 5 km of suitable habitat in the daily field. Moreover, 94.9% and 79.6% of global and Taiwan data, respectively, were identified within 50 km of suitable habitat. Our results showed that the model performed well in fitting daily forecast and actual fishing position data. Further, results from this study could benefit habitat monitoring and contribute to managing sustainable fisheries for skipjack tuna by providing wide spatial coverage information on habitat variation. Full article
(This article belongs to the Special Issue Optical Oceanographic Observation)
Show Figures

Figure 1

23 pages, 22148 KB  
Article
Altimetry-Based Diagnosis of Deep-Reaching Sub-Mesoscale Ocean Fronts
by Lia Siegelman, Patrice Klein, Andrew F. Thompson, Hector S. Torres and Dimitris Menemenlis
Fluids 2020, 5(3), 145; https://doi.org/10.3390/fluids5030145 - 28 Aug 2020
Cited by 20 | Viewed by 4739
Abstract
Recent studies demonstrate that energetic sub-mesoscale fronts (10–50 km width) extend in the ocean interior, driving large vertical velocities and associated fluxes. However, diagnosing the dynamics of these deep-reaching fronts from in situ observations remains challenging because of the lack of information on [...] Read more.
Recent studies demonstrate that energetic sub-mesoscale fronts (10–50 km width) extend in the ocean interior, driving large vertical velocities and associated fluxes. However, diagnosing the dynamics of these deep-reaching fronts from in situ observations remains challenging because of the lack of information on the 3-D structure of the horizontal velocity. Here, a realistic numerical simulation in the Antarctic Circumpolar Current (ACC) is used to study the dynamics of submesocale fronts in relation to velocity gradients, responsible for the formation of these fronts. Results highlight that the stirring properties of the flow at depth, which are related to the velocity gradients, can be inferred from finite-size Lyapunov exponent (FSLE) at the surface. Satellite altimetry observations of FSLE and velocity gradients are then used in combination with recent in situ observations collected by an elephant seal in the ACC to reconstruct frontal dynamics and their associated vertical velocities down to 500 m. The approach proposed here is well suited for the analysis of sub-mesoscale-resolving datasets and the design of future sub-mesoscale field campaigns. Full article
(This article belongs to the Special Issue Submesoscale Processes in the Ocean)
Show Figures

Figure 1

Back to TopTop