Recent Advances in Optical Fiber Enabled Radiation Sensors
Abstract
:1. Introduction
2. Fundamentals of Optical Fiber-Based Radiation Sensing
2.1. Radiation-Induced Attenuation (RIA)
2.1.1. Principle of RIA
2.1.2. Typical Fiber Radiation Dosimeter Based on RIA
2.2. Radiation-induced Luminescence (RIL)
2.2.1. Principle of RIL
2.2.2. Typical Fiber Radiation Dosimeter Based on RIL
2.3. Radiation-induced Grating Wavelength Shifting (RI-GWS)
3. Fabrication Method of the Intrinsic Fiber Radiation Sensor
3.1. Micro Pulling-Down (μ-PD) Method and Laser Heated Pedestal Growth (LHPG) Method
3.2. Fiber Thermal Drawing Method
3.3. Methods of In-fiber Microstructure Generation and Crystal Structure Modifications
4. Application
4.1. Industrial Radiation Monitoring
4.2. Radiation Monitoring in Space
4.3. Medical Applications
5. Conclusion and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dartnell, L.R. Ionizing Radiation and Life. Astrobiology 2011, 11, 551–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez, R.A.; Papageorgiou, X.; Tanner, H.G.; Klimenko, A.V.; Borozdin, K.N.; Lumia, R.; Priedhorsky, W.C. Smart Radiation Sensor Management. IEEE Robot. Autom. Mag. 2008, 15, 85–93. [Google Scholar] [CrossRef]
- Henschel, H.; Köhn, O.; Schmidt, H.U. Optical Fibres as Radiation Dosimeters. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1992, 69, 307–314. [Google Scholar] [CrossRef]
- Lin, Z.; Lv, S.; Yang, Z.; Qiu, J.; Zhou, S. Structured Scintillators for Efficient Radiation Detection. Adv. Sci. 2022, 9, 2102439. [Google Scholar] [CrossRef] [PubMed]
- Bueker, H.; Haesing, F.W. Fiber Optic Radiation Sensors. In Proceedings of the Optical Fibre Sensing and Systems in Nuclear Environments, Mol, Belgium, 30 December 1994. [Google Scholar]
- Zubair, H.T.; Begum, M.; Moradi, F.; Rahman, A.K.M.M.; Mahdiraji, G.A.; Oresegun, A.; Louay, G.T.; Omar, N.Y.M.; Khandaker, M.U.; Adikan, F.R.M.; et al. Recent Advances in Silica Glass Optical Fiber for Dosimetry Applications. IEEE Photonics J. 2020, 12, 1–25. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.-J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent Advances in Radiation-Hardened Fiber-Based Technologies for Space Applications. J. Opt. 2018, 20, 093001. [Google Scholar] [CrossRef] [Green Version]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; de Michele, V.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of Radiation Induced Point Defects in Silica-based Optical Fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Francesca, D.D.; Toccafondo, I.; Vecchi, G.L.; Calderini, S.; Girard, S.; Alessi, A.; Ferraro, R.; Danzeca, S.; Kadi, Y.; Brugger, M. Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. IEEE Trans. Nucl. Sci. 2018, 65, 1639–1644. [Google Scholar] [CrossRef]
- Tao, G.; Abouraddy, A.F. Multimaterial Fibers: A New Concept in Infrared Fiber Optics. In Proceedings of the Fiber Optic Sensors and Applications XI, SPIE Sensing Technology + Applications, Baltimore, MD, USA, 18 June 2014. [Google Scholar]
- Kaufman, J.J.; Ottman, R.; Tao, G.; Shabahang, S.; Banaei, E.H.; Liang, X.; Johnson, S.G.; Fink, Y.; Chakrabarti, R.; Abouraddy, A.F. In-Fiber Production of Polymeric Particles for Biosensing and Encapsulation. Proc. Natl. Acad. Sci. USA 2013, 110, 15549–15554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, Z.; Wang, Z.; Wei, L. Advanced Multi-Material Optoelectronic Fibers: A Review. J. Lightwave Technol. 2021, 39, 3836–3845. [Google Scholar] [CrossRef]
- Wang, W.C.; Zhou, B.; Xu, S.H.; Yang, Z.M.; Zhang, Q.Y. Recent Advances in Soft Optical Glass Fiber and Fiber Lasers. Prog. Mater. Sci. 2019, 101, 90–171. [Google Scholar] [CrossRef]
- Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y.; Sordo, F.; Wei, L.; Sorin, F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Adv. Mater. 2019, 31, 1802348. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Nguyen-Dang, T.; Cayron, C.; Gupta, T.D.; Page, A.G.; Qu, Y.; Sorin, F. Microstructure Tailoring of Selenium-Core Multimaterial Optoelectronic Fibers. Opt. Mater. Express 2017, 7, 1388–1397. [Google Scholar] [CrossRef]
- Dai, Y.; Du, M.; Feng, X.; Zhang, W.; Zhou, S. Microstructured Multimaterial Fibers for Efficient Optical Detection. J. Am. Ceram. Soc. 2021, 104, 4058–4064. [Google Scholar] [CrossRef]
- Healy, N.; Mailis, S.; Bulgakova, N.M.; Sazio, P.J.; Day, T.D.; Sparks, J.R.; Cheng, H.Y.; Badding, J.V.; Peacock, A.C. Extreme Electronic Bandgap Modification in Laser-Crystallized Silicon Optical Fibres. Nat. Mater. 2014, 13, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Sorin, F.; Abouraddy, A.F.; Orf, N.; Shapira, O.; Viens, J.; Arnold, J.; Joannopoulos, J.D.; Fink, Y. Multimaterial Photodetecting Fibers: A Geometric and Structural Study. Adv. Mater. 2007, 19, 3872–3877. [Google Scholar] [CrossRef]
- Yamamoto, S.; Aoki, I.; Higashi, T. Optical Fiber-Based ZnS(Ag) Detector for Selectively Detecting Alpha Particles. Appl. Radiat. Isot. 2021, 169, 109495. [Google Scholar] [CrossRef]
- Pheron, X.; Girard, S.; Boukenter, A.; Brichard, B.; Delepine-Lesoille, S.; Bertrand, J.; Ouerdane, Y. High γ-Ray Dose Radiation Effects on the Performances of Brillouin Scattering Based Optical Fiber Sensors. Opt. Express 2012, 20, 26978–26985. [Google Scholar] [CrossRef]
- O’Keeffe, S.; Fernandez, A.F.; Fitzpatrick, C.; Brichard, B.; Lewis, E. Real-Time Gamma Dosimetry Using Pmma Optical Fibres for Applications in the Sterilization Industry. Meas. Sci. Technol. 2007, 18, 3171–3176. [Google Scholar] [CrossRef]
- Fernandez, A.F.; Gusarov, A.; Brichard, B.; Decréton, M.; Berghmans, F.; Mégret, P.; Delchambre, A. Long-Term Radiation Effects on Fibre Bragg Grating Temperature Sensors in a Low Flux Nuclear Reactor. Meas. Sci. Technol. 2004, 15, 1506–1511. [Google Scholar] [CrossRef] [Green Version]
- Kertzscher, G.; Beddar, S. Ruby-Based Inorganic Scintillation Detectors for 192Ir Brachytherapy. Phys. Med. Biol. 2016, 61, 7744–7764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kertzscher, G.; Beddar, S. Inorganic Scintillation Detectors for 192Ir Brachytherapy. Phys. Med. Biol. 2019, 64, 225018. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, T.; Sommer, M.; Henniger, J. Dose Rate Measurements with a Ruby-Based Fiber Optic Radioluminescent Probe. Radiat. Meas. 2013, 56, 347–350. [Google Scholar] [CrossRef]
- Belley, M.D.; Craciunescu, O.; Chang, Z.; Langloss, B.W.; Stanton, I.N.; Yoshizumi, T.T.; Therien, M.J.; Chino, J.P. Real-Time Dose-Rate Monitoring with Gynecologic Brachytherapy: Results of an Initial Clinical Trial. Brachytherapy 2018, 17, 1023–1029. [Google Scholar] [CrossRef]
- Molina, P.; Sommer, M.; Kattner, F.; Henniger, J. Response Characterization of an Y2O3:Eu-Based Radioluminescence Probe Under Co−60 Irradiation. Radiat. Meas. 2013, 56, 338–341. [Google Scholar] [CrossRef]
- Jang, K.W.; Cho, D.H.; Yoo, W.J.; Seo, J.K.; Heo, J.Y.; Park, J.Y.; Lee, B. Fiber-Optic Radiation Sensor for Detection of Tritium. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 928–931. [Google Scholar] [CrossRef]
- Wu, Z.; Zaghloul, M.A.S.; Carpenter, D.; Li, M.J.; Daw, J.; Mao, Z.H.; Hnatovsky, C.; Mihailov, S.J.; Chen, K.P. Mitigation of Radiation-Induced Fiber Bragg Grating (FBG) Sensor Drifts in Intense Radiation Environments Based on Long-Short-Term Memory (LSTM) Network. IEEE Access 2021, 9, 148296–148301. [Google Scholar] [CrossRef]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent Advances in Machine Learning for Fiber Optic Sensor Applications. Adv. Intell. Syst. 2011, 4, 2100067. [Google Scholar] [CrossRef]
- Madden, L.; Archer, J.; Li, E.; Wilkinson, D.; Rosenfeld, A. Temporal Separation of Cerenkov Radiation and Scintillation Using a Clinical LINAC and Artificial Intelligence. Phys. Med. Biol. 2018, 63, 225004. [Google Scholar] [CrossRef]
- Cohen, A.J. Neutron Specific Color Center in Fused Silica and an Impurity Band of Identical Wavelength. Phys. Rev. 1957, 105, 1151. [Google Scholar] [CrossRef]
- Amossov, A.; Rybaltovsky, A. Radiation Color Center Formation in Silica Glasses: A Review of Photo-and Thermo-Chemical Aspects of the Problem. J. Non-Cryst. Solids 1994, 179, 226–234. [Google Scholar] [CrossRef]
- Griscom, D.L. A Minireview of the Natures of Radiation-Induced Point Defects in Pure and Doped Silica Glasses and Their Visible/Near-IR Absorption Bands, with Emphasis on Self-Trapped Holes and How They Can Be Controlled. Phys. Res. Int. 2013, 2013, 379041. [Google Scholar] [CrossRef]
- Griscom, D.L. Nature of Defects and Defect Generation in Optical Glasses. Radiat. Eff. Opt. Mater. 1985, 541, 38–59. [Google Scholar]
- Gusarov, A.; Hoeffgen, S.K. Radiation Effects on Fiber Gratings. IEEE Trans. Nucl. Sci. 2013, 60, 2037–2053. [Google Scholar] [CrossRef]
- Friebele, E.; Gingerich, M.; Griscom, D. Survivability of Optical Fibers in Space. In Proceedings of the Optical Materials Reliability and Testing: Benign and Adverse Environments, Boston, MA, USA, 25 February 1993; pp. 177–188. [Google Scholar]
- Oughstun, K.E.; Cartwright, N.A. On the Lorentz-Lorenz Formula and the Lorentz Model of Dielectric Dispersion. Opt. Express 2003, 11, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, V.; Saarinen, J.J.; Peiponen, K.E.; Vartiainen, E.M. Kramers-Kronig Relations in Optical Materials Research; Springer Science & Business Media: Berlin, Germany, 2005; Volume 110, p. 162. ISBN 3540236732/9783540236733. [Google Scholar]
- Friebele, E.; Askins, C.; Gingerich, M.; Long, K. Optical Fiber Waveguides in Radiation Environments, II. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 1984, 1, 355–369. [Google Scholar] [CrossRef]
- Girard, S.; Keurinck, J.; Boukenter, A.; Meunier, J.; Ouerdane, Y.; Azais, B.; Charre, P.; Vie, M. Gamma-Rays and Pulsed X-Ray Radiation Responses of Nitrogen-, Germanium-Doped and Pure Silica Core Optical Fibers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 215, 187–195. [Google Scholar] [CrossRef]
- Morana, A.; Campanella, C.; Marin, E.; Melin, G.; Robin, T.; Vecchi, G.L.; di Francesca, D.; Boukenter, A.; Ouerdane, Y.; Mady, F.; et al. Operating Temperature Range of Phosphorous-Doped Optical Fiber Dosimeters Exploiting Infrared Radiation-Induced Attenuation. IEEE Trans. Nucl. Sci. 2021, 68, 906–912. [Google Scholar] [CrossRef]
- Di Francesca, D.; Vecchi, G.L.; Girard, S.; Alessi, A.; Reghioua, I.; Boukenter, A.; Ouerdane, Y.; Kadi, Y.; Brugger, M. Radiation-Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Radiation Detection. IEEE Trans. Nucl. Sci. 2018, 65, 126–131. [Google Scholar] [CrossRef]
- Li Vecchi, G.; di Francesca, D.; Sabatier, C.; Girard, S.; Alessi, A.; Guttilla, A.; Robin, T.; Kadi, Y.; Brugger, M. Infrared Radiation Induced Attenuation of Radiation Sensitive Optical Fibers: Influence of Temperature and Modal Propagation. Opt. Fiber Technol. 2020, 55, 102166. [Google Scholar] [CrossRef]
- Regnier, E.; Flarnmer, I.; Girard, S.; Gooijer, F.; Achten, F.; Kuyt, G. Low-Dose Radiation-Induced Attenuation at Infrared Wavelengths for p-Doped, Ge-Doped and Pure Silica-Core Optical Fibres. IEEE Trans. Nucl. Sci. 2007, 54, 1115–1119. [Google Scholar] [CrossRef]
- Alessi, A.; Guttilla, A.; Agnello, S.; Sabatier, C.; Robin, T.; Barnini, A.; di Francesca, D.; Vecchi, G.L.; Cannas, M.; Boukenter, A.; et al. Near-IR Radiation-Induced Attenuation of Aluminosilicate Optical Fibers. Phys. Status Solidi A Appl. Mater. Sci. 2021, 218, 2000807. [Google Scholar] [CrossRef]
- Kovacevic, M.S.; Savovic, S.; Djordjevich, A.; Bajic, J.; Stupar, D.; Kovacevic, M.; Simic, S. Measurements of Growth and Decay of Radiation Induced Attenuation During the Irradiation and Recovery of Plastic Optical Fibres. Opt. Laser Technol. 2013, 47, 148–151. [Google Scholar] [CrossRef]
- Stajanca, P.; Krebber, K. Radiation-Induced Attenuation of Perfluorinated Polymer Optical Fibers for Radiation Monitoring. Sensors 2017, 17, 1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Kuzyk, M.G.; Ding, J.-L.; Johns, W.E.; Welker, D.J. Fabrication and Mechanical Behavior of Dye-Doped Polymer Optical Fiber. J. Appl. Phys. 2002, 92, 4–12. [Google Scholar] [CrossRef]
- Peters, K. Polymer Optical Fiber Sensors—A Review. Smart Mater. Struct. 2010, 20, 013002. [Google Scholar] [CrossRef]
- Stajanca, P.; Krebber, K. Towards on-line Radiation Monitoring with Perfluorinated Polymer Optical Fibers. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 29 June 2017. [Google Scholar]
- Oresegun, A.; Basaif, A.; Tarif, Z.H.; Abdul-Rashid, H.A.; Hashim, S.A.; Bradley, D.A. Radioluminescence of Silica Optical Fibre Scintillators for Real-time Industrial Radiation Dosimetry. Radiat. Phys. Chem. 2021, 188, 109684. [Google Scholar] [CrossRef]
- Keeffe, S.O.; Woulfe, P.; Sullivan, F.J. Radioluminescence Based Optical Fibre Sensor for Radiation Monitoring During Brachytherapy. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–5 November 2015. [Google Scholar]
- Rodriguez, M.; Denis, G.; Akselrod, M.; Underwood, T.; Yukihara, E. Thermoluminescence, Optically Stimulated Luminescence and Radioluminescence Properties of Al2O3: C, Mg. Radiat. Meas. 2011, 46, 1469–1473. [Google Scholar] [CrossRef]
- Bhatt, B.C. Thermoluminescence, Optically Stimulated Luminescence and Radiophotoluminescence Dosimetry: An Overall Perspective. Radiat. Prot. Environ. 2011, 34, 6–16. [Google Scholar]
- McKeever, S. Optically Stimulated Luminescence: A Brief Overview. Radiat. Meas. 2011, 46, 1336–1341. [Google Scholar] [CrossRef]
- Gaza, R.; McKeever, S.W.S. A Real-Time, High-Resolution Optical Fibre Dosemeter Based on Optically Stimulated Luminescence (OSL) of KBr: Eu, for Potential Use During the Radiotherapy of Cancer. Radiat. Prot. Dosim. 2006, 120, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Hu, Y.S.; Ma, Y.; Zhao, W.H.; Sun, W.M.; Zhang, D.X.; Chen, Z.Y.; Elfed, L. Embedded Structure Fiber-optic Radiation Dosimeter for Radiotherapy Applications. Opt. Express 2016, 24, 5172–5185. [Google Scholar]
- McCarthy, D.; O’Keeffe, S.; Lewis, E.; Sporea, D.G.; Sporea, A.; Tiseanu, I.; Woulfe, P.; Cronin, J. Radiation Dosimeter Using an Extrinsic Fiber Optic Sensor. IEEE Sens. J. 2014, 14, 673–685. [Google Scholar] [CrossRef]
- Penner, C.; Hoehr, C.; O’Keeffe, S.; Woulfe, P.; Duzenli, C. Characterization of a Terbium-Activated Gadolinium Oxysulfide Plastic Optical Fiber Sensor in Photons and Protons. IEEE Sens. J. 2018, 18, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Li, D.Y.; Li, H.; Niu, M.Q.; Wan, C.L.; Lv, J.W.; Zhang, X.D. High Spatial Resolution Cold Neutron Imaging with New Tb3+/Ce3+ Co-Doped Gd2O3 Scintillation Glass Fiber Arrays. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 949, 162829. [Google Scholar] [CrossRef]
- Kadari, A.; Refaei, A.; Saeed, M.A. Experimental and Theoretical Study of the TL Process in Nd3+-Doped SiO2 Optical Fibers. Appl. Phys. A Mater. Sci. Process. 2019, 125, 639. [Google Scholar] [CrossRef]
- Begum, M.; Rahman, A.K.M.M.; Abdul-Rashid, H.A.; Yusoff, Z.; Begum, M.; Mat-Sharif, K.A.; Amin, Y.M.; Bradley, D.A. Thermoluminescence Characteristics of Ge-Doped Optical Fibers with Different Dimensions for Radiation Dosimetry. Appl. Radiat. Isot. 2015, 100, 79–83. [Google Scholar] [CrossRef]
- Moradi, F.; Mandiraji, G.A.; Dermosesian, E.; Khandaker, M.U.; Mung, N.M.; Adikan, F.R.M.; Amin, Y.M. Influence of Dose History on Thermoluminescence Response of Ge-Doped Silica Optical Fibre Dosimeters. Radiat. Phys. Chem. 2017, 134, 62–70. [Google Scholar] [CrossRef]
- Ramli, A.T.; Bradley, D.A.; Hashim, S.; Wagiran, H. The Thermoluminescence Response of Doped SiO2 Optical Fibres Subjected to Alpha-Particle Irradiation. Appl. Radiat. Isot. 2009, 67, 428–432. [Google Scholar] [CrossRef]
- Hassan, M.F.; Rahman, W.N.W.A.; Kadir, A.B.A.; Isa, N.M.; Tominaga, T.; Geso, M.; Akasaka, H.; Bradley, D.A.; Noor, N.M. Fabricated Ge-Doped Flat Optical Fibres: Assessing the Thermoluminescence Glow Curves for Proton Beam Irradiation. AIP Conf. Proc. 2018, 2045, 020084. [Google Scholar]
- Moradi, F.; Mandiraji, G.A.; Khandaker, M.U.; Ung, N.M.; Adikan, F.R.M.; Khellaf, I.; Bradley, D.A. Investigation on Various Types of Silica Fibre as Thermoluminescent Sensors for Ultra-High Dose Radiation Dosimetry. Sens. Actuators A Phys. 2018, 273, 197–205. [Google Scholar] [CrossRef]
- Chiodini, N.; Vedda, A.; Fasoli, M.; Moretti, F.; Lauria, A.; Cantone, M.C.; Veronese, I.; Giampiero, T.; Brambilla, M.; Cannillo, B.; et al. Ce doped SiO2 optical fibers for remote radiation sensing and measurement. In Proceedings of the Fiber Optic Sensors and Applications VI, SPIE Defense, Security, and Sensing, Orlando, FL, USA, 27 April 2009. [Google Scholar]
- Savard, N.; Potkins, D.; Beaudry, J.; Jirasek, A.; Hoehr, C.J.R.M. Characteristics of a Ce-Doped Silica Fiber Irradiated by 74 MeV Protons. Radiat. Meas. 2018, 114, 19–24. [Google Scholar] [CrossRef]
- Cova, F.; Fasoli, M.; Moretti, F.; Chiodini, N.; Pauwels, K.; Auffray, E.; Lucchini, M.T.; Bourret, E.; Veronese, I.; d’Ippolito, E.; et al. Optical Properties and Radiation Hardness of Pr-Doped Sol-Gel Silica: Influence of Fiber Drawing Process. J. Lumin. 2017, 192, 661–667. [Google Scholar] [CrossRef]
- Kononets, V.; Auffray, E.; Dujardin, C.; Gridin, S.; Moretti, F.; Patton, G.; Pauwels, K.; Sidletskiy, O.; Xu, X.; Lebbou, K. Growth of Long Undoped and Ce-Doped Luag Single Crystal Fibers for Dual Readout Calorimetry. J. Cryst. Growth 2016, 435, 31–36. [Google Scholar] [CrossRef]
- Benaglia, A.; Lucchini, M.; Pauwels, K.; Tully, C.; Medvedeva, T.; Heering, A.; Dujardin, C.; Kononets, V.; Lebbou, K.; Aubry, N.; et al. Test Beam Results of a High Granularity Luag Fibre Calorimeter Prototype. J. Instrum. 2016, 11, P05004. [Google Scholar] [CrossRef] [Green Version]
- Stancălie, A.; Esposito, F.; Ranjan, R.; Bleotu, P.; Campopiano, S.; Iadicicco, A.; Sporea, D. Arc-Induced Long Period Gratings in Standard and Speciality Optical Fibers Under Mixed Neutron-Gamma Irradiation. Sci. Rep. 2017, 7, 15845. [Google Scholar] [CrossRef] [Green Version]
- Perry, M.; Niewczas, P.; Johnston, M. Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review. IEEE Sens. J. 2012, 12, 3248–3257. [Google Scholar] [CrossRef]
- Krebber, K.; Henschel, H.; Weinand, U. Fibre Bragg Gratings as High Dose Radiation Sensors? Meas. Sci. Technol. 2006, 17, 1095. [Google Scholar] [CrossRef]
- Gusarov, A.; Berghmans, F.; Deparis, O.; Fernandez, A.F.; Defosse, Y.; Mégret, P.; Decreton, M.; Blondel, M. High Total Dose Radiation Effects on Temperature Sensing Fiber Bragg Gratings. IEEE Photonics Technol. Lett. 1999, 11, 1159–1161. [Google Scholar] [CrossRef]
- Zaghloul, M.A.; Wang, M.; Huang, S.; Hnatovsky, C.; Grobnic, D.; Mihailov, S.; Li, M.J.; Carpenter, D.; Hu, L.W.; Daw, J. Radiation Resistant Fiber Bragg Grating in Random Air-Line Fibers for Sensing Applications in Nuclear Reactor Cores. Opt. Express 2018, 26, 11775–11786. [Google Scholar] [CrossRef] [Green Version]
- Sporea, D.; Stăncalie, A.; Neguţ, D.; Pilorget, G.; Delepine-Lesoille, S.; Lablonde, L. Comparative Study of Long Period and Fiber Bragg Gratings Under Gamma Irradiation. Sens. Actuators A Phys. 2015, 233, 295–301. [Google Scholar] [CrossRef]
- Stăncălie, A.; Sporea, D.; Neguţ, D.; Esposito, F.; Ranjan, R.; Campopiano, S.; Iadicicco, A. Long Period Gratings in Unconventional Fibers for Possible Use as Radiation Dosimeter in High-Dose Applications. Sens. Actuators A Phys. 2018, 271, 223–229. [Google Scholar] [CrossRef]
- Berruti, G.M.; Vaiano, P.; Quero, G.; Pimentel Das Neves, T.F.; Boniello, A.; Consales, M.; Petagna, P.; Cusano, A. Analysis of Uncoated LPGs Written in B-Ge Doped Fiber Under Proton Irradiation for Sensing Applications At CERN. Sci. Rep. 2020, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Ranjan, R.; Stăncălie, A.; Sporea, D.; Neguţ, D.; Becherescu, N.; Campopiano, S.; Iadicicco, A. Real-time Analysis of Arc-Induced Long Period Gratings under Gamma Irradiation. Sci. Rep. 2017, 7, 43389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, D.A.; Aziz, A.Z.; Knapton, A.J.; Abdul-Rashid, H.A.; Rahman, A.; Amin, Y.M.; Nor, R.M.; Maah, M.J.; Mahat, R. Optically Stimulated Luminescence in Beta Irradiated Ge-Doped Optical Fibre. In Proceedings of the IEEE 4th International Conference on Photonics (ICP), Melaka, Malaysia, 1 October 2013. [Google Scholar]
- Kalnins, C.A.G.; Ebendorff-Heidepriem, H.; Spooner, N.A.; Monro, T.M. Radiation Dosimetry Using Optically Stimulated Luminescence in Fluoride Phosphate Optical Fibres. Opt. Mater. Express 2012, 2, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Kalnins, C.A.G.; Ebendorff-Heidepriem, H.; Spooner, N.A.; Monro, T.M. Optically Stimulated Luminescence in Fluoride Phosphate Glass Optical Fibres for Radiation Dosimetry. In Proceedings of the 3rd Asia Pacific Optical Sensors Conference (APOS), Sydney, Australia, 30 January 2012. [Google Scholar]
- Whittaker, C.; Giroux, J.; Lariviere, D.; Allen, C.N.; Beaulieu, L. Colloidal Quantum Dot-Doped Optical Fibers for Scintillation Dosimetry. IEEE Trans. Nucl. Sci. 2020, 67, 1040–1044. [Google Scholar] [CrossRef]
- Jang, K.W.; Yoo, W.J.; Moon, J.; Han, K.T.; Park, B.G.; Shin, D.; Park, S.Y.; Lee, B. Multi-Dimensional Fiber-Optic Radiation Sensor for Ocular Proton Therapy Dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 695, 322–325. [Google Scholar] [CrossRef]
- Mones, E.; Veronese, I.; Vedda, A.; Loi, G.; Fasoli, M.; Moretti, F.; Chiodini, N.; Cannillo, B.; Brambilla, M. Ce-doped Optical Fibre as Radioluminescent Dosimeter in Radiotherapy. Radiation Measurements 2008, 43, 888–892. [Google Scholar] [CrossRef]
- Pavan, P.; Zanella, G.; Zannoni, R.; Marigo, A. Spatial Resolution in X-ray Imaging with Scintillating Glass Optical Fiber Plates. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1993, 327, 600–604. [Google Scholar] [CrossRef]
- Hoehr, C.; Morana, A.; Duhamel, O.; Capoen, B.; Trinczek, M.; Paillet, P.; Duzenli, C.; Bouazaoui, M.; Bouwmans, G.; Cassez, A.; et al. Novel Gd3+-Doped Silica-Based Optical Fiber Material for Dosimetry in Proton Therapy. Sci. Rep. 2019, 9, 16376. [Google Scholar] [CrossRef]
- Shi, Z.; Lv, S.; Tang, G.; Tang, J.; Jiang, L.; Qian, Q.; Zhou, S.; Yang, Z. Multiphase Transition toward Colorless Bismuth-Germanate Scintillating Glass and Fiber for Radiation Detection. ACS Appl. Mater. Interfaces 2020, 12, 17752–17759. [Google Scholar] [CrossRef] [PubMed]
- Alshourbagy, M.; Bigotta, S.; Herbert, D.; del Guerra, A.; Toncelli, A.; Tonelli, M. Optical and Scintillation Properties of Ce3+ Doped Yalo3 Crystal Fibers Grown By μ-Pulling Down Technique. J. Cryst. Growth 2007, 303, 500–505. [Google Scholar] [CrossRef]
- Zubair, H.T.; Rifiat, R.; Oresegun, A.; Hamidi, F.; Othman, J.; Khairina, M.D.; Basaif, A.; Ibrahim, S.A.; Abdul-Rashid, H.A.; Bradley, D.A. Fiber Optic Coupled Survey Meter for Norm and Low-Level Radioactivity Monitoring. Radiat. Phys. Chem. 2021, 188, 109682. [Google Scholar] [CrossRef]
- Faustov, A.; Saffari, P.; Koutsides, C.; Gusarov, A.; Wuilpart, M.; Megret, P.; Zhang, L.; Kalli, K. Highly Sensitive Type IA Fiber Bragg Gratings as Sensors in Radiation Environments. In Proceedings of the 22nd International Conference on Optical Fiber Sensors (OFS), Beijing, China, 17 October 2012. [Google Scholar]
- Esposito, F.; Stancalie, A.; Negut, C.D.; Campopiano, S.; Sporea, D.; Iadicicco, A. Comparative Investigation of Gamma Radiation Effects on Long Period Gratings and Optical Power in Different Optical Fibers. J. Lightwave Technol. 2019, 37, 4560–4566. [Google Scholar] [CrossRef]
- Esposito, F.; Stancalie, A.; Negu, D.; Iadicicco, A.; Campopiano, S. Response of Long Period Gratings to Gamma and Neutron-Gamma Radiations. In Proceedings of the Seventh European Workshop on Optical Fibre Sensors, Limassol, Cyprus, 28 August 2019. [Google Scholar]
- Rego, G.; Fernandez Fernandez, A.; Gusarov, A.; Brichard, B.; Berghmans, F.; Santos, J.; Salgado, H. Effect of Ionizing Radiation on The Properties of Long-Period Fiber Gratings. Appl. Opt. 2005, 44, 6258–6263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kher, S.; Chaubey, S.; Kashyap, R.; Oak, S.M. Turnaround-Point Long-Period Fiber Gratings (TAP-LPGs) as High-Radiation-Dose Sensors. IEEE Photonics Technol. Lett. 2012, 24, 742–744. [Google Scholar] [CrossRef]
- Sidletskiy, O.; Lebbou, K.; Kofanov, D. Micro-Pulling-Down Growth of Long Yag-And Luag-Based Garnet Fibres: Advances and Bottlenecks. CrystEngComm 2021, 23, 2633–2643. [Google Scholar] [CrossRef]
- Farhi, H.; Belkahla, S.; Lebbou, K.; Dujardin, C. BGO Fibers Growth by μ-Pulling Down Technique and Study of Light Propagation. Phys. Proc. 2009, 2, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.E.; Trtik, P.; Lousteau, J.; Pugliese, D.; Brambilla, G.; Hayward, J.P. Neutron Imaging with Li-Glass Based Multicore SCIntillating FIber (SCIFI). J. Lightwave Technol. 2019, 37, 5699–5706. [Google Scholar] [CrossRef]
- Cova, F.; Moretti, F.; Fasoli, M.; Chiodini, N.; Pauwels, K.; Auffray, E.; Lucchini, M.T.; Baccaro, S.; Cemmi, A.; Bártová, H.; et al. Radiation Hardness of Ce-Doped Sol-Gel Silica Fibers for High Energy Physics Applications. Opt. Lett. 2018, 43, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Tang, J.; Chen, J.; Liu, P.; Guo, J.; Ma, Y.; Qiu, J.; Zhou, S. Full-Inorganic Micro-Fiber Probe for Real-Time Radiation Monitoring. Adv. Mater. Technol. 2021, 6, 2000696. [Google Scholar] [CrossRef]
- Aktas, O.; Ozgur, E.; Tobail, O.; Kanik, M.; Huseyinoglu, E.; Bayindir, M. A New Route for Fabricating On-Chip Chalcogenide Microcavity Resonator Arrays. Adv. Opt. Mater. 2014, 2, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Gumennik, A.; Wei, L.; Lestoquoy, G.; Stolyarov, A.M.; Jia, X.; Rekemeyer, P.H.; Smith, M.J.; Liang, X.; Grena, B.J.; Johnson, S.G.; et al. Silicon-in-Silica Spheres via Axial Thermal Gradient in-Fibre Capillary Instabilities. Nat. Commun. 2013, 4, 2216. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Ma, S.; Xiang, Y.; Zhang, J.; Zhu, M.; Wei, L.; Tao, G.; Deng, D. In-Fiber Structured Particles and Filament Arrays from the Perspective of Fluid Instabilities. Adv. Fiber Mater. 2020, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Hou, C.; Levy, E.; Lestoquoy, G.; Gumennik, A.; Abouraddy, A.F.; Joannopoulos, J.D.; Fink, Y. Optoelectronic Fibers via Selective Amplification of In-Fiber Capillary Instabilities. Adv. Mater. 2017, 29, 1603033. [Google Scholar] [CrossRef]
- Song, S.; Lønsethagen, K.; Laurell, F.; Hawkins, T.; Ballato, J.; Fokine, M.; Gibson, U.J. Laser Restructuring and Photoluminescence of Glass-Clad GaSb/Si-Core Optical Fibres. Nat. Commun. 2019, 10, 1790. [Google Scholar] [CrossRef]
- Peacock, A.C.; Healy, N.; Suhailin, F.; Mailis, S.; Ballato, J.; Gibson, U. Crystalline Core Silicon Fibers for Optoelectronic Applications. In Proceedings of the Integrated Photonics Research. Silicon and Nanophotonics, Vancouver, BC, Canada, 18–20 July 2016. [Google Scholar]
- Peacock, A.C.; Healy, N. Semiconductor Optical Fibres for Infrared Applications: A Review. Semicond. Sci. Technol. 2016, 31, 103004. [Google Scholar] [CrossRef]
- Wu, W.; Balci, M.H.; Song, S.; Liu, C.; Fokine, M.; Laurell, F.; Hawkins, T.; Ballato, J.; Gibson, U.J. CO2 Laser Annealed SiGe Core Optical Fibers with Radial Ge Concentration Gradients. Opt. Mater. Express 2020, 10, 926–936. [Google Scholar] [CrossRef]
- Wu, W.; Balci, M.H.; Mühlberger, K.; Fokine, M.; Laurell, F.; Hawkins, T.; Ballato, J.; Gibson, U.J. Ge-capped SiGe Core Optical Fibers. Opt. Mater. Express 2019, 9, 4301–4306. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Tang, G.; Sun, M.; Qian, G.; Shi, Z.; Qian, Q.; Yang, Z. Single Crystal Tellurium Semiconductor Core Optical Fibers. Opt. Mater. Express 2020, 10, 1072–1082. [Google Scholar] [CrossRef]
- Zhao, Z.; Mao, Y.; Ren, L.; Zhang, J.; Chen, N.; Wang, T. CO2 Laser Annealing of Ge Core Optical Fibers with Different Laser Power. Opt. Mater. Express 2019, 9, 1333–1347. [Google Scholar] [CrossRef]
- Noor, N.M.; Jusoh, M.A.; Razis, A.; Alawiah, A.; Bradley, D.A. Flat Ge-doped Optical Fibres for Food Irradiation Dosimetry. AIP Conf. Proc. 2015, 1657, 100007. [Google Scholar]
- Tajuddin, H.A.; Wan, M.; Sani, S.; Hashim, S.A. Development of Optical Fibers for Food Irradiation Dosimeter. Malays. J. Fundam. Appl. Sci. 2019, 15, 109–111. [Google Scholar] [CrossRef]
- Fernandez, A.F.; Brichard, B.; O’Keeffe, S.; Fitzpatrick, C.; Lewis, E.; Vaille, J.R.; Dusseau, L.; Jackson, D.A.; Ravotti, F.; Glaser, M.; et al. Real-Time Fibre Optic Radiation Dosimeters for Nuclear Environment Monitoring Around Thermonuclear Reactors. Fusion Eng. Des. 2008, 83, 50–59. [Google Scholar] [CrossRef]
- Fernandez, A.F.; Jackson, D.A. Real-Time Fibre Optic Radiation Dosimeters for Nuclear Surgical Medicine and Nuclear Environment Monitoring. In Proceedings of the Optical Fiber Sensors, OSA Technical Digest (CD), Cancun, Mexico, 32–27 October 2006. [Google Scholar]
- Faustov, A.V.; Gusarov, A.; Wuilpart, M.; Fotiadi, A.; Liokumivich, L.B.; Zolotovskiy, I.O.; Tomashuk, A.L.; Schoutheete, T.D.; Mégret, P. Remote Distributed Optical Fibre Dose Measuring of High Gamma-Irradiation with Highly Sensitive Al- and P-Doped Fibres. In Proceedings of the SPIE Optics + Optoelectronics, Prague, Czech Republic, 3 May 2013. [Google Scholar]
- Sylvie, D.L.; Sylvain, G.; Marcel, L.; Johan, B.; Is Ab Elle, P.; Aziz, B.; Emmanuel, M.; Georges, H.; Stéphanie, L.; Jean-Louis, A.J.S. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes. Sensors 2017, 17, 1377. [Google Scholar]
- Remy, L.; Cheymol, G.; Gusarov, A.; Morana, A.; Marin, E.; Girard, S. Compaction in Optical Fibres and Fibre Bragg Gratings Under Nuclear Reactor High Neutron and Gamma Fluence. IEEE Trans. Nucl. Sci. 2016, 63, 2317–2322. [Google Scholar] [CrossRef]
- Rozaila, Z.S.; Khandaker, M.U.; Abdul Sani, S.F.; Sabtu, S.N.; Amin, Y.M.; Maah, M.J.; Bradley, D.A. Environmental Monitoring Through Use of Silica-based TLD. J. Radiol. Prot. 2017, 37, 761–779. [Google Scholar] [CrossRef] [Green Version]
- Francesca, D.; Vecchi, G.L.; Girard, S.; Alessi, A.; Brugger, M. Radiation Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Dosimetry. IEEE Trans. Nucl. Sci. 2018, 65, 126–131. [Google Scholar] [CrossRef]
- Fernandez, A.F.; Brichard, B.; Alasia, D.; Abrardi, L.; Thévenaz, L. The Effects of Gamma-Radiation on the Properties of Brillouin Scattering in Standard Ge-doped Optical Fibres. Meas. Sci. Technol. 2006, 17, 180–183. [Google Scholar]
- Benton, E.R.; Benton, E.V. Space Radiation Dosimetry inLow-Earth Orbit and Beyond. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 184, 255–294. [Google Scholar] [CrossRef]
- Suter, J.J.; Poret, J.C.; Rosen, M.J. Fiber Optic Ionizing Radiation Detector. IEEE Trans. Nucl. Sci. 1992, 39, 674–679. [Google Scholar] [CrossRef]
- Boeder, C.; Adams, L.; Nickson, R. Scintillating Fibre Detector System for Spacecraft Component Dosimetry. In Proceedings of the Second European Conference on Radiation and its Effects on Components and Systems, Saint Malo, France, 13–16 September 1993. [Google Scholar]
- Veronese, I.; Cantone, M.C.; Chiodini, N.; Coray, A.; Fasoli, M.; Lomax, A.; Mones, E.; Moretti, F.; Vedda, A. Feasibility Study for the Use of Cerium-Doped Silica Fibres in Proton Therapy. Radiat. Meas. 2010, 45, 635–639. [Google Scholar] [CrossRef]
- Vedda, A.; Chiodini, N.; di Martino, D.; Fasoli, M.; Keffer, S.; Lauria, A.; Martini, M.; Moretti, F.; Spinolo, G.; Nikl, M.; et al. Ce3+-doped Fibers for Remote Radiation Dosimetry. Appl. Phys. Lett. 2004, 85, 6356–6358. [Google Scholar] [CrossRef]
- Mones, E.; Veronese, I.; Moretti, F.; Fasoli, M.; Loi, G.; Negri, E.; Brambilla, M.; Chiodini, N.; Brambilla, G.; Vedda, A. Feasibility Study for the Use of Ce3+-Doped Optical Fibres in Radiotherapy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 562, 449–455. [Google Scholar] [CrossRef]
- Ong, C.L.; Kandaiya, S.; Kho, H.T.; Chong, M.T. Segments of a Commercial Ge-doped Optical Fiber as a Thermoluminescent Dosimeter in Radiotherapy. Radiat. Meas. 2009, 44, 158–162. [Google Scholar] [CrossRef]
- Begum, M.; Rahman, A.; Zubair, H.T.; Abdul-Rashid, H.A.; Yusoff, Z.; Begum, M.; Alkhorayef, M.; Alzimami, K.; Bradley, D.A. The Effect of Different Dopant Concentration of Tailor-Made Silica Fibers in Radiotherapy Dosimetry. Radiat. Phys. Chem. 2017, 141, 73–77. [Google Scholar] [CrossRef]
- Noor, N.M.; Hussein, M.; Bradley, D.A.; Nisbet, A. Investigation of The Use of Ge-doped Optical Fibre for in Vitro IMRT Prostate Dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 819–823. [Google Scholar] [CrossRef]
- Hashim, S.; Al-Ahbabi, S.; Bradley, D.A.; Webb, M.; Jeynes, C.; Ramli, A.T.; Wagiran, H. The Thermoluminescence Response of Doped SiO2 Optical Fibres Subjected to Photon and Electron Irradiations. Appl. Radiat. Isot. 2009, 67, 423–427. [Google Scholar] [CrossRef]
- Hashim, S.; Bradley, D.A.; Saripan, M.I.; Ramli, A.T.; Wagiran, H. The Thermoluminescence Response of Doped SiO2 Optical Fibres Subjected to Fast Neutrons. Appl. Radiat. Isot. 2010, 68, 700–703. [Google Scholar] [CrossRef]
- Lambert, J.; McKenzie, D.R.; Law, S.; Elsey, J.; Suchowerska, N. A Plastic Scintillation Dosimeter for High Dose Rate Brachytherapy. Phys. Med. Biol. 2006, 51, 5505–5516. [Google Scholar] [CrossRef]
- Issa, F.; Hugtenburg, R.P.; Nisbet, A.; Bradley, D.A. Novel High Resolution I-125 Brachytherapy Source Dosimetry Using Ge-Doped Optical Fibres. Radiat. Phys. Chem. 2013, 92, 48–53. [Google Scholar] [CrossRef]
- Palmer, A.L.; di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A. Comparison of Methods for the Measurement of Radiation Dose Distributions in High Dose Rate (HDR) Brachytherapy: Ge-Doped Optical Fiber, EBT3 Gafchromic Film, and Presager (R) Radiochromic Plastic. Med Phys. 2013, 40, 061707. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, G.; Bogard, J.S. Optically Stimulated Luminescence Response of Commercial SiO2 Optical Fiber. J. Radioanal. Nucl. Chem. 2008, 277, 125–129. [Google Scholar] [CrossRef]
- Mahdiraji, G.A.; Dermosesian, E.; Safari, M.J.; Adikan, F.R.M.; Bradley, D.A. Collapsed-Hole Ge-Doped Photonic Crystal Fiber as a Diagnostic Radiation Dosimeter. J. Lightwave Technol. 2015, 33, 3439–3445. [Google Scholar] [CrossRef]
- Alyahyawi, A.; Jupp, T.; Alkhorayef, M.; Bradley, D.A. Tailor-made Ge-doped Silica-Glass for Clinical Diagnostic X-Ray Dosimetry. Appl. Radiat. Isot. 2018, 138, 45–49. [Google Scholar] [CrossRef]
- Caretto, N.; Chiodini, N.; Moretti, F.; Origgi, D.; Tosi, G.; Vedda, A. Feasibility of Dose Assessment in Radiological Diagnostic Equipments Using Ce-Doped Radio-Luminescent Optical Fibers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 612, 407–411. [Google Scholar] [CrossRef]
- Helou, N.A.; Hamzaoui, H.E.; Capoen, B.; Bouwmans, G.; Cassez, A.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Chadeyron, G.; Mahiou, R.; et al. Radioluminescence and Optically Stimulated Luminescence Responses of a Cerium-Doped Sol-Gel Silica Glass Under X-Ray Beam Irradiation. IEEE Trans. Nucl. Sci. 2018, 65, 1591–1597. [Google Scholar] [CrossRef]
- Fernandez, A.F.; Rodeghiero, P.; Brichard, B.; Berghmans, F.; Hartog, A.H.; Hughes, P.; Williams, K.; Leach, A.P. Radiation-tolerant Raman Distributed Temperature Monitoring System for Large Nuclear Infrastructures. IEEE Trans. Nucl. Sci. 2005, 52, 2689–2694. [Google Scholar] [CrossRef]
- Huston, A.; Justus, B.; Falkenstein, P.; Miller, R.; Ning, H.; Altemus, R. Remote Optical Fiber Dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 184, 55–67. [Google Scholar] [CrossRef]
- Evans, B.D.; Sigel, G.H.; Langworthy, J.B.; Faraday, B.J. The Fiber Optic Dosimeter on the Navigational Technology Satellite 2. IEEE Trans. Nucl. Sci. 1978, 25, 1619–1624. [Google Scholar] [CrossRef]
- Moss, C.E.; Casperson, D.E.; Echave, M.A.; Edwards, B.C.; Miller, J.R.; Saylor, W.W.; Sweet, M.R.; Valencia, J.E. A Space Fiber-Optic X-ray Burst Detector. IEEE Trans. Nucl. Sci. 1994, 41, 1328–1332. [Google Scholar] [CrossRef] [Green Version]
- Terasawa, K.; Doke, T.; Hasebe, N.; Kikuchi, J.; Kudo, K.; Murakami, T.; Takeda, N.; Tamura, T.; Torii, S.; Yamashita, M. Scintillating Fiber Camera for Neutron Dosimetry in Spacecraft. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 457, 499–508. [Google Scholar] [CrossRef]
- iXblue. iXblue on Board the International Space Station with the LUMINA Dosimeter. Available online: https://photonics.ixblue.com/news (accessed on 29 April 2021).
- Barrias, A.; Casas, J.R.; Villalba, S. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, G.; Karlik, S.E. A Distributed Optical Fiber Sensor for Temperature Detection in Power Cables. Sens. Actuators A Phys. 2006, 125, 148–155. [Google Scholar] [CrossRef]
- London, Y.; Sharma, K.; Diamandi, H.H.; Hen, M.; Bashan, G.; Zehavi, E.; Zilberman, S.; Berkovic, G.; Zentner, A.; Mayoni, M.; et al. Opto-Mechanical Fiber Sensing of Gamma Radiation. J. Lightwave Technol. 2021, 39, 6637–6645. [Google Scholar] [CrossRef]
Principle | Structure | Material | Ionizing Radiation | Refs. |
---|---|---|---|---|
Radiation-induced Attenuation (RIA) | Intrinsic Fiber Sensor | P Doped and P/Ce Codoped Silica | X-ray, Gamma-ray, and Beta Particle | [42,43,44,45] |
Al Doped Silica | X-ray (0–500 Gy), and Beta Particle | [44,46] | ||
N Doped Silica | X-ray | [41] | ||
PMMA | Gamma-ray | [21,47] | ||
Perfluorinated Polymer | Gamma-ray (0–100 Gy) | [48] | ||
Optically Stimulated Luminescence (OSL) | Extrinsic Sensor Connected to Fiber | Eu Doped KBr | Gamma-ray | [57] |
Intrinsic Fiber Sensor | Ge Doped Silica | Beta Particle | [82] | |
Fluoride Phosphate Glass | Beta Particle | [83,84] | ||
Thermo-Luminescence (TL) | Intrinsic Fiber Sensor | Nd Doped Silica | X-ray | [62] |
Ge Doped Silica | Gamma-ray, Alpha Particle, and Proton Beam | [63,64,65,66] | ||
Al Doped Silica | Alpha Particle | [65] | ||
Al-Tm Codoped Silica | Gamma-ray | [67] | ||
Radio-Luminescence (RL) | Extrinsic Sensor Connected to Fiber | Tb Doped Gd2O2S | X-ray and Beta Particles | [28,53,58,59,60] |
Tb/Ce Codoped Gd2O3 | X-ray | [61] | ||
Cr Doped Al2O3 | Gamma-ray and Beta Particle | [23,24,25] | ||
Eu Doped YVO4 | Gamma-ray | [24] | ||
Ti Doped CsI | Gamma-ray and Beta Particle | [24,28] | ||
Eu Doped and Eu/Li Codoped Y2O3 | Gamma-ray | [24,26,27] | ||
ZnWO4 | Beta Particle | [28] | ||
Quantum Dots Doped PMMA | X-ray (20–500 cGy) | [85] | ||
Polystyrene | Gamma-ray | [86] | ||
Intrinsic Fiber Sensor | Ce Doped Silica | X-ray and Proton Beam | [68,69,87] | |
Pr Doped Silica | X-ray and Gamma-ray | [70] | ||
Tb Doped Silica | X-ray | [88] | ||
Gd Doped Silica | Proton Beam | [89] | ||
Extrinsic Sensor Connected to Fiber and Intrinsic Fiber Sensor | Bi2O3-GeO2 (BGO) | X-ray | [90] | |
Ce Doped YAlO3 (YAP) | Gamma-ray | [91] | ||
Ce Doped Y3Al5O12 | Beta Particle | [28] | ||
Lu3Al5G23 | Gamma-ray and Proton Beam (0–100 kGy) | [71,72] | ||
Ce Doped Lu1.8Y2SiO5 (LYSO) | Gamma-ray | [92] | ||
Radiation-induced Grating Wavelength Shift (RI-GWS) | Fiber Bragg Grating | Ge/B Codoped Silica | Gamma-ray (0–116 kGy) | [93] |
Long Period Grating | Ge/B doped or Pure Silica Core and F Doped Cladding | Gramma-ray | [78,79,80,81,94,95,96,97] |
Application | Ionizing Radiation | Refs | |
---|---|---|---|
Industry Radiation Monitoring | Food Irradiation Dosimetry | X-ray, Gamma-ray | [114,115] |
Monitoring of Nuclear Industry
| Gamma-ray | [116,117,118,119,120] | |
Environmental Monitoring | X-ray, Gamma-ray | [121] | |
Radiation Monitoring in Space | Dosimetry for Spacecraft Shall | X-ray, Gamma-ray | [20,122,123] |
Radiation Monitoring | X-ray, Gamma-ray | [124,125,126] | |
Medical Radiation Dosimetry | External Beam Radiotherapy | X-ray, Gamma-ray, Proton beams | [127,128,129,130,131,132,133] |
Brachytherapy | X-ray, Gamma-ray, Beta radiation | [134,135,136,137,138] | |
Diagnostic Radiology | X-ray, Gamma-ray | [139,140,141,142] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xiang, Y.; Wang, C.; Chen, Y.; Tjin, S.C.; Wei, L. Recent Advances in Optical Fiber Enabled Radiation Sensors. Sensors 2022, 22, 1126. https://doi.org/10.3390/s22031126
Zhang J, Xiang Y, Wang C, Chen Y, Tjin SC, Wei L. Recent Advances in Optical Fiber Enabled Radiation Sensors. Sensors. 2022; 22(3):1126. https://doi.org/10.3390/s22031126
Chicago/Turabian StyleZhang, Jing, Yudiao Xiang, Chen Wang, Yunkang Chen, Swee Chuan Tjin, and Lei Wei. 2022. "Recent Advances in Optical Fiber Enabled Radiation Sensors" Sensors 22, no. 3: 1126. https://doi.org/10.3390/s22031126