Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = faulty feeder selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6507 KiB  
Article
Neutral-Point Voltage Regulation and Control Strategy for Hybrid Grounding System Combining Power Module and Low Resistance in 10 kV Distribution Network
by Yu Zhou, Kangli Liu, Wanglong Ding, Zitong Wang, Yuchen Yao, Tinghuang Wang and Yuhan Zhou
Electronics 2024, 13(18), 3608; https://doi.org/10.3390/electronics13183608 - 11 Sep 2024
Viewed by 1052
Abstract
A single-phase grounding fault often occurs in 10 kV distribution networks, seriously affecting the safety of equipment and personnel. With the popularization of urban cables, the low-resistance grounding system gradually replaced arc suppression coils in some large cities. Compared to arc suppression coils, [...] Read more.
A single-phase grounding fault often occurs in 10 kV distribution networks, seriously affecting the safety of equipment and personnel. With the popularization of urban cables, the low-resistance grounding system gradually replaced arc suppression coils in some large cities. Compared to arc suppression coils, the low-resistance grounding system features simplicity and reliability. However, when a high-resistance grounding fault occurs, a lower amount of fault characteristics cannot trigger the zero-sequence protection action, so this type of fault will exist for a long time, which poses a threat to the power grid. To address this kind of problem, in this paper, a hybrid grounding system combining the low-resistance protection device and fully controlled power module is proposed. During a low-resistance grounding fault, the fault isolation is achieved through the zero-sequence current protection with the low-resistance grounding system itself, while, during a high-resistance grounding fault, the reliable arc extinction is achieved by regulating the neutral-point voltage with a fully controlled power module. Firstly, this paper introduces the principles, topology, and coordination control of the hybrid grounding system for active voltage arc extinction. Subsequently, a dual-loop-based control method is proposed to suppress the fault phase voltage. Furthermore, a faulty feeder selection method based on the Kepler optimization algorithm and convolutional neural network is proposed for the timely removal of permanent faults. Lastly, the simulation and HIL-based emulated results verify the rationality and effectiveness of the proposed method. Full article
Show Figures

Figure 1

17 pages, 3640 KiB  
Article
Machine Learning-Based Fault Location for Smart Distribution Networks Equipped with Micro-PMU
by Hamid Mirshekali, Rahman Dashti, Ahmad Keshavarz and Hamid Reza Shaker
Sensors 2022, 22(3), 945; https://doi.org/10.3390/s22030945 - 26 Jan 2022
Cited by 52 | Viewed by 5164
Abstract
Faults in distribution networks occur unpredictably, causing a threat to public safety and resulting in power outages. Automated, efficient, and precise detection of faulty sections could be a major element in immediately restoring networks and avoiding further financial losses. Distributed generations (DGs) are [...] Read more.
Faults in distribution networks occur unpredictably, causing a threat to public safety and resulting in power outages. Automated, efficient, and precise detection of faulty sections could be a major element in immediately restoring networks and avoiding further financial losses. Distributed generations (DGs) are used in smart distribution networks and have varied current levels and internal impedances. However, fault characteristics are completely unknown because of their stochastic nature. Therefore, in these circumstances, locating the fault might be difficult. However, as technology advances, micro-phasor measurement units (micro-PMU) are becoming more extensively employed in smart distribution networks, and might be a useful tool for reducing protection uncertainties. In this paper, a new machine learning-based fault location method is proposed for use regardless of fault characteristics and DG performance using recorded data of micro-PMUs during a fault. This method only uses the recorded voltage at the sub-station and DGs. The frequency component of the voltage signals is selected as a feature vector. The neighborhood component feature selection (NCFS) algorithm is utilized to extract more informative features and lower the feature vector dimension. A support vector machine (SVM) classifier is then applied to the decreased dimension training data. The simulations of various fault types are performed on the 11-node IEEE standard feeder equipped with three DGs. Results reveal that the accuracy of the proposed fault section identification algorithm is notable. Full article
(This article belongs to the Special Issue Sensor Enabled Smart Energy Solutions)
Show Figures

Figure 1

19 pages, 3857 KiB  
Article
Faulty Feeder Detection Method Based on VMD–FFT and Pearson Correlation Coefficient of Non-Power Frequency Component in Resonant Grounded Systems
by Kewen Wei, Jing Zhang, Yu He, Gang Yao and Yikun Zhang
Energies 2020, 13(18), 4724; https://doi.org/10.3390/en13184724 - 10 Sep 2020
Cited by 13 | Viewed by 2900
Abstract
Through analyzing the transient components and transient characteristics in transient zero-sequence current (TZSC), a novel fault feeder detection method based on the transient correlation of non-power frequency components (NPFCs) for the resonant grounded system is proposed. Firstly, using variational mode decomposition combined with [...] Read more.
Through analyzing the transient components and transient characteristics in transient zero-sequence current (TZSC), a novel fault feeder detection method based on the transient correlation of non-power frequency components (NPFCs) for the resonant grounded system is proposed. Firstly, using variational mode decomposition combined with fast Fourier transformation (VMD–FFT) to decompose the TZSC, by removing the power frequency components and noise signals, the transient NPFCs can be obtained. Secondly, to reflect the overall changing trend between faulty and healthy currents, the moving average filter is introduced to smooth the NPFCs; in this way, the fault transient features can be accurately revealed. Finally, the faulty feeder can be detected by comparing the threshold with the maximum difference value of comprehensive correlation coefficient of NPFCs. The detection results show that the proposed fault detection method can accurately select the faulty feeder; it is unaffected by fault resistances, fault phase angles, etc. Moreover, the detection method can resist noise interference. Full article
Show Figures

Graphical abstract

16 pages, 2127 KiB  
Article
Energy Regulator Supply Restoration Time
by Mohd Ikhwan Muhammad Ridzuan and Sasa Z. Djokic
Energies 2019, 12(6), 1051; https://doi.org/10.3390/en12061051 - 19 Mar 2019
Cited by 10 | Viewed by 2364
Abstract
In conventional reliability analysis, the duration of interruptions relied on the input parameter of mean time to repair (MTTR) values in the network components. For certain criteria without network automation, reconfiguration functionalities and/or energy regulator requirements to protect customers from long excessive duration [...] Read more.
In conventional reliability analysis, the duration of interruptions relied on the input parameter of mean time to repair (MTTR) values in the network components. For certain criteria without network automation, reconfiguration functionalities and/or energy regulator requirements to protect customers from long excessive duration of interruptions, the use of MTTR input seems reasonable. Since modern distribution networks are shifting towards smart grid, some factors must be considered in the reliability assessment process. For networks that apply reconfiguration functionalities and/or network automation, the duration of interruptions experienced by a customer due to faulty network components should be addressed with an automation switch or manual action time that does not exceed the regulator supply restoration time. Hence, this paper introduces a comprehensive methodology of substituting MTTR with maximum action time required to replace/repair a network component and to restore customer duration of interruption with maximum network reconfiguration time based on energy regulator supply requirements. The Monte Carlo simulation (MCS) technique was applied to medium voltage (MV) suburban networks to estimate system-related reliability indices. In this analysis, the purposed method substitutes all MTTR values with time to supply (TTS), which correspond with the UK Guaranteed Standard of Performance (GSP-UK), by the condition of the MTTR value being higher than TTS value. It is nearly impossible for all components to have a quick repairing time, only components on the main feeder were selected for time substitution. Various scenarios were analysed, and the outcomes reflected the applicability of reconfiguration and the replace/repair time of network component. Theoretically, the network reconfiguration (option 1) and component replacement (option 2) with the same amount of repair time should produce exactly the same outputs. However, in simulation, these two options yield different outputs in terms of number and duration of interruptions. Each scenario has its advantages and disadvantages, in which the distribution network operators (DNOs) were selected based on their operating conditions and requirements. The regulator reliability-based network operation is more applicable than power loss-based network operation in counties that employed energy regulator requirements (e.g., GSP-UK) or areas with many factories that required a reliable continuous supply. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 6965 KiB  
Article
A Novel Protection Method for Single Line-to-Ground Faults in Ungrounded Low-Inertia Microgrids
by Liuming Jing, Dae-Hee Son, Sang-Hee Kang and Soon-Ryul Nam
Energies 2016, 9(6), 459; https://doi.org/10.3390/en9060459 - 16 Jun 2016
Cited by 14 | Viewed by 9179
Abstract
This paper proposes a novel protection method for single line-to-ground (SLG) faults in ungrounded low-inertia microgrids. The proposed method includes microgrid interface protection and unit protection. The microgrid interface protection is based on the difference between the zero-sequence voltage angle and the zero-sequence [...] Read more.
This paper proposes a novel protection method for single line-to-ground (SLG) faults in ungrounded low-inertia microgrids. The proposed method includes microgrid interface protection and unit protection. The microgrid interface protection is based on the difference between the zero-sequence voltage angle and the zero-sequence current angle at the microgrid interconnection transformer for fast selection of the faulty feeder. The microgrid unit protection is based on a comparison of the three zero-sequence current phase directions at each junction point of load or distributed energy resources. Methods are also included to locate the minimum fault section. The fault section location technology operates according to the coordination of microgrid unit protection. The proposed method responds to SLG faults that may occur in both the grid and the microgrid. Simulations of an ungrounded low-inertia microgrid with a relay model were carried out using Power System Computer Aided Design (PSCAD)/Electromagnetic Transients including DC (EMTDC). Full article
(This article belongs to the Special Issue Smart Microgrids: Developing the Intelligent Power Grid of Tomorrow)
Show Figures

Graphical abstract

Back to TopTop