Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = fiber-optic magnetometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6376 KiB  
Article
Components for an Inexpensive CW-ODMR NV-Based Magnetometer
by André Bülau, Daniela Walter and Karl-Peter Fritz
Magnetism 2025, 5(3), 18; https://doi.org/10.3390/magnetism5030018 - 1 Aug 2025
Viewed by 377
Abstract
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and [...] Read more.
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and expensive detectors, such as Avalanche photodiodes or single photon detectors, overall, leading to custom and expensive setups. In order to provide an inexpensive NV-based magnetometer setup for educational use in schools, to teach the three topics, fluorescence, optically detected magnetic resonance, and Zeeman splitting, inexpensive, miniaturized, off-the-shelf components with high reliability have to be used. The cheaper such a setup, the more setups a school can afford. Hence, in this work, we investigated LEDs as light sources, considered different diamonds for our setup, tested different color filters, proposed an inexpensive microwave resonator, and used a cheap photodiode with an appropriate transimpedance amplifier as the basis for our quantum magnetometer. As a result, we identified cheap and functional components and present a setup and show that it can demonstrate the three topics mentioned at a hardware cost <EUR 100. Full article
Show Figures

Figure 1

14 pages, 7312 KiB  
Article
Application and Performance Improvement of an Optical Power Stabilization System Based on MEMS-LCVR in a SERF Atomic Magnetometer
by Yitong Li, Wenfei Zhang, Jianqi Yang, Ying Liu and Yueyang Zhai
Photonics 2025, 12(6), 573; https://doi.org/10.3390/photonics12060573 - 6 Jun 2025
Viewed by 386
Abstract
A stabilization method utilizing MEMS technology combined with a liquid crystal variable retarder (LCVR) was developed to enhance fiber laser output power stability and was applied to a spin-exchange relaxation-free (SERF) atomic magnetometer. Comparative experiments demonstrated that the unstabilized laser output exhibited [...] Read more.
A stabilization method utilizing MEMS technology combined with a liquid crystal variable retarder (LCVR) was developed to enhance fiber laser output power stability and was applied to a spin-exchange relaxation-free (SERF) atomic magnetometer. Comparative experiments demonstrated that the unstabilized laser output exhibited 2.8% power fluctuations over a 500 s period, while the stabilized laser reduced this to 0.2%. Spectral density analysis confirmed suppressed frequency-domain fluctuations, indicating improved robustness against disturbances. Furthermore, the stabilized laser also reduced optical noise in SERF magnetometry, achieving a sensitivity of 19.2fT/Hz1/2. These results validate that the method optimizes both time- and frequency-domain performance, thereby advancing high-precision SERF magnetometry. Full article
Show Figures

Figure 1

15 pages, 5697 KiB  
Article
The Lumped-Parameter Calorimetric Model of an AC Magnetometer Designed to Measure the Heating of Magnetic Nanoparticles
by Mateusz Midura, Waldemar T. Smolik, Przemysław Wróblewski, Damian Wanta, Grzegorz Domański, Xiaohan Hou, Xiaoheng Yan and Mikhail Ivanenko
Appl. Sci. 2025, 15(6), 3199; https://doi.org/10.3390/app15063199 - 14 Mar 2025
Viewed by 638
Abstract
The assessment of superparamagnetic nanoparticle heating is crucial for effective hyperthermia. AC magnetometry can be used to determine the specific absorption rate (SAR) of nanoparticles, assuming proper calorimetric calibration. We show that an AC magnetometer developed in our laboratory can be used simultaneously [...] Read more.
The assessment of superparamagnetic nanoparticle heating is crucial for effective hyperthermia. AC magnetometry can be used to determine the specific absorption rate (SAR) of nanoparticles, assuming proper calorimetric calibration. We show that an AC magnetometer developed in our laboratory can be used simultaneously as a calorimeter for calibrating measurements. An electrical circuit with lumped parameters that are equivalent to the non-adiabatic calorimeter and that incorporates the effects of heat flow from the excitation coil, the surrounding environment, and the sample is presented. Quantitative thermal system identification was performed using global optimization, which fitted the temperature measured by the three fiber-optic probes to the simulated temperature transient curves. The identified model was used to estimate the thermal power generated in the measurement sample using a resistor with a controlled current value. The results demonstrate significant error reduction, particularly at lower heating powers, where external heat transfer becomes more influential. At low heating power values (around 25 mW), the error was reduced from 16.09% to 2.36%, with less pronounced improvements at higher power levels. The model achieved an overall accuracy of less than 2.5% across the 20–200 mW calibration range, a substantial improvement over the corrected-slope method. The value of the true thermal power of nanoparticles can be obtained using the calibrated calorimeter. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

10 pages, 4067 KiB  
Article
An Intensity-Demodulated Fiber-Optic Magnetometer Based on Nanostructured Magnetic Fluid-Filled Fluidic Photonic Crystal Fibers
by Liangquan Zhu, Huan Wang, Qijing Lin, Kun Yao, Dan Xian, Ping Yang, Na Zhao, Bian Tian and Zhuangde Jiang
Nanomaterials 2024, 14(2), 221; https://doi.org/10.3390/nano14020221 - 19 Jan 2024
Cited by 1 | Viewed by 1829
Abstract
An intensity-demodulated fiber-optic magnetometer is proposed and experimentally investigated, which is fabricated via fusion splicing a segment of photonic crystal fiber (PCF) between single-mode fibers (SMFs), with the cladding air holes of PCF filled with magnetic fluid. Using the magneto-optical properties of the [...] Read more.
An intensity-demodulated fiber-optic magnetometer is proposed and experimentally investigated, which is fabricated via fusion splicing a segment of photonic crystal fiber (PCF) between single-mode fibers (SMFs), with the cladding air holes of PCF filled with magnetic fluid. Using the magneto-optical properties of the magnetic fluid, the transmission spectrum is changed with an external magnetic field. Based on the intensity variations in the transmission spectrum, the magnetic field is detected, and a sensitivity of 0.238 dB/mT is obtained at 1550.03 nm with the length of PCF 5.5 cm. By converting light signals into electrical signals, a sensitivity of 0.003 V/mT is achieved. The fiber-optic magnetometer possesses the advantages of simple fabrication, compact/robust structure, and low cost. Full article
Show Figures

Figure 1

11 pages, 3414 KiB  
Article
All Fiber Vector Magnetometer Based on Nitrogen-Vacancy Center
by Man Zhao, Qijing Lin, Qingzhi Meng, Wenjun Shan, Liangquan Zhu, Yao Chen, Tao Liu, Libo Zhao and Zhuangde Jiang
Nanomaterials 2023, 13(5), 949; https://doi.org/10.3390/nano13050949 - 6 Mar 2023
Cited by 10 | Viewed by 5246
Abstract
Magnetometers based on nitrogen-vacancy (NV) centers in diamonds have promising applications in fields of living systems biology, condensed matter physics, and industry. This paper proposes a portable and flexible all-fiber NV center vector magnetometer by using fibers to substitute all conventional spatial optical [...] Read more.
Magnetometers based on nitrogen-vacancy (NV) centers in diamonds have promising applications in fields of living systems biology, condensed matter physics, and industry. This paper proposes a portable and flexible all-fiber NV center vector magnetometer by using fibers to substitute all conventional spatial optical elements, realizing laser excitation and fluorescence collection of micro-diamond with multi-mode fibers simultaneously and efficiently. An optical model is established to investigate multi-mode fiber interrogation of micro-diamond to estimate the optical performance of NV center system. A new analysis method is proposed to extract the magnitude and direction of the magnetic field, combining the morphology of the micro-diamond, thus realizing μm-scale vector magnetic field detection at the tip of the fiber probe. Experimental testing shows our fabricated magnetometer has a sensitivity of 0.73 nT/Hz1/2, demonstrating its feasibility and performance in comparison with conventional confocal NV center magnetometers. This research presents a robust and compact magnetic endoscopy and remote-magnetic measurement approach, which will substantially promote the practical application of magnetometers based on NV centers. Full article
Show Figures

Figure 1

10 pages, 6275 KiB  
Article
Design of a Fiber Alkali Vapor Cell for Atomic Magnetometer for Magnetoencephalography Applications
by Xuejing Liu, Yanhui Hu, Yang Li, Xudong Wu, Min Chang and Xuedian Zhang
Photonics 2022, 9(10), 749; https://doi.org/10.3390/photonics9100749 - 10 Oct 2022
Cited by 1 | Viewed by 2549
Abstract
Spin exchange relaxation free (SERF) atomic magnetometer (AM), based on the Larmor precession of alkali atoms, is considered a promising candidate for magnetoencephalography (MEG) systems with the advantages of high sensitivity and no need for cryogenic devices. The footprint of the sensor header [...] Read more.
Spin exchange relaxation free (SERF) atomic magnetometer (AM), based on the Larmor precession of alkali atoms, is considered a promising candidate for magnetoencephalography (MEG) systems with the advantages of high sensitivity and no need for cryogenic devices. The footprint of the sensor header contains alkali vapor cell and bulk optical elements determining the spatial resolution of the MEG system. Optical fiber could separate the vapor cell far from other parts of the sensor header to improve the spatial resolution. However, coupling between glass cell and fibers limits the coupling loss of the light. Here, we describe the design of a fiber-based alkali vapor cell that could alleviate these issues. A pair of fiber cables combining a polarization maintaining fiber (PMF) and hollow-core photonic crystal fibers (HC-PCFs) are enclosed in a vacuum-sealed T-shape glass tube filled with alkali atoms. The fiber cell ensures a flexible integration with most fiber systems. The fiber structure, with an air gap between HC-PCFs, provides a large interaction volume between light and atoms. The vapor of the alkali atoms diffuses into the air core of the HC-PCF from the glass tube by heating. The alkali atoms still contained in SERF regime are within the wall relaxation rates of 12,764 s−1 in the coating fiber cell. The insertion loss due to fiber coupling is analyzed. The coupling efficiency could be 91%, with the fiber structure consisting of a 40 μm diameter HC-PCF and a 1 mm air gap. The limit sensitivity under this condition is simulated at 14.7 fT/Hz1/2. The fabrication technique and the light insertion loss are discussed. The fiber alkali vapor cell is of compact size and has flexible integration with the fiber atomic spin precession detection system. Full article
Show Figures

Figure 1

10 pages, 2848 KiB  
Article
Temperature Fluctuations Compensation with Multi-Frequency Synchronous Manipulation for a NV Magnetometer in Fiber-Optic Scheme
by Ning Zhang, Qiang Guo, Wen Ye, Rui Feng and Heng Yuan
Sensors 2022, 22(14), 5218; https://doi.org/10.3390/s22145218 - 12 Jul 2022
Cited by 4 | Viewed by 2278
Abstract
Nitrogen-vacancy (NV) centers in diamonds play a large role in advanced quantum sensing with solid-state spins for potential miniaturized and portable application scenarios. With the temperature sensitivity of NV centers, the temperature fluctuations caused by the unknown environment and the system itself will [...] Read more.
Nitrogen-vacancy (NV) centers in diamonds play a large role in advanced quantum sensing with solid-state spins for potential miniaturized and portable application scenarios. With the temperature sensitivity of NV centers, the temperature fluctuations caused by the unknown environment and the system itself will mix with the magnetic field measurement. In this research, the temperature-sensitive characteristics of different diamonds, alongside the temperature noise generated by a measurement system, were tested and analyzed with a homemade NV magnetometer in a fiber-optic scheme. In this work, a multi-frequency synchronous manipulation method for resonating with the NV centers in all axial directions was proposed to compensate for the temperature fluctuations in a fibered NV magnetic field sensing scheme. The symmetrical features of the resonance lines of the NV centers, the common-mode fluctuations including temperature fluctuations, underwent effective compensation and elimination. The fluorescence change was reduced to 1.0% by multi-frequency synchronous manipulation from 5.5% of the single-frequency manipulation within a ±2 °C temperature range. Additionally, the multi-frequency synchronous manipulation improved the fluorescence contrast and the magnetic field measurement SNR through an omnidirectional manipulation scheme. It was very important to compensate for the temperature fluctuations, caused by both internal and external factors, to make use of the NV magnetometer in fiber-optic schemes’ practicality. This work will promote the rapid development and widespread applications of quantum sensing based on various systems and principles. Full article
(This article belongs to the Topic Advance and Applications of Fiber Optic Measurement)
Show Figures

Figure 1

Back to TopTop