Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = ferromagnetic pots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1360 KB  
Article
Numerical Investigation of a Novel Grinding Device for the One-Pot Production of Ferromagnetic Nanoparticles
by Marco Trofa and Marco Vocciante
Appl. Sci. 2024, 14(4), 1550; https://doi.org/10.3390/app14041550 - 15 Feb 2024
Viewed by 1171
Abstract
The use of nanoparticles (NPs) in industrial applications is consistently increasing given their peculiar properties compared to bulk precursor materials. As a result, there is a growing need to develop alternative technical strategies for the synthesis of such NPs using processes that are [...] Read more.
The use of nanoparticles (NPs) in industrial applications is consistently increasing given their peculiar properties compared to bulk precursor materials. As a result, there is a growing need to develop alternative technical strategies for the synthesis of such NPs using processes that are not only environmentally friendly but also easy and inexpensive to implement on an industrial scale. In this regard, a novel approach has recently been proposed for the safe and sustainable production of metal NPs directly from a bulky solid by magnetically driven low-energy wet milling, which overcomes the limits of applicability to ferromagnetic materials through a unique device configuration. In the present contribution, the understanding of this alternative configuration is deepened by computational investigation. Discrete Element Method (DEM) simulations were used to model the dynamics of the system, highlighting the role of the various parameters involved in the setup and operation of the process. The collisions between grinding and primary particles are analyzed in terms of frequency, impact angle, and energy. Comparing the results with the standard device configuration, the general trend is preserved, though collisions at higher impact angle and energy are also detected. Full article
Show Figures

Figure 1

14 pages, 11758 KB  
Article
Fe-Co Alloy Nanoparticles Dispersed in Polymer-Derived Carbon Support: Effect of Initial Polymer Nature on the Size, Structure and Magnetic Properties
by Andrey Vasilev, Mikhail Efimov, Dmitry Muratov, Petr Chernavskii, Kirill Cherednichenko, Ella Dzidziguri and Galina Karpacheva
Materials 2023, 16(20), 6694; https://doi.org/10.3390/ma16206694 - 14 Oct 2023
Cited by 1 | Viewed by 1585
Abstract
Fe-Co alloy nanoparticles with different sizes, supported by carbon derived from several polymers, namely polyacrylonitrile, polyvinyl alcohol and chitosan, have been synthesized by a one-pot method involving simultaneous metal nanoparticle formation and polymer carbonization. The method involves the joint dissolution of metal salts [...] Read more.
Fe-Co alloy nanoparticles with different sizes, supported by carbon derived from several polymers, namely polyacrylonitrile, polyvinyl alcohol and chitosan, have been synthesized by a one-pot method involving simultaneous metal nanoparticle formation and polymer carbonization. The method involves the joint dissolution of metal salts and a polymer, followed by annealing of the resulting dried film. Detailed XRD analysis confirmed the formation of Fe-Co alloy nanoparticles in each sample, regardless of the initial polymer used. Transmission electron microscopy images showed that the Fe-Co nanoparticles were all spherical, were homogeneously distributed within the carbon support and varied by size depending on the initial polymer nature and synthesis temperature. Fe-Co nanoparticles supported by polyacrylonitrile-derived carbon exhibited the smallest size (6–12 nm), whereas nanoparticles on chitosan-derived carbon support were characterized by the largest particle size (13–38 nm). The size dependence of magnetic properties were studied by a vibrating sample magnetometer at room temperature. For the first time, the critical particle size of Fe-Co alloy nanoparticles with equiatomic composition has been experimentally determined as 13 nm, indicating the transition of magnetic properties from ferromagnetic to superparamagnetic. Full article
(This article belongs to the Special Issue Nanocomposites: Structure, Properties and Application)
Show Figures

Figure 1

13 pages, 3640 KB  
Article
Ferroelectric, Magnetic and Dielectric Properties of SrCo0.2Zn0.2Fe11.6O18.8 Hexaferrite Obtained by “One-Pot” Green Sol-Gel Synthesis Utilizing Citrus reticulata Peel Extract
by Maria Vesna Nikolic, Souad Ammar-Merah, Nikola Ilić, Charanjeet Singh, Milena P. Dojcinovic and Rajshree B. Jotania
Crystals 2023, 13(10), 1452; https://doi.org/10.3390/cryst13101452 - 29 Sep 2023
Cited by 5 | Viewed by 1569
Abstract
SrCo0.2Zn0.2Fe11.6O18.8 hexaferrite was obtained by a “one-pot” green sol-gel synthesis method utilizing aqueous mandarin orange (Citrus reticulata) peel extract as an eco-friendly reactant. The research objective was to analyze the influence of cobalt and [...] Read more.
SrCo0.2Zn0.2Fe11.6O18.8 hexaferrite was obtained by a “one-pot” green sol-gel synthesis method utilizing aqueous mandarin orange (Citrus reticulata) peel extract as an eco-friendly reactant. The research objective was to analyze the influence of cobalt and zinc co-doping and the synthesis process on the structure, morphology, magnetic, dielectric and ferroelectric properties of strontium hexaferrite in view of future applications. Structural and morphological characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy coupled to energy dispersive X-ray spectrometry (SEM-EDX) confirmed the formation of a Co and Zn ion incorporated M-type magnetoplumbite with c/a lattice parameter ratio of 3.919 as crystallite nanoplatelets of 32 and 53 nm in thickness and width, respectively. The magnetic hysteresis loop of the synthesized powder recorded by a vibrating sample magnetometer (VSM) at room temperature confirmed its ferromagnetic nature with a coercive field (Hc) of 2539 Oe and a saturation magnetization (Ms) and remanent magnetization (Mr) of 44.6 emu/g and 21.4 emu/g, respectively. Room temperature ferroelectric loops measured at 100 Hz showed a maximal (Pmax) and a remanent (Pr) polarization of 195.4 and 31.0 nC/cm2, respectively. Both increased when the magnitude of the applied electrical field increased in the 1–24 kV/cm range. The dielectric constant decreased with the frequency increase, in accordance with the Maxwell–Wagner model, while the conductivity changed according to the Jonscher power law. The complex impedance was modeled with an equivalent circuit, enabling identification of the dominant contribution of grain boundary resistance (272.3 MΩ) and capacitance (7.16 pF). Full article
(This article belongs to the Special Issue Ferroelectric Materials)
Show Figures

Figure 1

15 pages, 5484 KB  
Article
Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation
by Ahmed M. Khalil, Laurent Michely, Rémy Pires, Stéphane Bastide, Khouloud Jlassi, Souad Ammar, Mohamed Jaziri and Mohamed M. Chehimi
Appl. Sci. 2021, 11(18), 8513; https://doi.org/10.3390/app11188513 - 14 Sep 2021
Cited by 26 | Viewed by 3546
Abstract
Developing micro- and nanomaterials for environmental pollution remediation is currently a pertinent topic. Among the plethora of strategies, designing supported nanocatalysts for the degradation of pollutants has achieved prominence. In this context, we are addressing one of the UN Sustainable Development Goals by [...] Read more.
Developing micro- and nanomaterials for environmental pollution remediation is currently a pertinent topic. Among the plethora of strategies, designing supported nanocatalysts for the degradation of pollutants has achieved prominence. In this context, we are addressing one of the UN Sustainable Development Goals by valorizing agrowaste as a source of biochar, which serves as a support for bimetallic nanocatalysts. Herein, olive pit powder particles were impregnated with copper and nickel nitrates and pyrolyzed at 400 °C. The resulting material consists of bimetallic CuNi-decorated biochar. CuNi nanocatalysts were found to be as small as 10 nm and very well dispersed over biochar with zero valent copper and nickel and the formation of copper–nickel solid solutions. The biochar@CuNi (B@CuNi) exhibited typical soft ferromagnet hysteresis loops with zero remanence and zero coercivity. The biochar@CuNi was found to be an efficient catalyst of the reduction in methyl orange (MO) dye, taken as a model pollutant. In sum, the one-pot method devised in this work provides unique CuNi-decorated biochar and broadens the horizons of the emerging topic of biochar-supported nanocatalysts. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 38413 KB  
Article
Magnetic Solid-Phase Extraction of Cadmium Ions by Hybrid Self-Assembled Multicore Type Nanobeads
by Gabriela Buema, Adrian Iulian Borhan, Daniel Dumitru Herea, George Stoian, Horia Chiriac, Nicoleta Lupu, Tiberiu Roman, Aurel Pui, Maria Harja and Daniel Gherca
Polymers 2021, 13(2), 229; https://doi.org/10.3390/polym13020229 - 11 Jan 2021
Cited by 9 | Viewed by 3827
Abstract
Novel hybrid inorganic CoFe2O4/carboxymethyl cellulose (CMC) polymeric framework nanobeads-type adsorbents with tailored magnetic properties were synthesized by a combination of coprecipitation and flash-cooling technology. Precise self-assembly engineering of their shape and composition combined with deep testing for cadmium removal [...] Read more.
Novel hybrid inorganic CoFe2O4/carboxymethyl cellulose (CMC) polymeric framework nanobeads-type adsorbents with tailored magnetic properties were synthesized by a combination of coprecipitation and flash-cooling technology. Precise self-assembly engineering of their shape and composition combined with deep testing for cadmium removal from wastewater are investigated. The development of a single nanoscale object with controllable composition and spatial arrangement of CoFe2O4 (CF) nanoparticles in carboxymethyl cellulose (CMC) as polymeric matrix, is giving new boosts to treatments of wastewaters containing heavy metals. The magnetic nanobeads were characterized by means of scanning electron microscopy (SEM), powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TG), and vibrational sample magnetometer (VSM). The magnetic properties of CF@CMC sample clearly exhibit ferromagnetic nature. Value of 40.6 emu/g of saturation magnetization would be exploited for magnetic separation from aqueous solution. In the adsorptions experiments the assessment of equilibrium and kinetic parameters were carried out by varying adsorbent dosage, contact time and cadmium ion concentration. The kinetic behavior of adsorption process was best described by pseudo-second-order model and the Langmuir isotherm was fitted best with maximum capacity uptake of 44.05 mg/g. Full article
(This article belongs to the Special Issue Metal Nanoparticles–Polymers Hybrid Materials II)
Show Figures

Graphical abstract

20 pages, 4229 KB  
Article
One-Pot Self-Assembly of Dinuclear, Tetranuclear, and H-Bonding-Directed Polynuclear Cobalt(II), Cobalt(III), and Mixed-Valence Co(II)/Co(III) Complexes of Schiff Base Ligands with Incomplete Double Cubane Core
by Santokh S. Tandon, Neil Patel, Scott D. Bunge, Esther C. Wang, Rachel Thompson and Laurence K. Thompson
Materials 2020, 13(23), 5425; https://doi.org/10.3390/ma13235425 - 28 Nov 2020
Cited by 2 | Viewed by 2648
Abstract
The reaction of 2,6-diformyl-4-methylphenol (DFMF) with 1-amino-2-propanol (AP) and tris(hydroxymethyl)aminomethane (THMAM) was investigated in the presence of Cobalt(II) salts, (X = ClO4, CH3CO2, Cl, NO3), sodium azide (NaN3), [...] Read more.
The reaction of 2,6-diformyl-4-methylphenol (DFMF) with 1-amino-2-propanol (AP) and tris(hydroxymethyl)aminomethane (THMAM) was investigated in the presence of Cobalt(II) salts, (X = ClO4, CH3CO2, Cl, NO3), sodium azide (NaN3), and triethylamine (TEA). In one pot, the variation in Cobalt(II) salt results in the self-assembly of dinuclear, tetranuclear, and H-bonding-directed polynuclear coordination complexes of Cobalt(III), Cobalt(II), and mixed-valence CoIICoIII: [Co2III(H2L1)2(AP1)(N3)](ClO4)2 (1), [Co4(H2L1)23-1,1,1-N3)2(µ-1,1-N3)2Cl2(CH3OH)2]·4CH3OH (2), [Co2IICo2III(HL2)2(µ-CH3CO2)23-OH)2](NO3)2·2CH3CH2OH (3), and [Co2IICo2III (H2L12)2(THMAM−1)2](NO3)4 (4). In 1, two cobalt(III) ions are connected via three single atom bridges; two from deprotonated ethanolic oxygen atoms in the side arms of the ligands and one from the1-amino-2-propanol moiety forming a dinuclear unit with a very short (2.5430(11) Å) Co-Co intermetallic separation with a coordination number of 7, a rare feature for cobalt(III). In 2, two cobalt(II) ions in a dinuclear unit are bridged through phenoxide O and μ3-1,1,1-N3 azido bridges, and the two dinuclear units are interconnected by two μ-1,1-N3 and two μ3-1,1,1-N3 azido bridges generating tetranuclear cationic [Co4(H2L1)23-1,1,1-N3)2(µ-1,1-N3)2Cl2(CH3OH)2]2+ units with an incomplete double cubane core, which grow into polynuclear 1D-single chains along the a-axis through H-bonding. In 3, HL2− holds mixed-valent Co(II)/Co(III) ions in a dinuclear unit bridged via phenoxide O, μ-1,3-CH3CO2, and μ3-OH bridges, and the dinuclear units are interconnected through two deprotonated ethanolic O in the side arms of the ligands and two μ3-OH bridges generating cationic tetranuclear [Co2IICo2III(HL2)2(µ-CH3CO2)23-OH)2]2+ units with an incomplete double cubane core. In 4, H2L1−2 holds mixed-valent Co(II)/Co(III) ions in dinuclear units which dimerize through two ethanolic O (μ-RO) in the side arms of the ligands and two ethanolic O (μ3-RO) of THMAM bridges producing centrosymmetric cationic tetranuclear [Co2IICo2III (H2L12)2(THMAM−1)2]4+ units which grow into 2D-sheets along the bc-axis through a network of H-bonding. Bulk magnetization measurements on 2 demonstrate that the magnetic interactions are completely dominated by an overall ferromagnetic coupling occurring between Co(II) ions. Full article
(This article belongs to the Special Issue Biochemical/Inorganic Hybrid Materials)
Show Figures

Figure 1

16 pages, 16834 KB  
Article
Power Curve-Fitting Control Method with Temperature Compensation and Fast-Response for All-Metal Domestic Induction Heating Systems
by Sang Min Park, Eunsu Jang, Dongmyoung Joo and Byoung Kuk Lee
Energies 2019, 12(15), 2915; https://doi.org/10.3390/en12152915 - 29 Jul 2019
Cited by 16 | Viewed by 6115
Abstract
Typical domestic induction cooktops can only heat ferromagnetic pots/vessels. However, to increase the availability and marketability of induction heating (IH) cooktop products, heating techniques for all types of metallic pots (i.e., created from metals such as aluminum, copper, and stainless steel) are required. [...] Read more.
Typical domestic induction cooktops can only heat ferromagnetic pots/vessels. However, to increase the availability and marketability of induction heating (IH) cooktop products, heating techniques for all types of metallic pots (i.e., created from metals such as aluminum, copper, and stainless steel) are required. To satisfy the requirements of induction cooktops, this paper proposes the design of an all-metal domestic IH system that can heat any type of metallic pot while considering the temperature variation of the working-coil. A control algorithm using a power curve-fitting method (CFM) is presented to quickly respond to load parameter variations in the IH. In addition, the CFM control algorithm is established to compensate for the power reference value by reflecting the increase in the working-coil temperature during the heating of the non-ferromagnetic pot. To evaluate the performance of the proposed system, the control algorithm strategy and experimental results based on a 3.2 kW all-metal IH cooktop are presented. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop