Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = fermented meat product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3251 KiB  
Article
Effects of Dietary Cinnamaldehyde Supplementation on Growth Performance, Serum Antioxidant Capacity, Intestinal Digestive Enzyme Activities, Morphology, and Caecal Microbiota in Meat Rabbits
by Dongjin Chen, Yuxiang Lan, Yuqin He, Chengfang Gao, Bin Jiang and Xiping Xie
Animals 2025, 15(15), 2262; https://doi.org/10.3390/ani15152262 - 1 Aug 2025
Viewed by 210
Abstract
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned [...] Read more.
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned meat rabbits (n = 450) were randomly assigned to five groups, Groups A, B, C, D, and E, and fed 0, 50, 100, 150, and 200 mg/kg CA diets, respectively, for 47 days. Biological samples including serum (antioxidants), duodenal/caecal content (enzymes), intestinal tissue (morphology), and caecal digesta (microbiota) were collected at day 47 postweaning for analysis. Groups C and D showed significantly higher final body weights than Group A, with Group D (150 mg/kg CA) demonstrating superior growth performance including 11.73% longer duodenal villi (p < 0.05), 28.6% higher microbial diversity (p < 0.01), and 62% lower diarrhoea rate versus controls. Digestive enzyme activity as well as serum antioxidant capacity increased with increasing CA dose, Microbiota analysis revealed CA increased fibre-fermenting Oscillospiraceae (+38%, p < 0.01) while reducing Ruminococcaceae (−27%, p < 0.05). Thus, dietary CA supplementation at 150 mg/kg was identified as the optimal CA dose for improving meat rabbit production. These findings highlight CA as a functional feed additive for promoting sustainable rabbit production. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

24 pages, 4143 KiB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 - 31 Jul 2025
Viewed by 193
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

21 pages, 1878 KiB  
Article
Effects of Dietary Supplementation with Fermented Zanthoxylum schinifolium Leaves on Growth Performance, Meat Quality, and Sensory Traits in Sanhuang Chicken
by Yi Zhang, Mingze Fu, Gang Yang, Xiaowei Peng, Hongwei Wang and Jianquan Kan
Foods 2025, 14(14), 2542; https://doi.org/10.3390/foods14142542 - 21 Jul 2025
Viewed by 305
Abstract
Incorporating specific nutritional supplements into animal diets can significantly enhance the quality and various characteristics of animal meat. This study investigated the effects of fermented Zanthoxylum schinifolium leaves (ZSLs) on growth performance, meat quality, and sensory attributes in Sanhuang chickens. Three hundred one-day-old [...] Read more.
Incorporating specific nutritional supplements into animal diets can significantly enhance the quality and various characteristics of animal meat. This study investigated the effects of fermented Zanthoxylum schinifolium leaves (ZSLs) on growth performance, meat quality, and sensory attributes in Sanhuang chickens. Three hundred one-day-old Sanhuang chickens were randomly divided into five groups and reared for 70 days: NC (control, basal diet), NF (6% unfermented ZSLs), LDG (3% fermented ZSLs), MDG (6% fermented ZSLs), and HDG (9% fermented ZSLs). Supplementation with 6% fermented ZSLs significantly increased the leg muscle percentage by 7.4% and decreased the abdominal fat percentage by 22.6%. Meat quality improved notably in MDG, with higher levels of polyunsaturated fatty acids, particularly n-3 polyunsaturated fatty acids. Increasing the proportion of fermented ZSLs enhanced the levels of umami amino acids and sweet amino acids by 36.5% and 11.6%, respectively. Additionally, the enhancement of aroma and flavor of chicken may be correlated with supplementation of fermented ZSLs. These results establish fermented ZSLs as a valuable feed additive for improving production efficiency and meat quality in Sanhuang chickens. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

23 pages, 3262 KiB  
Article
An Exploratory Study on the Growth Dynamics of Alkalihalophilus marmarensis Using a Model-Based Approach
by Yağmur Atakav, Eldin Kurpejović, Dilek Kazan and Nihat Alpagu Sayar
Appl. Microbiol. 2025, 5(3), 69; https://doi.org/10.3390/applmicrobiol5030069 - 17 Jul 2025
Viewed by 206
Abstract
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall [...] Read more.
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall productivity. This study presents a model-driven investigation of how pH (8.8 and 10.5), culture duration (24 and 48 h), and nitrogen source composition (peptone and meat extract) affect cell dry mass, lactate, and protease synthesis. Using the response surface methodology and multi-objective optimization, we established predictive models (R2 up to 0.92) and uncovered key trade-offs in biomass and metabolite yields. Our findings reveal that peptone concentration critically shapes the metabolic output, with low levels inhibiting growth and high levels suppressing protease activity. Maximum cell dry mass (4.5 g/L), lactate (19.3 g/L), and protease activity (43.5 U/mL) were achieved under distinct conditions, highlighting the potential for targeted process tuning. While the model validation confirmed predictions for lactate, deviations in cell dry mass and protease outputs underscore the complexity of growth–product interdependencies under nutrient-limited regimes. This work delivers a foundational framework for developing fermentations with A. marmarensis and advancing its application in sustainable, high-pH industrial bioprocesses. The insights gained here can be further leveraged through synthetic biology and bioprocess engineering to fully exploit the metabolic potential of obligate alkaliphiles like A. marmarensis. Full article
Show Figures

Figure 1

22 pages, 929 KiB  
Article
Effects of Salsola tragus as a Forage Source During Fattening on Productivity and Meat Metabolomics of Rambouillet Lambs
by José Alejandro Roque-Jiménez, Lorena Diaz de León-Martinez, German David Mendoza-Martínez, Rogelio Flores-Ramírez, Guillermo Espinosa-Reyes, Alejandro E. Relling, Ulises Macias-Cruz, Marisol López-Romero and Héctor Aarón Lee-Rangel
Ruminants 2025, 5(3), 32; https://doi.org/10.3390/ruminants5030032 - 16 Jul 2025
Viewed by 259
Abstract
The aims of the current study were to characterize the natural compounds of Salsola tragus via GC-MS and determine its effects as a forage source on lamb growth, in vitro rumen fermentation kinetics, carcass quality, cellular damage, and metabolomic meat interaction. Twenty-one Rambouillet [...] Read more.
The aims of the current study were to characterize the natural compounds of Salsola tragus via GC-MS and determine its effects as a forage source on lamb growth, in vitro rumen fermentation kinetics, carcass quality, cellular damage, and metabolomic meat interaction. Twenty-one Rambouillet lambs were randomly assigned to one of three experimental diets (seven lambs per treatment): (1) a control diet (W/o-Salsola) containing 300 g/Kg dry matter (DM) of sorghum stover; (2) a diet with a medium inclusion of Salsola tragus (15-Salsola), which contained 150 g/Kg DM of Salsola tragus and 150 g/Kg DM of sorghum stover; and (3) a diet comprising 300 g/Kg of Salsola tragus (30-Salsola). The results showed there were no differences (p > 0.05) in lamb growth performance during the fattening phase. The in vitro gas analysis demonstrated that the 30-Salsola treatment increased lag time h−1 (p < 0.05) and reduced gas production (p = 0.03). The metabolomic analysis findings suggest that the treatments that included Salsola tragus significantly positively affect the metabolomic composition of meat (p < 0.05). The use of 15-Salsola as a source of forage is promising for feeding lambs during the fattening phase. Full article
18 pages, 1720 KiB  
Article
In Vitro Preliminary Characterization of Lactiplantibacillus plantarum BG112 for Use as a Starter Culture for Industrial Dry-Fermented Meats
by María Inés Palacio, María Julia Ruiz, María Fernanda Vega and Analía Inés Etcheverría
Fermentation 2025, 11(7), 403; https://doi.org/10.3390/fermentation11070403 - 14 Jul 2025
Viewed by 436
Abstract
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, [...] Read more.
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, probiotic properties, and safety for use in food formulations. The strain was characterized through morphological and biochemical tests, carbohydrate fermentation profiling, and various in vitro assays based on FAO/WHO criteria for probiotic selection. These included proteolytic activity, auto-aggregation capacity, tolerance to simulated gastric juice and bile salts, antimicrobial activity, and resistance to sodium chloride, nitrite, and low pH. Safety evaluations were also performed by testing antibiotic susceptibility, hemolytic activity, and DNAse production. The results showed that L. plantarum BG112 exhibited strong tolerance to adverse environmental conditions typically found during sausage fermentation and ripening, along with significant inhibitory activity against pathogenic bacteria, such as Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus. The strain also demonstrated no hemolytic or DNAse activity and presented a favorable antibiotic sensitivity profile, meeting key safety requirements for probiotic use. Further studies using meat matrices and in vivo models are needed to validate these findings. This study contributes to the early-stage selection of safe and technologically suitable strains for use in fermented meat products. These findings support the potential application of L. plantarum BG112 as a safe and effective starter culture in the development of high-value, premium fermented meat products, aligned with current consumer demand for health-enhancing and natural foods. Full article
Show Figures

Figure 1

11 pages, 344 KiB  
Communication
Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage
by Nevijo Zdolec, Marta Kiš, Mladenka Vukšić, Hrvoje Mazija, Ivana Bazina and Snježana Kazazić
Processes 2025, 13(7), 2216; https://doi.org/10.3390/pr13072216 - 11 Jul 2025
Viewed by 362
Abstract
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n [...] Read more.
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n = 88) of lactic acid bacteria (LAB) were collected during maturation and subjected to MALDI-TOF mass spectrometry identification. The capacity to combat Listeria was screened against five strains using the agar well diffusion method in 63 selected LAB isolates. MALDI-TOF mass spectrometry identified four different LAB genera, namely Enterococcus, Lactococcus, Leuconostoc and Lactobacillus, the proportions of which differed significantly during the production phases (p < 0.001). Enterococcus faecalis was the most prevalent LAB species in the initial sausage dough. The presence of lactococci (Lactococcus lactis) and enterococci was detected during the 14- and 30-day ripening period and was gradually displaced by leuconostocs and lactobacilli. Lactobacilli appeared to be abundant during the central and late maturation phases, and consisted of only two species—Latilactobacillus sakei and Latilactobacillus curvatus. In total, 38 LAB isolates (60%) showed antilisterial activity toward at least one Listeria indicator strain. The proportions of antilisterial LAB differed significantly during sausage maturation. Inhibitory activity against all indicator Listeria was detected in the neutralized cell-free supernatants of five strains of Enterococcus faecalis, two L. sakei strains and one Leuconostoc mesenteroides strain. The antilisterial activity observed in the indigenous LAB revealed the possible role of L. sakei as a bioprotective culture, as well as the role of Ln. mesenteroides and E. faecalis as bacteriocin producers, for practical applications. Full article
Show Figures

Figure 1

18 pages, 1707 KiB  
Article
Effects of Low-Protein Diet Supplemented with Fermented Feed on Meat Quality, Fatty Acid Composition, and Gut Microbiota in Growing–Fattening Pigs
by Qidong Zhu, Xiaorong Zhou, Dingbiao Long, Laifu Leng, Rong Xiao, Renli Qi, Jing Wang, Xiaoyu Qiu and Qi Wang
Agriculture 2025, 15(13), 1457; https://doi.org/10.3390/agriculture15131457 - 6 Jul 2025
Viewed by 457
Abstract
Fermented feed has considerable potential as a high-quality protein source in animal production. This research aimed to examine the effects of a low-protein (LP) diet, supplemented with fermented feed, on the meat quality and intestinal health of growing–fattening pigs. The pigs were randomly [...] Read more.
Fermented feed has considerable potential as a high-quality protein source in animal production. This research aimed to examine the effects of a low-protein (LP) diet, supplemented with fermented feed, on the meat quality and intestinal health of growing–fattening pigs. The pigs were randomly divided into three groups, and a total of 72 growing–fattening pigs were subjected to the experiment. They were fed the control (CON) diet, LP diet, and LP diet supplemented with fermented rapeseed meals and fermented distiller’s grains (FLP), respectively. The results indicated that the FLP diet altered the structure of the intestinal microbiota and regulated the composition of unsaturated fatty acids in the longissimus dorsi. Furthermore, the FLP diet upregulated the expression of genes associated with myosin heavy chain isoforms (p < 0.05) and modified the content of short-chain fatty acids in the intestines (p < 0.05). In summary, the addition of fermented distiller’s grains (FDGs) and fermented rapeseed meals (FRMs) to the LP diet enhanced fatty acid metabolism and intestinal barrier function in growing–fattening pigs. Full article
(This article belongs to the Special Issue Assessment of Nutritional Value of Animal Feed Resources)
Show Figures

Figure 1

16 pages, 603 KiB  
Article
Natural Honey-Propolis Combinations with Health-Promoting Potential: Antibacterial Activity Against Foodborne Pathogens
by Vanesa Sánchez-Martín, Marta B. López-Parra, Amaia Iriondo-DeHond, Aneta Wojdyło, Anna Michalska-Ciechanowska, Ana I. Haza, Paloma Morales and María Dolores del Castillo
Pharmaceuticals 2025, 18(7), 988; https://doi.org/10.3390/ph18070988 - 1 Jul 2025
Viewed by 474
Abstract
Background/Objectives: Natural products such as honey and propolis have been widely studied for their antimicrobial properties. Combining these substances has shown synergistic effects against foodborne pathogens and has also demonstrated promising results in previous applications on fermented meat products. This study evaluated the [...] Read more.
Background/Objectives: Natural products such as honey and propolis have been widely studied for their antimicrobial properties. Combining these substances has shown synergistic effects against foodborne pathogens and has also demonstrated promising results in previous applications on fermented meat products. This study evaluated the antibacterial potential of Spanish thyme (Thymus spp.) and chestnut (Castanea sativa) honeys, enriched with 10% ethanolic extract of propolis, against two major foodborne pathogens: Listeria monocytogenes and Clostridium perfringens. Methods: Antibacterial activity was assessed using broth microdilution assays and colony-forming unit (CFU) counts. The phenolic composition of the most active samples was characterized by LC-MS-Q/TOF and UPLC-PDA to identify and quantify the bioactive compounds. Results: All samples exhibited differential responses depending on the pathogen, with C. perfringens being the most susceptible. Propolis addition significantly enhanced the bactericidal response of honey against L. monocytogenes and C. perfringens (p < 0.05). This effect correlated with higher levels of antimicrobial phenolic compounds, particularly cinnamic acid derivatives, pinobanksin-3-O-hexanoside, sakuranetin, quercetin, and quercetin-3,7-dimethyl ether. Conclusions: These findings support the synergistic antibacterial potential of honey-propolis combinations, highlighting their application as natural preservatives for reducing the risk of foodborne diseases, as well as bioactive ingredients in nutraceutical formulations with antibacterial properties and additional health benefits. Full article
(This article belongs to the Special Issue Natural Products in Health Promotion and Disease Prevention 2025)
Show Figures

Graphical abstract

42 pages, 1954 KiB  
Review
Beyond Meat Substitution: A Multifaceted Review of Plant-Based and Alternative Proteins, from Environmental Impact to Analytical Technologies
by Abel Navarré, Leonardo Musto and Tiago Nazareth
Foods 2025, 14(13), 2312; https://doi.org/10.3390/foods14132312 - 30 Jun 2025
Viewed by 1372
Abstract
The escalating environmental and health concerns regarding conventional meat consumption have intensified the global search for sustainable dietary alternatives. Plant-based foods and meat substitutes have emerged as promising solutions. These products aim to replicate the sensory and nutritional attributes of meat while mitigating [...] Read more.
The escalating environmental and health concerns regarding conventional meat consumption have intensified the global search for sustainable dietary alternatives. Plant-based foods and meat substitutes have emerged as promising solutions. These products aim to replicate the sensory and nutritional attributes of meat while mitigating ecological impacts. This review examined the current scenario of plant-based foods and meat substitutes, focusing on their environmental footprints, health implications, innovative ingredient developments, consumer acceptance, and the use of analytical tools in quality control. Life cycle assessments indicate that plant-based foods and meat substitutes significantly reduce greenhouse gas emissions, land use, and water consumption compared to animal-based products. These alternatives offer benefits like lower saturated fat. However, they still struggle to match the amino acid composition of meat. Consumer acceptance is influenced by factors including taste, texture, and cultural perceptions, and still requires sensory improvement. Innovations in ingredient sourcing, like the use of legumes, mycoproteins, and fermentation-derived components, are enhancing product quality and diversity. Furthermore, analytical tools such as electronic noses, electronic tongues, spectroscopy, and chemometric methods ensure product consistency and fulfill consumer expectations. By synthesizing interdisciplinary insights, this review offers an integrated perspective to guide future research and development in the field of meat alternatives. Full article
(This article belongs to the Special Issue Feature Review on Food Analytical Methods)
Show Figures

Graphical abstract

17 pages, 982 KiB  
Article
Growth Performance, Carcass Quality and Gut Microbiome of Finishing Stage Pigs Fed Formulated Protein-Energy Nutrients Balanced Diet with Banana Agro-Waste Silage
by Lan-Szu Chou, Chih-Yu Lo, Chien-Jui Huang, Hsien-Juang Huang, Shen-Chang Chang, Brian Bor-Chun Weng and Chia-Wen Hsieh
Life 2025, 15(7), 1033; https://doi.org/10.3390/life15071033 - 28 Jun 2025
Viewed by 428
Abstract
This study evaluated the effects of fermented banana agro-waste silage (BAWS) in finishing diets for KHAPS pigs (Duroc × MeiShan hybrid). BAWS was produced via 30 days of anaerobic fermentation of disqualified banana fruit, pseudostem, and wheat bran, doubling crude protein content and [...] Read more.
This study evaluated the effects of fermented banana agro-waste silage (BAWS) in finishing diets for KHAPS pigs (Duroc × MeiShan hybrid). BAWS was produced via 30 days of anaerobic fermentation of disqualified banana fruit, pseudostem, and wheat bran, doubling crude protein content and generating short-chain fatty acids, as indicated by a satisfactory Flieg’s score. Thirty-six pigs were assigned to control (0%), 5%, or 10% BAWS diets formulated to meet NRC nutritional guidelines. Over a 70-day period, BAWS inclusion caused no detrimental effects on growth performance, carcass traits, or meat quality; a transient decline in early-stage weight gain and feed efficiency occurred in the 10% group, while BAWS-fed pigs demonstrated reduced backfat thickness and increased lean area. Fore gut microbiome analysis revealed reduced Lactobacillus and elevated Clostridium sensu stricto 1, Terrisporobacter, Streptococcus, and Prevotella, suggesting enhanced fiber and carbohydrate fermentation capacity. Predictive COG (clusters of orthologous groups)-based functional profiling showed increased abundance of proteins associated with carbohydrate transport (COG2814, COG0561, COG0765) and stress-response regulation (COG2207). These results support BAWS as a sustainable feed ingredient that maintains production performance and promotes fore gut microbial adaptation, with implications for microbiota-informed nutrition and stress resilience in swine. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

20 pages, 5045 KiB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Viewed by 500
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

14 pages, 321 KiB  
Article
The Effect of Different Amounts of Glycerol Fed to Lambs on Their Growth, Rumen Fermentation, Carcass Traits, Meat Characteristics, and Shelf Life
by Uriel Hidalgo-Hernández, María Esther Ortega-Cerrilla, Pedro Zetina-Córdoba, José G. Herrera-Haro and José Vian
Agriculture 2025, 15(11), 1185; https://doi.org/10.3390/agriculture15111185 - 30 May 2025
Viewed by 458
Abstract
Glycerol can effectively replace corn as an energy source in lamb diets without negatively impacting productive performance. This study evaluated the effects of substituting ground corn with different glycerol levels on the productive performance, ruminal fermentation, carcass characteristics, and meat quality at 24 [...] Read more.
Glycerol can effectively replace corn as an energy source in lamb diets without negatively impacting productive performance. This study evaluated the effects of substituting ground corn with different glycerol levels on the productive performance, ruminal fermentation, carcass characteristics, and meat quality at 24 h, 7, 14, and 21 d post-slaughter. A total of 40 male Suffolk × Hampshire crossbred lambs (25 ± 5 kg live weight) were used in a completely randomized design with four treatment groups (n = 10 each): 0% glycerol (GLY0), 5% glycerol (GLY05), 10% glycerol (GLY10), and 15% glycerol (GLY15). Including glycerol in the diet did not affect growth performance (p > 0.05). However, it did lead to an increase (p < 0.05) in the concentrations of NH3-N and the proportions of propionic and butyric acids, while the acetic acid levels decreased (p < 0.05). The backfat thickness, loin eye area (LEA), and carcass yield were not significantly affected (p > 0.05) by the addition of glycerol. Additionally, pH and color were also unaffected (p > 0.05), although the water-holding capacity showed a decrease (p < 0.05) over the shelf life of the meat. The chemical composition of the meat remained similar across all treatments, time points, and interactions (p > 0.05). In contrast, the protein content was significantly affected (p < 0.05) by the glycerol inclusion, time, and interactions between treatment and time. The results indicate that substituting up to 15% of ground corn with glycerol in lamb diets does not negatively impact productive performance, backfat thickness, LEA, carcass traits, or meat quality during shelf life. Throughout the shelf life, the crude protein concentrations and water-holding capacity decreased, while the propionic acid and NH3-N concentrations increased. Full article
30 pages, 592 KiB  
Review
Effect of Bioprocessing on the Nutritional Composition, Antinutrients, Functional Properties, and Metabolites of Bambara Groundnut and Its Prospective Food Applications: A Review
by Mpho Edward Mashau, Kgaogelo Edwin Ramatsetse, Thakhani Takalani, Oluwaseun Peter Bamidele and Shonisani Eugenia Ramashia
Molecules 2025, 30(11), 2356; https://doi.org/10.3390/molecules30112356 - 28 May 2025
Viewed by 992
Abstract
Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilized leguminous crop, with its grains consumed differently, especially in developing countries. Bambara groundnut (BGN) is the cheapest source of protein and a rich source of dietary fiber, carbohydrates, amino acids, and minerals. It [...] Read more.
Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilized leguminous crop, with its grains consumed differently, especially in developing countries. Bambara groundnut (BGN) is the cheapest source of protein and a rich source of dietary fiber, carbohydrates, amino acids, and minerals. It also contains a variety of non-nutritional components known as phytochemicals. The phytochemicals in BGN include polyphenols, flavonoids, tannins, phytic acid, oxalate, and trypsin inhibitors. Nevertheless, some phytochemicals are classified as antinutrients because they impair nutrient absorption. Bambara groundnut also contains metabolites, such as epicatechin, catechin, procyanidin, esters, and citric acid. Bioprocessing, such as dehulling, germination, malting, fermentation, ultrasonication, micronization, and others, reduces BGN flour’s antinutrients. However, bioprocessing may increase or decrease the levels of metabolites in BGN flour. For example, fermentation increases esters, whereas malting decreases them. Various studies have reported the use of BGN flour in bakery products, meat products, non-alcoholic beverages, pasta, and others. Thus, this study aimed to review the influence of bioprocessing on the nutritional quality, antinutrients, functional characteristics, and metabolites of BGN flour and its potential food applications. This study will explore the health benefits of bioprocessed BGN flour and promote its use in various food products. Full article
Show Figures

Figure 1

21 pages, 4042 KiB  
Article
Screening, Identification, and Application of Superior Starter Cultures for Fermented Sausage Production from Traditional Meat Products
by Zijie Dong, Longfei Wang, Yanzheng Ge, Yongqiang An, Xiaoxue Sun, Ke Xue, Haoyang Xie, Ran Wang, Junguang Li and Lishui Chen
Fermentation 2025, 11(6), 306; https://doi.org/10.3390/fermentation11060306 - 27 May 2025
Viewed by 687
Abstract
In this study, 43 strains of Staphylococcus spp. and 22 strains of lactic acid bacteria (LAB), isolated from six representative fermented meat products (domestic and international), were subjected to a comprehensive safety evaluation, including hemolytic activity, catalase test, hydrogen sulfide production, and antibiotic [...] Read more.
In this study, 43 strains of Staphylococcus spp. and 22 strains of lactic acid bacteria (LAB), isolated from six representative fermented meat products (domestic and international), were subjected to a comprehensive safety evaluation, including hemolytic activity, catalase test, hydrogen sulfide production, and antibiotic susceptibility screening. Nine strains were selected for secondary screening based on safety criteria, fermentation characteristics, and acid and salt tolerance tests. Two optimal strains were identified—Staphylococcus saprophyticus LH-5 and Latilactobacillus sakei OFN-11—demonstrating excellent compatibility and no mutual antagonism. Both strains were non hemolytic, catalase positive, susceptible to some of the antibiotic tested, and did not produce hydrogen sulfide, mucus, or gas. These favorable fermentation characteristics included lipase/protease production, amino acid decarboxylase negativity, and salt and acid tolerance. Application experiments in fermented sausages were analyzed for 55 volatile compounds, related to meaty, fruity, and fatty aroma profiles compared to commercial starter cultures. The formulation including the selected strains exhibited lower acidity than its commercial unterparts while maintaining superior sensory and physicochemical attributes. These findings suggest that the S. saprophyticus LH-5 and L. sakei OFN-11 consortium holds promising potential as a starter culture for fermented meat products, offering technological advantages to become a fermentation agent that meets the preferences of Chinese consumers. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

Back to TopTop