Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = fiber-optic dosimeter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1952 KiB  
Article
Real-Time Dose Measurement in Brachytherapy Using Scintillation Detectors Based on Ce3+-Doped Garnet Crystals
by Sandra Witkiewicz-Łukaszek, Bogna Sobiech, Janusz Winiecki and Yuriy Zorenko
Crystals 2025, 15(8), 669; https://doi.org/10.3390/cryst15080669 - 23 Jul 2025
Viewed by 222
Abstract
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized [...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Zeff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm3; Zeff = 35), LuAG:Ce (ρ = 6.75 g/cm3; Zeff = 63), and GAGG:Ce (ρ = 6.63 g/cm3; Zeff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Zeff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the 192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied. Full article
(This article belongs to the Special Issue Recent Advances in Scintillator Materials)
Show Figures

Figure 1

22 pages, 10786 KiB  
Article
Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation
by Junyu Hou, Zhanzu Feng, Ge Ma, Weiwei Zhang, Zong Meng and Yuhe Li
Sensors 2025, 25(12), 3716; https://doi.org/10.3390/s25123716 - 13 Jun 2025
Viewed by 522
Abstract
Current research on dosimeters based on radiation-induced attenuation (RIA) primarily focused on enhancing radiation sensitivity or reducing dependencies from interference factors. However, their intrinsic sensing performance has received limited attention. This work proposed application and analysis methods for RIA-based dosimeters, validated by a [...] Read more.
Current research on dosimeters based on radiation-induced attenuation (RIA) primarily focused on enhancing radiation sensitivity or reducing dependencies from interference factors. However, their intrinsic sensing performance has received limited attention. This work proposed application and analysis methods for RIA-based dosimeters, validated by a low-cost apparatus using commercial fibers. Initially, a generic protocol of high-dose detection after low-dose calibration was suggested to overcome the various dependencies of RIA, enabling repetitive monitoring of near-stable radiation by simple replacement of commercial fibers. Experiments comparing three dose-loss models demonstrated that the saturation-exponential model exhibited superior accuracy, achieving absolute errors below 4 Gy within a measurable range of up to ~300 Gy. Subsequently, the system’s RIA-based sensitivity was ~125.6 dB·Gy−1·km−1. The resolution and sensitivity expressed by optical power were newly defined, effectively quantifying the decline in precision and response ratio during detection. Moreover, an additional structure was introduced to extend the measurable range. Simulations and experiments under 1-MeV electron irradiation verified that adjustable ranges could be achieved through configuration of attenuation layers. In summary, these advancements provided critical guidance for component selection and operational evaluation, facilitating the commercialization and practical deployment of RIA-based dosimeters. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments: 2nd Edition)
Show Figures

Figure 1

13 pages, 3539 KiB  
Article
Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy
by Jeongho Kim, Jeehoon Park, Byungdo Park, Yonghoon Kim, Beomjun Park and So Hyun Park
Sensors 2025, 25(3), 857; https://doi.org/10.3390/s25030857 - 31 Jan 2025
Cited by 3 | Viewed by 990
Abstract
Existing dosimeters for radiation therapy are typically large, and their performance in in vivo system applications has not been assessed. This study develops a compact real-time dosimeter using silicon photomultipliers, plastic scintillators, and optical fibers and evaluates its in vivo applicability for radiation [...] Read more.
Existing dosimeters for radiation therapy are typically large, and their performance in in vivo system applications has not been assessed. This study develops a compact real-time dosimeter using silicon photomultipliers, plastic scintillators, and optical fibers and evaluates its in vivo applicability for radiation therapy. Dose calibration, dose-rate dependency and linearity, and short-term repeatability tests were conducted using solid water phantoms and bolus materials, and in vivo dosimetry was performed using an in-house phantom. The characterization evaluation results showed high linearity, with a coefficient of determination of 0.9995 for dose rates of 100–600 monitoring units (MU)/min, confirming an error rate within 2% when converted to dosage. In the short-term repeatability tests, the dosimeter exhibited good characteristics, with relative standard deviation (RSD) values lower than 2% for each beam delivery and an RSD value of 0.03% over ten beam deliveries. Dose measurements using the phantom indicated an average error rate of 3.83% compared to the values calculated using the treatment planning system. These results demonstrate a performance comparable to that of commercial metal-oxide-semiconductor field-effect transistors and plastic scintillator-based dosimeters. Based on these findings, the developed dosimeter has significant potential for in vivo radiation therapy applications. Full article
(This article belongs to the Special Issue Advanced Silicon Photomultiplier Based Sensors)
Show Figures

Figure 1

14 pages, 2913 KiB  
Article
Photobleaching Effect on the Sensitivity Calibration at 638 nm of a Phosphorus-Doped Single-Mode Optical Fiber Dosimeter
by Fiammetta Fricano, Adriana Morana, Martin Roche, Alberto Facchini, Gilles Mélin, Florence Clément, Nicolas Balcon, Julien Mekki, Emmanuel Marin, Youcef Ouerdane, Aziz Boukenter, Thierry Robin and Sylvain Girard
Sensors 2024, 24(17), 5547; https://doi.org/10.3390/s24175547 - 27 Aug 2024
Cited by 1 | Viewed by 1046
Abstract
We investigated the influence of the photobleaching (PB) effect on the dosimetry performances of a phosphosilicate single-mode optical fiber (core diameter of 6.6 µm) operated at 638 nm, within the framework of the LUMINA project. Different irradiation tests were performed under ~40 keV [...] Read more.
We investigated the influence of the photobleaching (PB) effect on the dosimetry performances of a phosphosilicate single-mode optical fiber (core diameter of 6.6 µm) operated at 638 nm, within the framework of the LUMINA project. Different irradiation tests were performed under ~40 keV mean energy fluence X-rays at a 530 µ Gy(SiO2)/s dose rate to measure in situ the radiation-induced attenuation (RIA) growth and decay kinetics while injecting a 638 nm laser diode source with powers varying from 500 nW to 1 mW. For injected continuous power values under 1 µW, we did not measure any relevant influence of the photobleaching effect on the fiber radiation sensitivity coefficient of ~140 dB km−1 Gy−1 up to ~30 Gy. Above 1 µW, the fiber radiation sensitivity is significantly reduced due to the PB associated with the signal and can decrease to ~80 dB km−1 Gy−1 at 1 mW, strongly affecting the capability of this fiber to serve as a dosimeter-sensitive element. Higher power values up to 50 µW can still be used by properly choosing a pulsed regime with periodic injection cycles to reduce the PB efficiency and maintain the dosimetry properties. Basing on the acquired data, a simple model of the photobleaching effect on a coil of the investigated fiber is proposed in order to estimate its sensitivity coefficient evolution as a function of the cumulated dose and its fiber length when injecting a certain laser power. Additional studies need to investigate the influence of the temperature and the dose rate on the PB effects since these parameters were fixed during all the reported acquisitions. Full article
(This article belongs to the Special Issue Feature Papers in Sensing and Imaging 2024)
Show Figures

Figure 1

15 pages, 6344 KiB  
Article
A Fiber-Optical Dosimetry Sensor for Gamma-Ray Irradiation Measurement in Biological Applications
by Adel Shaaban Awad Elsharkawi, Huda A. Alazab, Mahmoud Sayed, Mostafa A. Askar, Ibrahim Y. Abdelrahman, Amany A. Arafa, Hassan I. Saleh, Lotfy R. Gomaa and Yi-Chun Du
Biosensors 2023, 13(12), 1010; https://doi.org/10.3390/bios13121010 - 3 Dec 2023
Cited by 1 | Viewed by 2325
Abstract
In this paper, we propose a novel fiber-optical dosimetry sensor for radiation measurement in biological applications. A two-dimensional (2D) fiber-optical dosimeter (FOD) for radiation measurement is considered. The sensors are arranged as a 2D array in a tailored holder. This FOD targets accurate [...] Read more.
In this paper, we propose a novel fiber-optical dosimetry sensor for radiation measurement in biological applications. A two-dimensional (2D) fiber-optical dosimeter (FOD) for radiation measurement is considered. The sensors are arranged as a 2D array in a tailored holder. This FOD targets accurate industrial and medical applications which seek more tolerant radiation dosimeters. In this paper, the FOD sensors are subjected to gamma-ray radiation facilities from the 137Cs gamma-ray irradiator type for low doses and 60Co gamma-ray irradiator for high doses. For better evaluation of radiation effects on the FOD sample, the measurements are performed using eight sensors (hollow cylinder shape) with two samples in each dose. The sensors were measured before and after each irradiation. To the author’s knowledge, the measurements of FOD transplanted inside animals are presented for the first time in this paper. A 2D simulation program has been implemented for numerical simulation based on the attenuation factors from the absorbed dose inside the in vivo models. A comparison between the FOD and the standard thermo-luminescence detector is presented based on the test of in vivo animal models. The results indicate that the proposed FOD sensor is more stable and has higher sensitivity. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Graphical abstract

14 pages, 3976 KiB  
Article
Evaluation of a Scintillating Plastic Optical Fiber Device for Measuring kV-Cone Beam Computed Tomography Dose
by Christian Popotte, Romain Letellier, Didier Paul, Alexandre Waltener, Nicolas Guillochon, Mélodie Munier and Paul Retif
Sensors 2023, 23(18), 7778; https://doi.org/10.3390/s23187778 - 9 Sep 2023
Cited by 2 | Viewed by 1609
Abstract
Background: Justification of imaging procedures such as cone beam computed tomography (CBCT) in radiotherapy makes no doubt. However, the CBCT composite dose is rarely reported or optimized, even though the repeated CBCT cumulative dose can be up to 3% of the prescription dose. [...] Read more.
Background: Justification of imaging procedures such as cone beam computed tomography (CBCT) in radiotherapy makes no doubt. However, the CBCT composite dose is rarely reported or optimized, even though the repeated CBCT cumulative dose can be up to 3% of the prescription dose. This study aimed to evaluate the performance and utility of a new plastic scintillating optical fiber dosimeter for CBCT dosimetric quality assurance (QA) applications before a potential application in patient composite CBCT dosimetry. Methods: The dosimeter, made of 1 mm diameter plastic fiber, was installed under a linear accelerator treatment table and linked to photodetectors. The fiber impact on the fluence and dose delivered was respectively assessed with an electronic portal imaging device (EPID) and EBT3 Gafchromic® film. The presence of artifacts was visually evaluated on kV images. The dosimeter performances were determined for various acquisition parameters by comparison with ionization chamber values. Results: The maximum impact of the fiber on the fluence measured by the EPID was −1.2% for the 6 MV flattening filter-free beam. However, the fiber did not alter the film dose profile when measured for all the beams tested. The fiber was not visible at energies ≥ 80 kV and was merely visible on the CBCT images. When the rate of images per second or mA was changed, the maximum relative difference between the device and the ionization chamber CTDIs was <5%. Changing collimation led to a −7.2% maximum relative difference with an absolute dose difference that was insignificant (−0.3 mGy). Changing kV was associated with a −8.7% maximum relative difference, as published in the literature. Conclusions: The dosimeter may be a promising device for CBCT recurrent dosimetry quality control or dose optimization. According to these results, further developments are in progress in order to adapt the solution to the measurement of patient composite CBCT doses. Full article
(This article belongs to the Special Issue Developments and Applications of Optical Fiber Sensors)
Show Figures

Figure 1

17 pages, 4164 KiB  
Article
Simulation and Optimization of Optical Fiber Irradiation with X-rays at Different Energies
by Arnaud Meyer, Damien Lambert, Adriana Morana, Philippe Paillet, Aziz Boukenter and Sylvain Girard
Radiation 2023, 3(1), 58-74; https://doi.org/10.3390/radiation3010006 - 20 Mar 2023
Cited by 22 | Viewed by 3833
Abstract
We investigated the influence of modifying the voltage of an X-ray tube with a tungsten anode between 30 kV and 225 kV, and therefore its photon energy spectrum (up to 225 keV), on the Total Ionizing Dose deposited in a single-mode, phosphorus-doped optical [...] Read more.
We investigated the influence of modifying the voltage of an X-ray tube with a tungsten anode between 30 kV and 225 kV, and therefore its photon energy spectrum (up to 225 keV), on the Total Ionizing Dose deposited in a single-mode, phosphorus-doped optical fiber, already identified as a promising dosimeter. Simulation data, obtained using a toolchain combining SpekPy and Geant4 software, are compared to experimental results obtained on this radiosensitive optical fiber and demonstrate an increase of the deposited dose with operating voltage, at a factor of 4.5 between 30 kV and 225 kV, while keeping the same operating current of 20 mA. Analysis of simulation results shows that dose deposition in such optical fibers is mainly caused by the low-energy part of the spectrum, with 90% of the deposited energy originating from photons with an energy below 30 keV. Comparison between simulation and various experimental measurements indicates that phosphosilicate fibers are adapted for performing X-ray dosimetry at different voltages. Full article
Show Figures

Figure 1

11 pages, 2214 KiB  
Article
Optical Fibers as Dosimeter Detectors for Mixed Proton/Neutron Fields—A Biological Dosimeter
by Jana Niedermeier, Crystal Penner, Samuel Usherovich, Camille Bélanger-Champagne, Elisabeth Paulssen and Cornelia Hoehr
Electronics 2023, 12(2), 324; https://doi.org/10.3390/electronics12020324 - 8 Jan 2023
Cited by 3 | Viewed by 2058
Abstract
In recent years, proton therapy has gained importance as a cancer treatment modality due to its conformality with the tumor and the sparing of healthy tissue. However, in the interaction of the protons with the beam line elements and patient tissues, potentially harmful [...] Read more.
In recent years, proton therapy has gained importance as a cancer treatment modality due to its conformality with the tumor and the sparing of healthy tissue. However, in the interaction of the protons with the beam line elements and patient tissues, potentially harmful secondary neutrons are always generated. To ensure that this neutron dose is as low as possible, treatment plans could be created to also account for and minimize the neutron dose. To monitor such a treatment plan, a compact, easy to use, and inexpensive dosimeter must be developed that not only measures the physical dose, but which can also distinguish between proton and neutron contributions. To that end, plastic optical fibers with scintillation materials (Gd2O2S:Tb, Gd2O2S:Eu, and YVO4:Eu) were irradiated with protons and neutrons. It was confirmed that sensors with different scintillation materials have different sensitivities to protons and neutrons. A combination of these three scintillators can be used to build a detector array to create a biological dosimeter. Full article
(This article belongs to the Special Issue Applications of Optical Fiber Sensors)
Show Figures

Figure 1

12 pages, 11515 KiB  
Article
Organic Scintillator-Fibre Sensors for Proton Therapy Dosimetry: SCSF-3HF and EJ-260
by Crystal Penner, Samuel Usherovich, Jana Niedermeier, Camille Belanger-Champagne, Michael Trinczek, Elisabeth Paulssen and Cornelia Hoehr
Electronics 2023, 12(1), 11; https://doi.org/10.3390/electronics12010011 - 20 Dec 2022
Cited by 5 | Viewed by 2312
Abstract
In proton therapy, the dose from secondary neutrons to the patient can contribute to side effects and the creation of secondary cancer. A simple and fast detection system to distinguish between dose from protons and neutrons both in pretreatment verification as well as [...] Read more.
In proton therapy, the dose from secondary neutrons to the patient can contribute to side effects and the creation of secondary cancer. A simple and fast detection system to distinguish between dose from protons and neutrons both in pretreatment verification as well as potentially in vivo monitoring is needed to minimize dose from secondary neutrons. Two 3 mm long, 1 mm diameter organic scintillators were tested for candidacy to be used in a proton–neutron discrimination detector. The SCSF-3HF (1500) scintillating fibre (Kuraray Co. Chiyoda-ku, Tokyo, Japan) and EJ-260 plastic scintillator (Eljen Technology, Sweetwater, TX, USA) were irradiated at the TRIUMF Neutron Facility and the Proton Therapy Research Centre. In the proton beam, we compared the raw Bragg peak and spread-out Bragg peak response to the industry standard Markus chamber detector. Both scintillator sensors exhibited quenching at high LET in the Bragg peak, presenting a peak-to-entrance ratio of 2.59 for the EJ-260 and 2.63 for the SCSF-3HF fibre, compared to 3.70 for the Markus chamber. The SCSF-3HF sensor demonstrated 1.3 times the sensitivity to protons and 3 times the sensitivity to neutrons as compared to the EJ-260 sensor. Combined with our equations relating neutron and proton contributions to dose during proton irradiations, and the application of Birks’ quenching correction, these fibres provide valid candidates for inexpensive and replicable proton-neutron discrimination detectors. Full article
(This article belongs to the Special Issue Applications of Optical Fiber Sensors)
Show Figures

Figure 1

16 pages, 622 KiB  
Article
Properties of Gd-Doped Sol-Gel Silica Glass Radioluminescence under Electron Beams
by Daniel Söderström, Oskari Timonen, Heikki Kettunen, Risto Kronholm, Hicham El Hamzaoui, Bruno Capoen, Youcef Ouerdane, Adriana Morana, Arto Javanainen, Géraud Bouwmans, Mohamed Bouazaoui and Sylvain Girard
Sensors 2022, 22(23), 9248; https://doi.org/10.3390/s22239248 - 28 Nov 2022
Cited by 3 | Viewed by 2287
Abstract
The radiation-induced emission (RIE) of Gd3+-doped sol–gel silica glass has been shown to have suitable properties for use in the dosimetry of beams of ionizing radiation in applications such as radiotherapy. Linear electron accelerators are commonly used as clinical radiotherapy beams, [...] Read more.
The radiation-induced emission (RIE) of Gd3+-doped sol–gel silica glass has been shown to have suitable properties for use in the dosimetry of beams of ionizing radiation in applications such as radiotherapy. Linear electron accelerators are commonly used as clinical radiotherapy beams, and in this paper, the RIE properties were investigated under electron irradiation. A monochromator setup was used to investigate the light properties in selected narrow wavelength regions, and a spectrometer setup was used to measure the optical emission spectra in various test configurations. The RIE output as a function of depth in acrylic was measured and compared with a reference dosimeter system for various electron energies, since the dose–depth measuring abilities of dosimeters in radiotherapy is of key interest. The intensity of the main radiation-induced luminescence (RIL) of the Gd3+-ions at 314 nm was found to well represent the dose as a function of depth, and was possible to separate from the Cherenkov light that was also induced in the measurement setup. After an initial suppression of the luminescence following the electron bunch, which is ascribed to a transient radiation-induced attenuation from self-trapped excitons (STEX), the 314 nm component was found to have a decay time of approximately 1.3 ms. An additional luminescence was also observed in the region 400 nm to 600 nm originating from the decay of the STEX centers, likely exhibiting an increasing luminescence with a dose history in the tested sample. Full article
(This article belongs to the Special Issue Photonics Based Sensing and Detection)
Show Figures

Figure 1

12 pages, 4609 KiB  
Article
An Innovative Real-Time Dosimeter for Radiation Hardness Assurance Tests
by Luigi Campajola, Pierluigi Casolaro, Elisa Maria Gandolfo, Marcello Campajola, Salvatore Buontempo and Francesco Di Capua
Physics 2022, 4(2), 409-420; https://doi.org/10.3390/physics4020027 - 7 Apr 2022
Cited by 2 | Viewed by 2605
Abstract
The study of the effects of the radiation dose on devices and materials is a topic of high interest in several fields, including radiobiology, space missions, microelectronics, and high energy physics. In this paper, a new method, based on radiochromic film dosimetry, is [...] Read more.
The study of the effects of the radiation dose on devices and materials is a topic of high interest in several fields, including radiobiology, space missions, microelectronics, and high energy physics. In this paper, a new method, based on radiochromic film dosimetry, is proposed for real-time dose assessment in radiation hardness assurance tests. This method allows for correlating the radiation dose at which devices are exposed to the radiation effects (malfunctioning and/or breakdown). In previous studies, it has already been demonstrated that a system, based on optical fibers and a spectrometer, allows for the real-time dose assessment of radiochromic films. The current study not only validates our previous results, but shows that it is possible to apply the new method to an actual radiation environment for the real-time measurement of the dose delivered to a device in radiation hardness assurance tests. This new dosimeter can be used in different radiation environments for a wide dose range, from a few Gy to a few MGy. This high sensitivity can be reached by changing the radiochromic film type and/or the parameters used for the analysis. Full article
(This article belongs to the Special Issue Selected Papers from Applied Nuclear Physics Conference 2021)
Show Figures

Figure 1

23 pages, 32165 KiB  
Review
Recent Advances in Optical Fiber Enabled Radiation Sensors
by Jing Zhang, Yudiao Xiang, Chen Wang, Yunkang Chen, Swee Chuan Tjin and Lei Wei
Sensors 2022, 22(3), 1126; https://doi.org/10.3390/s22031126 - 1 Feb 2022
Cited by 44 | Viewed by 8492
Abstract
Optical fibers are being widely utilized as radiation sensors and dosimeters. Benefiting from the rapidly growing optical fiber manufacturing and material engineering, advanced optical fibers have evolved significantly by using functional structures and materials, promoting their detection accuracy and usage scenarios as radiation [...] Read more.
Optical fibers are being widely utilized as radiation sensors and dosimeters. Benefiting from the rapidly growing optical fiber manufacturing and material engineering, advanced optical fibers have evolved significantly by using functional structures and materials, promoting their detection accuracy and usage scenarios as radiation sensors. This paper summarizes the current development of optical fiber-based radiation sensors. The sensing principles of both extrinsic and intrinsic optical fiber radiation sensors, including radiation-induced attenuation (RIA), radiation-induced luminescence (RIL), and fiber grating wavelength shifting (RI-GWS), were analyzed. The relevant advanced fiber materials and structures, including silica glass, doped silica glasses, polymers, fluorescent and scintillator materials, were also categorized and summarized based on their characteristics. The fabrication methods of intrinsic all-fiber radiation sensors were introduced, as well. Moreover, the applicable scenarios from medical dosimetry to industrial environmental monitoring were discussed. In the end, both challenges and perspectives of fiber-based radiation sensors and fiber-shaped radiation dosimeters were presented. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Applications Ⅱ)
Show Figures

Figure 1

16 pages, 2654 KiB  
Article
Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams
by Daniel Söderström, Heikki Kettunen, Adriana Morana, Arto Javanainen, Youcef Ouerdane, Hicham El Hamzaoui, Bruno Capoen, Géraud Bouwmans, Mohamed Bouazaoui and Sylvain Girard
Sensors 2021, 21(22), 7523; https://doi.org/10.3390/s21227523 - 12 Nov 2021
Cited by 10 | Viewed by 3157
Abstract
Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from [...] Read more.
Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between 105 Gy/bunch and 1.5×102 Gy/bunch. The presented results show that these types of doped silica rods can be used for monitoring a pulsed electron beam, as well as to evaluate the dose deposited by the individual electron bunches. The electron accelerator used in the experiment was a medical type used for radiation therapy treatments, and these silica rod samples show high potential for dosimetry in radiotherapy contexts. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments)
Show Figures

Figure 1

13 pages, 2141 KiB  
Article
Investigation of the Incorporation of Cerium Ions in MCVD-Silica Glass Preforms for Remote Optical Fiber Radiation Dosimetry
by Monika Cieslikiewicz-Bouet, Hicham El Hamzaoui, Youcef Ouerdane, Rachid Mahiou, Geneviève Chadeyron, Laurent Bigot, Karen Delplace-Baudelle, Rémi Habert, Stéphane Plus, Andy Cassez, Géraud Bouwmans, Mohamed Bouazaoui, Adriana Morana, Aziz Boukenter, Sylvain Girard and Bruno Capoen
Sensors 2021, 21(10), 3362; https://doi.org/10.3390/s21103362 - 12 May 2021
Cited by 14 | Viewed by 3561
Abstract
The incorporation of Ce3+ ions in silicate glasses is a crucial issue for luminescence-based sensing applications. In this article, we report on silica glass preforms doped with cerium ions fabricated by modified chemical vapor deposition (MCVD) under different atmospheres in order to [...] Read more.
The incorporation of Ce3+ ions in silicate glasses is a crucial issue for luminescence-based sensing applications. In this article, we report on silica glass preforms doped with cerium ions fabricated by modified chemical vapor deposition (MCVD) under different atmospheres in order to favor the Ce3+ oxidation state. Structural analysis and photophysical investigations are performed on the obtained glass rods. The preform fabricated under reducing atmosphere presents the highest photoluminescence (PL) quantum yield (QY). This preform drawn into a 125 µm-optical fiber, with a Ce-doped core diameter of about 40 µm, is characterized to confirm the presence of Ce3+ ions inside this optical fiber core. The fiber is then tested in an all-fibered X-ray dosimeter configuration. We demonstrate that this fiber allows the remote monitoring of the X-ray dose rate (flux) through a radioluminescence (RL) signal generated around 460 nm. The response dependence of RL versus dose rate exhibits a linear behavior over five decades, at least from 330 µGy(SiO2)/s up to 22.6 Gy(SiO2)/s. These results attest the potentialities of the MCVD-made Ce-doped material, obtained under reducing atmosphere, for real-time remote ionizing radiation dosimetry. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments)
Show Figures

Figure 1

9 pages, 2441 KiB  
Letter
Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing
by Sylvain Girard, Adriana Morana, Cornelia Hoehr, Michael Trinczek, Jeoffray Vidalot, Philippe Paillet, Camille Bélanger-Champagne, Julien Mekki, Nicolas Balcon, Gaetano Li Vecchi, Cosimo Campanella, Damien Lambert, Emmanuel Marin, Aziz Boukenter, Youcef Ouerdane and Ewart Blackmore
Sensors 2020, 20(16), 4510; https://doi.org/10.3390/s20164510 - 12 Aug 2020
Cited by 21 | Viewed by 3436
Abstract
The potential of fiber-based sensors to monitor the fluence of atmospheric neutrons is evaluated through accelerated tests at the TRIUMF Neutron Facility (TNF) (BC, Canada), offering a flux approximatively 109 higher than the reference spectrum observed under standard conditions in New York [...] Read more.
The potential of fiber-based sensors to monitor the fluence of atmospheric neutrons is evaluated through accelerated tests at the TRIUMF Neutron Facility (TNF) (BC, Canada), offering a flux approximatively 109 higher than the reference spectrum observed under standard conditions in New York City, USA. The radiation-induced attenuation (RIA) at 1625 nm of a phosphorus-doped radiation sensitive optical fiber is shown to linearly increase with neutron fluence, allowing an in situ and easy monitoring of the neutron flux and fluence at this facility. Furthermore, our experiments show that the fiber response remains sensitive to the ionization processes, at least up to a fluence of 7.1 × 1011 n cm², as its radiation sensitivity coefficient (~3.36 dB km−1 Gy−1) under neutron exposure remains very similar to the one measured under X-rays (~3.8 dB km−1 Gy−1) at the same wavelength. The presented results open the way to the development of a point-like or even a distributed dosimeter for natural or man-made neutron-rich environments. The feasibility to measure the dose caused by the neutron exposure during stratospheric balloon experiments, or during outer space missions, is presented as a case study of a potential future application. Full article
(This article belongs to the Special Issue New Trends on Sensor Devices for Space and Defense Applications)
Show Figures

Figure 1

Back to TopTop