Natural Honey-Propolis Combinations with Health-Promoting Potential: Antibacterial Activity Against Foodborne Pathogens
Abstract
1. Introduction
2. Results
2.1. Antimicrobial Activity of Honey-Propolis Mixtures
2.2. Bioactive Compound Characterization
3. Discussion
3.1. Antimicrobial Efficacy, Phenolic Compounds, and Comparison with Previous Studies
3.2. Future Directions, Limitations, and Potential Applications
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Raw Materials
4.3. Foodborne Pathogen Strains and Culture Conditions
4.4. Evaluation of the Antibacterial Activity of Bee Products
4.5. Analysis of Individual Polyphenols
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BHI | Brain heart infusion |
CDC | Centers for Disease Control and Prevention |
CFUs | Colony-forming units |
C. perfringens | Clostridium perfringens |
ECDC | European Centre for Disease Prevention and Control |
E. coli | Escherichia coli |
EFSA | European Food Safety Authority |
LC-MS-Q/TOF | Liquid chromatography–mass spectrometry–quadrupole time of flight |
L. monocytogenes | Listeria monocytogenes |
MBC | Minimum bactericidal concentration |
MIC | Minimum inhibitory concentration |
SD | Standard deviation |
S. aureus | Staphylococcus aureus |
UPLC-PDA | Ultra-performance liquid chromatography coupled to photodiode array detection |
WHO | World Health Organization |
References
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Foodborne Diseases. Available online: https://Www.Who.Int/Health-Topics/Foodborne-Diseases#tab=tab_2 (accessed on 9 February 2023).
- Antunes, P.; Novais, C.; Peixe, L. Food-to-Humans Bacterial Transmission. Microbiol. Spectr. 2020, 8, 161–193. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Takhar, S.R.; Ibarra-Sánchez, L.A.; Miller, M.J. Effect of Antimicrobial Treatments Applied Individually and in Combination on the Growth of Listeria Monocytogenes in Queso Fresco at 3 Different Temperatures. JDS Commun. 2022, 3, 307–311. [Google Scholar] [CrossRef]
- Todd, E.C.D. Foodborne Diseases: Overview of Biological Hazards and Foodborne Diseases. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 221–242. ISBN 9780123786128. [Google Scholar]
- Koutsoumanis, K.; Allende, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; Nauta, M.; et al. Persistence of Microbiological Hazards in Food and Feed Production and Processing Environments. EFSA Journal 2024, 22, e8521. [Google Scholar] [CrossRef]
- Vázquez, E.; de Gregorio-Vicente, O.; Soriano, V.; Álvarez-Domínguez, C.; Corral, O.; Moreno-Torres, V. Increased Incidence and Mortality from Listeria Monocytogenes Infection in Spain. Int. J. Infect. Dis. 2024, 145, 107089. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2023 Zoonoses Report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- León-Ruiz, V.; González-Porto, A.V.; Al-Habsi, N.; Vera, S.; San Andrés, M.P.; Jauregi, P. Antioxidant, Antibacterial and ACE-Inhibitory Activity of Four Monofloral Honeys in Relation to Their Chemical Composition. Food Funct. 2013, 4, 1617–1624. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Estevinho, L.M.; Teixeira-Santos, R.; Rodrigues, A.G.; Pina-Vaz, C.; Fresno, J.M.; Eugenia Tornadijo, M. Antibacterial Action Mechanisms of Honey: Physiological Effects of Avocado, Chestnut, and Polyfloral Honey upon Staphylococcus Aureus and Escherichia Coli. Molecules 2020, 25, 1252. [Google Scholar] [CrossRef]
- Ratajczak, M.; Kaminska, D.; Matuszewska, E.; Hołderna-Kedzia, E.; Rogacki, J.; Matysiak, J. Promising Antimicrobial Properties of Bioactive Compounds from Different Honeybee Products. Molecules 2021, 26, 4007. [Google Scholar] [CrossRef]
- Nader, R.A.; Mackieh, R.; Wehbe, R.; Obeid, D.E.; Sabatier, J.M.; Fajloun, Z. Beehive Products as Antibacterial Agents: A Review. Antibiotics 2021, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Al Naggar, Y.; Wu, Y.; Liu, D.; Hu, Y.; Wang, K.; Jin, X.; Peng, W. Untargeted Metabolomics Description of Propolis’s in Vitro Antibacterial Mechanisms against Clostridium Perfringens. Food Chem. 2023, 406, 135061. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S. Propolis as a Novel Antibacterial Agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Postali, E.; Peroukidou, P.; Giaouris, E.; Papachristoforou, A. Investigating Possible Synergism in the Antioxidant and Antibacterial Actions of Honey and Propolis from the Greek Island of Samothrace through Their Combined Application. Foods 2022, 11, 2041. [Google Scholar] [CrossRef]
- Stefanis, C.; Stavropoulou, E.; Giorgi, E.; Voidarou, C.; Constantinidis, T.C.; Vrioni, G.; Tsakris, A. Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants 2023, 12, 414. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Katsianou, P.A.; Gialouris, P.L.P.; Martakos, I.; Stergiou, F.; Fiore, A.; Panagopoulou, E.I.; Karabournioti, S.; Baessmann, C.; et al. Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography–High-Resolution Mass Spectrometry. Molecules 2022, 27, 4444. [Google Scholar] [CrossRef]
- Cagri Akman, T.; Simsek, S.; Kayir, Ö.; Aksit, Z.; Aksit, H.; Genc, N. LC-ESI-MS/MS Chemical Characterization, Antioxidant and Antidiabetic Properties of Propolis Extracted with Organic Solvents from Eastern Anatolia Region. Chem. Biodivers. 2023, 20, e202201189. [Google Scholar] [CrossRef]
- Hospital, X.F.; Hierro, E.; Martín-Cabrejas, I.; Caballero, N.; Jiménez, B.; Sánchez-Martín, V.; Morales, P.; Haza, A.I.; Fernández, M. Bee Products as an Alternative for the Preservation of Nitrate and Nitrite-Reduced Dry Fermented Sausages. Food Biosci. 2024, 59, 104048. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Determining Bacteri-Cidal Activity of Antimicrobial Agents; Approved Guideline, CLSI Document M26-A; CLSI: Wayne, PA, USA, 1999. [Google Scholar]
- Cilia, G.; Fratini, F.; Marchi, M.; Sagona, S.; Turchi, B.; Adamchuk, L.; Felicioli, A.; Kačániová, M. Antibacterial Activity of Honey Samples from Ukraine. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef]
- Russo, N.; Di Rosa, A.R.; Pino, A.; Mazzeo, G.; Liotta, L.; Caggia, C.; Randazzo, C.L. Assessment of Sensory Properties and in Vitro Antimicrobial Activity of Monofloral Sicilian Honey. Food Biosci. 2023, 52, 102449. [Google Scholar] [CrossRef]
- Pedonese, F.; Verani, G.; Torracca, B.; Turchi, B.; Felicioli, A.; Nuvoloni, R. Effect of an Italian Propolis on the Growth of Listeria Monocytogenes, Staphylococcus Aureus and Bacillus Cereus in Milk and Whey Cheese. Ital. J. Food Saf. 2019, 8, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, A.; Abd El-Moez, S.I.; Abdou, A.M.; Abd Allah, F. Antibacterial Activity of Some Types of Monofloral Honey Against Clostridium Acetobutylicum and Clostridium Perfringens. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 552–565. [Google Scholar]
- Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; Adanero-Jorge, F.; García-Fernandez, C. Antimicrobial Activity of Spanish Propolis against Listeria Monocytogenes and Other Listeria Strains. Microorganisms 2023, 11, 1429. [Google Scholar] [CrossRef]
- Boyanova, L.; Kolarov, R.; Gergova, G.; Mitov, I. In Vitro Activity of Bulgarian Propolis against 94 Clinical Isolates of Anaerobic Bacteria. Anaerobe 2006, 12, 173–177. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomás-Barberán, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Lyoussi, B.; Miguel, M.G. Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields. Chem. Biodivers 2019, 16, e1900094. [Google Scholar] [CrossRef]
- Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; González-Paramás, A.M.; Vallejo-Pascual, M.E.; Adanero-Jorge, F.; García-Fernández, C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods 2023, 12, 4337. [Google Scholar] [CrossRef]
- Pernin, A.; Dubois-Brissonnet, F.; Roux, S.; Masson, M.; Bosc, V.; Maillard, M.N. Phenolic Compounds Can Delay the Oxidation of Polyunsaturated Fatty Acids and the Growth of Listeria Monocytogenes: Structure-Activity Relationships. J. Sci. Food Agric. 2018, 98, 5401–5408. [Google Scholar] [CrossRef]
- Kim, Y.K.; Roy, P.K.; Ashrafudoulla, M.; Nahar, S.; Toushik, S.H.; Hossain, M.I.; Mizan, M.F.R.; Park, S.H.; Ha, S. Do Antibiofilm Effects of Quercetin against Salmonella Enterica Biofilm Formation and Virulence, Stress Response, and Quorum-Sensing Gene Expression. Food Control 2022, 137, 108964. [Google Scholar] [CrossRef]
- Al-Sayaghi, A.M.; Al-Kabsi, A.M.; Abduh, M.S.; Saghir, S.A.M.; Alshawsh, M.A. Antibacterial Mechanism of Action of Two Types of Honey against Escherichia Coli through Interfering with Bacterial Membrane Permeability, Inhibiting Proteins, and Inducing Bacterial DNA Damage. Antibiotics 2022, 11, 1182. [Google Scholar] [CrossRef] [PubMed]
- Pernin, A.; Guillier, L.; Dubois-Brissonnet, F. Inhibitory Activity of Phenolic Acids against Listeria Monocytogenes: Deciphering the Mechanisms of Action Using Three Different Models. Food Microbiol. 2019, 80, 18–24. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Estimating the Burden of Foodborne Diseases. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 9 March 2023).
- Shamloo, E.; Hosseini, H.; Abdi Moghadam, Z.; Halberg Larsen, M.; Haslberger, A.; Alebouyeh, M. Importance of Listeria Monocytogenes in Food Safety: A Review of Its Prevalence, Detection, and Antibiotic Resistance. Iran. J. Vet. Res. 2019, 20, 241–254. [Google Scholar] [PubMed]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria Monocytogenes—How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022, 13, 866462. [Google Scholar] [CrossRef]
- Radoshevich, L.; Cossart, P. Listeria Monocytogenes: Towards a Complete Picture of Its Physiology and Pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- García, S.; Heredia, N. Clostridium Perfringens: A Dynamic Foodborne Pathogen. Food Bioproc Tech. 2011, 4, 624–630. [Google Scholar] [CrossRef]
- Abdelrahim, A.M.; Radomski, N.; Delannoy, S.; Djellal, S.; Le Négrate, M.; Hadjab, K.; Fach, P.; Hennekinne, J.A.; Mistou, M.Y.; Firmesse, O. Large-Scale Genomic Analyses and Toxinotyping of Clostridium Perfringens Implicated in Foodborne Outbreaks in France. Front. Microbiol. 2019, 10, 777. [Google Scholar] [CrossRef]
- Kiu, R.; Hall, L.J. An Update on the Human and Animal Enteric Pathogen Clostridium Perfringens. Emerg. Microbes Infect. 2018, 7, 141. [Google Scholar] [CrossRef]
- CDC Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/food-safety/?CDC_AAref_Val=https://www.cdc.gov/Foodsafety/Foods-Linked-Ill-521 (accessed on 8 March 2023).
- Habib, I.; Mohamed, M.Y.I.; Khan, M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2021, 10, 2369. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Salama, A.; Mohamed, S.A.A. Propolis Applications in Food Industries and Packaging. Biomass Convers. Biorefinery 2024, 14, 13731–13746. [Google Scholar] [CrossRef]
- Ayad, A.S.; Benchaabane, S.; Daas, T.; Smagghe, G.; Loucif-Ayad, W. Propolis Stands out as a Multifaceted Natural Product: Meta-Analysis on Its Sources, Bioactivities, Applications, and Future Perspectives. Life 2025, 15, 764. [Google Scholar] [CrossRef] [PubMed]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martín, V.; Morales, P.; González-Porto, A.V.; Iriondo-DeHond, A.; López-Parra, M.B.; Del Castillo, M.D.; Hospital, X.F.; Fernández, M.; Hierro, E.; Haza, A.I. Enhancement of the Antioxidant Capacity of Thyme and Chestnut Honey by Addition of Bee Products. Foods 2022, 11, 3118. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, M.D.; Ferrigno, A.; Acampa, I.; Borrelli, R.C.; Olano, A.; Martínez-Rodríguez, A.; Fogliano, V. In Vitro Release of Angiotensin-Converting Enzyme Inhibitors, Peroxyl-Radical Scavengers and Antibacterial Compounds by Enzymatic Hydrolysis of Glycated Gluten. J. Cereal Sci. 2007, 45, 327–334. [Google Scholar] [CrossRef]
- Wojdyło, A.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Phenolic Composition, Ascorbic Acid Content, and Antioxidant Capacity of Spanish Jujube (Ziziphus jujube Mill.) Fruits. Food Chem. 2016, 201, 307–314. [Google Scholar] [CrossRef]
Foodborne Pathogen | Concentration (mg/mL) | Thyme Honey + 10% Propolis | Chestnut Honey + 10% Propolis | Propolis |
---|---|---|---|---|
L. monocytogenes | 15.6 | >107 | >107 | >107 |
31.2 | >107 | >107 | >107 | |
62.5 | >107 | >107 | >107 | |
125 | <103 | <103 | <103 | |
250 | <103 | <103 | <103 | |
500 | <103 | <103 | <103 | |
C. perfringens | 15.6 | >107 | >107 | <103 |
31.2 | <103 | <103 | <103 | |
62.5 | <103 | <103 | <103 | |
125 | <103 | <103 | <103 | |
250 | <103 | <103 | <103 | |
500 | <103 | <103 | <103 |
Foodborne Pathogen | Thyme Honey | Thyme Honey + 10% Propolis | Chestnut Honey | Chestnut Honey + 10% Propolis | Propolis |
---|---|---|---|---|---|
L. monocytogenes | >500 | >500 | >500 | 500 | 125 * |
C. perfringens | 500 c | 250 b | 62.5 a | 62.5 a | 62.5 a |
Rt | nm | MS | MS/MS | Name |
---|---|---|---|---|
4.64 | 309 | 163.03 | 145.02/119.05 | p-coumaric acid |
5.91 | 320 | 411.99 | 329.07/179.03/135.04 | cinnamic acid derivatives |
6.58 | 322 | 369.11 | 271.06/253.04/197.05 | pinobanksin-3-O-hexanoside |
6.98 | 323 | 285.04 | 165.01 | sakuranetin |
8.88 | 321 | 329.13 | 317.06/207.06/179.03 | quercetin-3,7-dimethyl ether |
9.94 | 254, 368 | 285.04/301.03 | quercetin | |
12.98 | 323 | 253.05 | 178.53/134.03 | caffeoyl glycerol |
10.48 | 355 | 315.05 | quercetin-3-methyl ether | |
12.82 | 305 | 283.06 | acacetin |
Bioactive Compound | Chestnut Honey | Chestnut Honey + 10% Propolis | Propolis |
---|---|---|---|
p-coumaric acid | 63.59 ± 3.46 b | 49.96 ± 0.13 ab | 549.02 ± 17.89 c |
cinnamic acid derivatives | ND | 106.60 ± 5.78 a | 172.79 ± 11.88 b |
pinobanksin-3-O-hexanoside | 2.61 ± 0.03 a | 49.42 ± 0.20 b | 457.31 ± 14.65 c |
sakuranetin | 2.26 ± 0.01 a | 6.55 ± 0.03 b | 79.48 ± 0.33 d |
quercetin-3,7-dimethyl ether | ND | 96.57 ± 0.65 a | 761.46 ± 26.30 b |
quercetin | 3.20 ± 0.01 a | 118.71 ± 5.09 c | 755.35 ± 3.65 d |
caffeoyl glycerol | ND | ND | 194.28 ± 10.41 b |
quercetin-3-methyl ether | 21.12 ± 0.71 b | ND | 7.34 ± 0.04 a |
acacetin | 227.79 ± 13.58 b | ND | 74.89 ± 0.79 a |
Sample | Scientific Name | Classification | Family | Geographic Region |
---|---|---|---|---|
Thyme honey | Thymus spp. | Monofloral | Lamiaceae | Spain, Zamora |
Chestnut honey | Castanea sativa | Monofloral | Fagaceae | Spain, Toledo |
Propolis tincture * | - | - | - | Spain, Zamora |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Martín, V.; López-Parra, M.B.; Iriondo-DeHond, A.; Wojdyło, A.; Michalska-Ciechanowska, A.; Haza, A.I.; Morales, P.; del Castillo, M.D. Natural Honey-Propolis Combinations with Health-Promoting Potential: Antibacterial Activity Against Foodborne Pathogens. Pharmaceuticals 2025, 18, 988. https://doi.org/10.3390/ph18070988
Sánchez-Martín V, López-Parra MB, Iriondo-DeHond A, Wojdyło A, Michalska-Ciechanowska A, Haza AI, Morales P, del Castillo MD. Natural Honey-Propolis Combinations with Health-Promoting Potential: Antibacterial Activity Against Foodborne Pathogens. Pharmaceuticals. 2025; 18(7):988. https://doi.org/10.3390/ph18070988
Chicago/Turabian StyleSánchez-Martín, Vanesa, Marta B. López-Parra, Amaia Iriondo-DeHond, Aneta Wojdyło, Anna Michalska-Ciechanowska, Ana I. Haza, Paloma Morales, and María Dolores del Castillo. 2025. "Natural Honey-Propolis Combinations with Health-Promoting Potential: Antibacterial Activity Against Foodborne Pathogens" Pharmaceuticals 18, no. 7: 988. https://doi.org/10.3390/ph18070988
APA StyleSánchez-Martín, V., López-Parra, M. B., Iriondo-DeHond, A., Wojdyło, A., Michalska-Ciechanowska, A., Haza, A. I., Morales, P., & del Castillo, M. D. (2025). Natural Honey-Propolis Combinations with Health-Promoting Potential: Antibacterial Activity Against Foodborne Pathogens. Pharmaceuticals, 18(7), 988. https://doi.org/10.3390/ph18070988