Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = farmland quality protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4161 KiB  
Article
Scenario-Based Assessment of Urbanization-Induced Land-Use Changes and Regional Habitat Quality Dynamics in Chengdu (1990–2030): Insights from FLUS-InVEST Modeling
by Zhenyu Li, Yuanting Luo, Yuqi Yang, Yuxuan Qing, Yuxin Sun and Cunjian Yang
Land 2025, 14(8), 1568; https://doi.org/10.3390/land14081568 - 31 Jul 2025
Viewed by 302
Abstract
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. [...] Read more.
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. Therefore, integrated modeling approaches are required to balance development and conservation. This study responds to this need by conducting a scenario-based assessment of urbanization-induced land-use changes and regional habitat quality dynamics in Chengdu (1990–2030), using the FLUS-InVEST model. By integrating remote sensing-derived land-use data from 1990, 1995, 2000, 2005, 2010, 2015, and 2020, we simulate future regional habitat quality under three policy scenarios: natural development, ecological priority, and cropland protection. Key findings include the following: (1) From 1990 to 2020, cropland decreased by 1917.78 km2, while forestland and built-up areas increased by 509.91 km2 and 1436.52 km2, respectively. Under the 2030 natural development scenario, built-up expansion and cropland reduction are projected. Ecological priority policies would enhance forestland (+4.2%) but slightly reduce cropland. (2) Regional habitat quality declined overall (1990–2020), with the sharpest drop (ΔHQ = −0.063) occurring between 2000 and 2010 due to accelerated urbanization. (3) Scenario analysis reveals that the ecological priority strategy yields the highest regional habitat quality (HQmean = 0.499), while natural development results in the lowest (HQmean = 0.444). This study demonstrates how the FLUS-InVEST model can quantify the trade-offs between urbanization and regional habitat quality, offering a scientific framework for balancing development and ecological conservation in rapidly urbanizing regions. The findings highlight the effectiveness of ecological priority policies in mitigating habitat degradation, with implications for similar cities seeking sustainable land-use strategies that integrate farmland protection and forest restoration. Full article
Show Figures

Figure 1

23 pages, 2875 KiB  
Article
Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China
by Zihan Dong, Haodong Liu, Hua Liu, Yongfu Chen, Xinru Fu, Yang Zhang, Jiajia Xia, Zhiwei Zhang and Qiao Chen
Land 2025, 14(8), 1509; https://doi.org/10.3390/land14081509 - 22 Jul 2025
Viewed by 408
Abstract
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study [...] Read more.
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study analyzes land-use data from 2000 to 2020 for Golog Tibetan Autonomous Prefecture. The PLUS model was utilized to project land-use potential for the year 2030. The InVEST model was employed to conduct a comprehensive assessment of habitat quality in the study area for both 2020 and 2030, thereby pinpointing ecological sources. Critical ecological restoration zones were delineated by identifying ecological corridors, pinch points, and barrier points through the application of the Minimum Cumulative Resistance model and circuit theory. By comparing ecological security patterns (ESPs) in 2020 and 2030, we proposed a dynamic restoration framework and optimization recommendations based on habitat quality changes and ESPs. The results indicate significant land-use changes in the eastern part of Golog Tibetan Autonomous Prefecture from 2020 to 2030, with large-scale conversion of grasslands into bare land, farmland, and artificial surfaces. The ecological security pattern is threatened by risks like the deterioration of habitat quality, diminished ecological sources as well as pinch points, and growing barrier points. Optimizing the layout of ecological resources, strengthening barrier zone restoration and pinch point protection, and improving habitat connectivity are urgent priorities to ensure regional ecological security. This study offers a scientific foundation for the harmonization of ecological protection and economic development and the policy development and execution of relevant departments. Full article
Show Figures

Figure 1

24 pages, 2413 KiB  
Article
Agricultural Land Market Dynamics and Their Economic Implications for Sustainable Development in Poland
by Marcin Gospodarowicz, Bożena Karwat-Woźniak, Emil Ślązak, Adam Wasilewski and Anna Wasilewska
Sustainability 2025, 17(14), 6484; https://doi.org/10.3390/su17146484 - 15 Jul 2025
Viewed by 628
Abstract
This study examines Poland’s agricultural land market between 2009 and 2023 through fixed effects and spatial econometric models, highlighting economic and spatial determinants of land prices. Key results show that GDP per capita strongly increases land values (β = +0.699, p < 0.001), [...] Read more.
This study examines Poland’s agricultural land market between 2009 and 2023 through fixed effects and spatial econometric models, highlighting economic and spatial determinants of land prices. Key results show that GDP per capita strongly increases land values (β = +0.699, p < 0.001), while agricultural gross value added (–2.698, p = 0.009), soil quality (–6.241, p < 0.001), and land turnover (–0.395, p < 0.001) are associated with lower prices. Spatial dependence is confirmed (λ = 0.74), revealing strong regional spillovers. The volume of state-owned WRSP land sales declined from 37.4 thousand hectares in 2015 to 3.1 thousand hectares in 2023, while non-market transfers, such as donations, exceeded 49,000 annually. Although these trends support farmland protection and family farms, they also reduce market mobility and hinder generational renewal. The findings call for more flexible, sustainability-oriented land governance that combines ecological performance, regional equity, and improved access for young farmers. Full article
Show Figures

Figure 1

19 pages, 7039 KiB  
Article
Assessment of Ecological Environment Quality and Analysis of Its Driving Forces in the Dabie Mountain Area of Anhui Province Based on the Improved Remote Sensing Ecological Index
by Yu Ding and Guangzhou Chen
Sustainability 2025, 17(13), 6198; https://doi.org/10.3390/su17136198 - 7 Jul 2025
Viewed by 412
Abstract
The Dabie Mountain area in Anhui Province is an essential ecological security barrier and a critical protected area in East China. It is very important to assess its ecological environment quality and identify its key driving forces. Five indicators, including Greenness, Wetness, Dryness, [...] Read more.
The Dabie Mountain area in Anhui Province is an essential ecological security barrier and a critical protected area in East China. It is very important to assess its ecological environment quality and identify its key driving forces. Five indicators, including Greenness, Wetness, Dryness, Heat, and Biological Richness, were used to construct an improved remote sensing ecological Index (IRSEI) to assess ecological environment quality. The weights of the five indicators were determined by coupling the analytic hierarchy process (AHP) and the entropy weight method (EWM). The optimal parameters-based geographical detector (OPGD) was used to recognize driving factors. The main conclusions were as follows: (1) the overall rank of ecological environment quality was mainly good and excellent. The ecological quality of forest land was excellent, that of farmland was good, and that of built-up areas was poor. (2) The change in ecological environment quality was mainly stable from 2000 to 2020. The ecological quality of some forests and farmlands improved, with a deteriorating trend in the built-up areas. (3) The Moran’s Index of ecological quality ranged from 0.77 to 0.85, indicating high spatial agglomeration. (4) The OPGD indicated that the DEM had the most explanatory power for ecological quality, and the interactive relationship between the DEM and population density had the most significant impact. (5) In comparison to the conventional remote sensing ecological Index (RSEI), the IRSEI exhibited higher congruence with observed circumstances and improved ecological interpretability. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

34 pages, 28931 KiB  
Article
Spatiotemporal Dynamics and Multi-Scenario Projections of the Land Use and Habitat Quality in the Yellow River Basin: A GeoDetector-PLUS-InVEST Integrated Framework for a Coupled Human–Natural System Analysis
by Xiuyan Zhao, Jie Li, Fengxue Ruan, Zeduo Zou, Xiong He and Chunshan Zhou
Remote Sens. 2025, 17(13), 2181; https://doi.org/10.3390/rs17132181 - 25 Jun 2025
Viewed by 506
Abstract
The Yellow River Basin (YRB) is a critical ecological zone in China now confronting growing tensions between land conservation and development. This study combines land use, climate, and socio-economic data with spatial–statistical models (GeoDetector [GD]–Patch-generating Land Use Simulation [PLUS]–Integrated Valuation of Ecosystem Services [...] Read more.
The Yellow River Basin (YRB) is a critical ecological zone in China now confronting growing tensions between land conservation and development. This study combines land use, climate, and socio-economic data with spatial–statistical models (GeoDetector [GD]–Patch-generating Land Use Simulation [PLUS]–Integrated Valuation of Ecosystem Services and Trade-Offs [InVEST]) to analyze land use changes (2000–2020), evaluate habitat quality, and simulate scenarios to 2040. Key results include the following: (1) Farmland was decreased by the conversion to forests (+3475 km2) and grasslands (+4522 km2), while construction land expanded rapidly (+11,166 km2); (2) the population and Gross Domestic Product (GDP) pressures drove the farmland loss (q = 0.148 for population, q = 0.129 for GDP), while synergies between evapotranspiration (ET) and the Normalized Difference Vegetation Index (NDVI) promoted forest/grassland recovery (q = 0.155); and (3) ecological protection scenarios increased the grassland area by 12.94% but restricted the construction land growth (−13.84%), with persistent unused land (>3.61% in Inner Mongolia) indicating arid-zone risks. The Habitat Quality-Autocorrelated Coupling Index (HQACI) declined from 0.373 (2020) to 0.345–0.349 (2040), which was linked to drought, groundwater loss, and urban expansion. Proposed strategies including riparian corridor protection, adaptive urban zoning, and gradient-based restoration aim to balance ecological and developmental needs, supporting spatial planning and enhancing the basin-wide habitat quality. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 5802 KiB  
Article
Soil Quality and Heavy Metal Source Analyses for Characteristic Agricultural Products in Luzuo Town, China
by Zhaoyu Zhou, Zeming Shi, Linsong Yu, Haiyin Fan and Fang Wan
Agriculture 2025, 15(13), 1360; https://doi.org/10.3390/agriculture15131360 - 25 Jun 2025
Viewed by 269
Abstract
Identifying the soil quality and the sources of heavy metals in the production areas of characteristic agricultural products is crucial for ensuring the quality of such products and the sustainable development of agriculture. This research took the farmland soil of Luzuo Town, a [...] Read more.
Identifying the soil quality and the sources of heavy metals in the production areas of characteristic agricultural products is crucial for ensuring the quality of such products and the sustainable development of agriculture. This research took the farmland soil of Luzuo Town, a characteristic production area of Cangshan garlic in Linyi City, as the research object. The contents of Cr, Cu, Ni, Pb, Zn, As, Hg, and Cd in farmland soil were analyzed. The ecological risks were evaluated using the Geographical Cumulative Index (Igeo) and the Potential Ecological Risk Index. The spatial distribution characteristics of the elements were determined through geostatistical analysis, and Positive Matrix Factorization (PMF) was used for source apportionment. The results show the following: (1) The average concentrations of all heavy metals exceeded local background values, with Cr and Hg surpassing the screening thresholds from China’s “Soil Pollution Risk Control Standards” (GB 15618-2018). (2) The results of the Moran’s index show that, except for Hg and Cd, all the elements had a high spatial autocorrelation, and there are two potential highly polluted areas in the study area. (3) Soils were generally uncontaminated or low risk, with Hg and Cd as the primary ecological risk contributors. (4) Five sources were quantified: fertilizer and pesticide sources (32.28%); mixed sources of fertilizer, pesticides, and manure (14.15%); mixed sources of traffic activities and agricultural waste discharge (19.95%); natural sources (20.55%); and incineration sources (13.07%). This study demonstrates the value of integrating geospatial and statistical methods for soil pollution management. Targeted control of Hg/Cd and reduced agrochemical use are recommended to protect this important agricultural region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

28 pages, 1087 KiB  
Article
Can Land Transfer-In Improve Farmers’ Farmland Quality Protection Behavior? Empirical Evidence from Micro-Survey Data in Hubei Province, China
by Sheng Xu, Yu Xiao, Lu Zhang, Caiyan Yang and Xichuan Liu
Land 2025, 14(5), 948; https://doi.org/10.3390/land14050948 - 27 Apr 2025
Cited by 1 | Viewed by 483
Abstract
Enhancing farmers’ behaviors toward cultivated land quality protection is a crucial support in achieving sustainable agricultural development and the national food security strategy. This study aims to investigate the impact of land transfer-in on farmers’ behaviors regarding cultivated land quality protection, explore the [...] Read more.
Enhancing farmers’ behaviors toward cultivated land quality protection is a crucial support in achieving sustainable agricultural development and the national food security strategy. This study aims to investigate the impact of land transfer-in on farmers’ behaviors regarding cultivated land quality protection, explore the underlying mechanisms, and analyze group heterogeneity. To achieve this, the study empirically estimates the impact of land transfer-in on farmers’ behaviors in protecting cultivated land quality using micro-survey data from 743 households in Hubei Province, while addressing endogeneity and conducting robustness checks. The study further explores the mechanisms and heterogeneity of the effects of land transfer-in on farmers’ cultivated land quality protection behaviors. The results reveal that (1) land transfer-in significantly increases the likelihood of farmers taking actual actions to protect cultivated land quality and enhances their awareness, thereby promoting protective behaviors; (2) land transfer-in facilitates these protective behaviors mainly through income incentives and social network interactions, while rental constraints may have a suppressive effect; (3) full-time farmers, those with higher agricultural literacy, those who access agricultural knowledge online, and those affected by natural disasters are more likely to engage in proactive land quality protection behaviors after land transfer-in. Full article
Show Figures

Figure 1

25 pages, 4243 KiB  
Article
Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces
by Yibo Xu, Xiaohuang Liu, Lianrong Zhao, Hongyu Li, Ping Zhu, Run Liu, Chao Wang and Bo Wang
Land 2025, 14(4), 759; https://doi.org/10.3390/land14040759 - 2 Apr 2025
Cited by 2 | Viewed by 575
Abstract
Land-use transition has diverse influences on habitat quality. At present, land-use patterns and habitat quality in the ecologically fragile Yellow River Basin are undergoing significant change. However, the relationship between land-use transition and habitat quality and the driving factors of habitat quality dynamics [...] Read more.
Land-use transition has diverse influences on habitat quality. At present, land-use patterns and habitat quality in the ecologically fragile Yellow River Basin are undergoing significant change. However, the relationship between land-use transition and habitat quality and the driving factors of habitat quality dynamics across the whole basin remain unclear. In this study, we utilized a land-use transition matrix and an InVEST model to analyze the dynamics of land use, habitat quality, and the relationship between the two in the Yellow River Basin from 2005 to 2020. The driving factors of habitat quality dynamics were explored with a spatial econometric model. The results showed the following: (1) The areas of farmland and grassland accounted for more than 70%, but decreased by 14,600 km2 and 2500 km2, respectively. The areas of forest and construction land increased by 1800 km2 and 16,900 km2, respectively. (2) The habitat quality showed a trend of decrease-then-increase. The areas of low value (0–0.2) were the largest, accounting for about 50% of the total area; the regions of relatively high (0.6–0.8) and high value (0.8–1) were small and scattered in the mountainous forest area, accounting for about 10%. (3) The habitat quality was the lowest in the land categorized as transitioning to construction, and highest in unchanged forest and in the land characterized as transitioning to forest. The coupling coordination degree of land-use degree and habitat quality showed a steady upward trend. (4) The growth rate in the value added by secondary industries, GDP per capita, population density, ecological-protection policy score, average annual temperature, and average annual precipitation were the primary factors affecting habitat quality. This study fills the gap in the analysis of the relationship between land-use transition and habitat quality across the whole Yellow River Basin; the work assists in the understanding of the ecological effects of land-use transition in the region and provides suggestions for the development of other densely populated and ecologically fragile areas. Full article
Show Figures

Figure 1

17 pages, 787 KiB  
Article
How Hiring Agricultural Managers Affect Farmland Quality Protection Behavior in Farmers’ Cooperatives—Evidence Based on the Survey of Cooperatives in Sichuan, China
by Guo-Yan Zeng, Jie-Hao Deng and She-Mei Zhang
Land 2025, 14(3), 502; https://doi.org/10.3390/land14030502 - 28 Feb 2025
Cited by 1 | Viewed by 449
Abstract
This paper aims to include the human capital elements of agricultural managers in the decision-making process of farmland quality protection behavior in farmers’ cooperatives in an effort to discuss and explore the relationship between hiring agricultural managers and the implementation of farmland quality [...] Read more.
This paper aims to include the human capital elements of agricultural managers in the decision-making process of farmland quality protection behavior in farmers’ cooperatives in an effort to discuss and explore the relationship between hiring agricultural managers and the implementation of farmland quality protection behavior. Based on the survey questionnaire of 436 planting cooperatives in Sichuan, China, in 2021, the Poisson model and mediating effect model were used to explore the impact and mechanism of hiring agricultural managers on farmland quality protection behavior in farmers’ cooperatives. The empirical results reveal that hiring agricultural managers significantly elevates farmland quality protection behavior in farmers’ cooperatives. Compared to cross-period farmland quality protection behavior, hiring agricultural managers has a greater impact on single-period farmland quality protection behavior. Through the improvement of information technology application level, the farmland quality protection behavior in cooperatives can be elevated by hiring agricultural managers, but standardized management has a masking effect between the two. Accordingly, continuous development and growth of the agricultural manager team encourages cooperatives to establish a standardized system for recruiting farm managers and strengthen the link between farm managers and cooperatives. The training of agricultural managers should be optimized to deepen their mastery of techniques and knowledge and protect the quality of arable land. Material and moral incentives should be provided to encourage farm managers to focus on the long-term development of their cooperatives. The government should be encouraged to establish a platform for sharing information on farmland quality to provide technical support to farm managers to carry out targeted work on farmland quality protection. Full article
Show Figures

Figure 1

23 pages, 641 KiB  
Article
Intergenerational Behavioral Transmission, Neighborhood Effects, and Farmers’ Farmland Quality Protection Behavior: A Case Study of Fertilizer Application in Gansu, China
by Hao Li, Jiahui Zhao, Wei-Yew Chang and Yiwa Fu
Land 2025, 14(3), 451; https://doi.org/10.3390/land14030451 - 21 Feb 2025
Cited by 1 | Viewed by 525
Abstract
Farmers’ decision-making behavior is shaped by familial intergenerational ties and neighborhood relations, yet research often treats them as independent decision-makers, overlooking these critical dynamics. This oversight can undermine the effectiveness of policies on farmland quality. Using micro-survey data from 1045 maize farmers in [...] Read more.
Farmers’ decision-making behavior is shaped by familial intergenerational ties and neighborhood relations, yet research often treats them as independent decision-makers, overlooking these critical dynamics. This oversight can undermine the effectiveness of policies on farmland quality. Using micro-survey data from 1045 maize farmers in Gansu Province, China, this study explores farmers’ fertilizer reduction behavior through a theoretical framework that incorporates intergenerational behavioral transmission and neighborhood effects. Economically optimal fertilizer usage was calculated using the Cobb–Douglas production function, with hierarchical regression models and instrumental variable methods employed for analysis. Our findings reveal the following: (1) The Cobb–Douglas production function indicates that 74.1% of farmers apply more fertilizer than the economically optimal amount. (2) Effective intergenerational behavioral transmission and positive neighborhood effects significantly promote farmers’ adoption of reduced fertilizer application practices, with neighborhood effects further enhancing the effects of intergenerational behavioral transmission. (3) Stronger neighborhood effects not only enhance the positive impact of effective intergenerational behavioral transmission but also mitigate the negative impact of ineffective transmission. Additionally, neighborhood effects mediate the relationship between intergenerational behavioral transmission and fertilizer reduction. This study highlights the importance of kinship and neighborhood dynamics in shaping farmers’ fertilizer use and provides insights for designing more effective farmland quality protection policies. By acknowledging these relational factors, governments can better promote sustainable agricultural practices and minimize excessive fertilizer application. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

31 pages, 2324 KiB  
Review
Microbial Fuel Cell Technology as a New Strategy for Sustainable Management of Soil-Based Ecosystems
by Renata Toczyłowska-Mamińska, Mariusz Ł. Mamiński and Wojciech Kwasowski
Energies 2025, 18(4), 970; https://doi.org/10.3390/en18040970 - 18 Feb 2025
Viewed by 3145
Abstract
Although soil is mainly perceived as the basic component of agricultural production, it also plays a pivotal role in environmental protection and climate change mitigation. Soil ecosystems are the largest terrestrial carbon source and greenhouse gas emitters, and their degradation as a result [...] Read more.
Although soil is mainly perceived as the basic component of agricultural production, it also plays a pivotal role in environmental protection and climate change mitigation. Soil ecosystems are the largest terrestrial carbon source and greenhouse gas emitters, and their degradation as a result of aggressive human activity exacerbates the problem of climate change. Application of microbial fuel cell (MFC) technology to soil-based ecosystems such as sediments, wetlands, farmland, or meadows allows for sustainable management of these environments with energy and environmental benefits. Soil ecosystem-based MFCs enable zero-energy, environmentally friendly soil bioremediation (with efficiencies reaching even 99%), direct clean energy production from various soil-based ecosystems (with power production reaching 334 W/m2), and monitoring of soil quality or wastewater treatment in wetlands (with efficiencies of up to 99%). They are also a new strategy for greenhouse gas, soil salinity, and metal accumulation mitigation. This article reviews the current state of the art in the field of application of MFC technology to various soil-based ecosystems, including soil MFCs, sediment MFCs, plant MFCs, and CW-MFCs (constructed wetlands coupled with MFCs). Full article
Show Figures

Figure 1

19 pages, 2318 KiB  
Article
The Role of Vitekang Soil Conditioner and Arbuscular Mycorrhizae Fungi in Mitigating Cadmium Stress in Solanum lycopersicum Plants
by Qianqian Wang, Yue Liu, Guangxin Chen, Xing Liu, Mohsin Tanveer, Yongjun Guo, Peng Zeng and Liping Huang
Horticulturae 2025, 11(2), 179; https://doi.org/10.3390/horticulturae11020179 - 7 Feb 2025
Viewed by 759
Abstract
Solanum lycopersicum, a widely cultivated vegetable crop globally, faces soil cadmium (Cd) contamination issues due to Cd’s high mobility, posing potential threats to Solanum lycopersicum growth and human health. In light of this, this study selected three representative Solanum lycopersicum varieties: Micro [...] Read more.
Solanum lycopersicum, a widely cultivated vegetable crop globally, faces soil cadmium (Cd) contamination issues due to Cd’s high mobility, posing potential threats to Solanum lycopersicum growth and human health. In light of this, this study selected three representative Solanum lycopersicum varieties: Micro Tom, Red Guanyin, and Taiwan Pink King, and designed a series of experiments to investigate their growth performance under Cd stress. Experimental treatments included the sole application of different concentrations of Vitekang soil conditioner (VT), as well as the individual and combined application of VT and arbuscular mycorrhizal fungi (AMF). By thoroughly analyzing agronomic traits, cellular membrane lipid peroxidation levels, the activities of antioxidant enzymes (Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)), and the expression levels of genes related to Cd transport and detoxification (SLNRAMP6 and SlHMA3), this study comprehensively evaluated the effectiveness of different treatments in mitigating Cd stress in the three Solanum lycopersicum varieties. The results indicated that when VT was applied at a concentration of 2.4 g/kg in combination with AMF, it significantly reduced the detrimental effects of Cd on Micro Tom, Red Guanyin, and Taiwan Pink King. The specific experimental outcomes were as follows: (i) significantly decreased Cd accumulation in Solanum lycopersicum roots and leaves; (ii) effectively mitigated cellular membrane lipid peroxidation; (iii) significantly increased antioxidant enzyme activities; and (iv) influenced expression patterns of genes related to Cd transport and detoxification. This study further confirms that, compared to the sole application of VT or AMF, the combined application of these two treatments serves as a more effective practical method, exhibiting significant advantages in alleviating soil Cd contamination, promoting Solanum lycopersicum growth, and improving agronomic traits. This study not only advances research progress on VT and AMF in Solanum lycopersicumes, providing a solid theoretical and experimental foundation for cultivating high-quality Solanum lycopersicumes, but also holds significant importance for improving and optimizing the “VIP+N” technology, achieving farmland soil protection, and enhancing agricultural product quality. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

18 pages, 27408 KiB  
Article
A Multi-Scenario Simulation and Driving Factor Analysis of Production–Living–Ecological Land in China’s Main Grain Producing Areas: A Case Study of the Huaihe River Eco-Economic Belt
by Wenfeng Hu, Junhao Cheng, Mengtian Zheng, Xiaolong Jin, Junqiang Yao and Fei Guo
Agriculture 2025, 15(3), 349; https://doi.org/10.3390/agriculture15030349 - 6 Feb 2025
Cited by 4 | Viewed by 988
Abstract
The Huaihe River Eco-Economic Belt (HREEB) is a pivotal region in China’s national strategic planning. Land use in this region is crucial to improving ecological quality and ensuring food security. Using the PLUS model and Geodetector, we evaluated the contribution and interaction of [...] Read more.
The Huaihe River Eco-Economic Belt (HREEB) is a pivotal region in China’s national strategic planning. Land use in this region is crucial to improving ecological quality and ensuring food security. Using the PLUS model and Geodetector, we evaluated the contribution and interaction of 10 drivers to production–living–ecological land (PLEL) and performed multi-scenario simulations of PLEL. The results show that the following: (1) Ecological land is mainly affected by elevation (contribution value > 0.16 for forest, grassland, and water). Production land is influenced by topographic relief, elevation, and GDP per capita (contribution value > 0.13). Living land is driven by topographic relief, GDP per capita, elevation, and population density (contribution value > 0.13). Interaction analysis shows nonlinear or two-factor enhancement among factors. (2) Ecological land in the HREEB has a relatively stable spatial pattern. Simulation results indicate that ecological land will not exceed a 12% change in the next 50 years. (3) By 2075, simulations under various scenarios predict significant changes in land area. Compared with the natural development scenario, production land increased by 14.8% in the farmland protection scenario, and living land increased by 14.3% in the urban development scenario. This research is vital for managing and developing PLEL resources within the HREEB. Full article
Show Figures

Figure 1

20 pages, 6785 KiB  
Article
Effects of Long-Term Land Use Patterns on Labile Organic Carbon Fractions and Carbon Pool Management Index of Mollisols Humus Layers
by Xinqu Duo, Jinggui Wu and Wei Cheng
Appl. Sci. 2025, 15(3), 1006; https://doi.org/10.3390/app15031006 - 21 Jan 2025
Cited by 1 | Viewed by 940
Abstract
Land use patterns significantly influence the quantity and composition of litter in the soil humus layers, thereby affecting the dynamics of soil organic carbon. However, the differences in labile organic carbon fractions and the carbon sequestration index under different land use patterns, as [...] Read more.
Land use patterns significantly influence the quantity and composition of litter in the soil humus layers, thereby affecting the dynamics of soil organic carbon. However, the differences in labile organic carbon fractions and the carbon sequestration index under different land use patterns, as well as their impact on soil carbon storage in the humus layers of mollisols—without migration loss and soil erosion—remain unclear. Labile organic carbon is classified into fractions such as dissolved organic carbon, easily oxidized carbon, particulate organic carbon, and microbial biomass carbon, which are identified through different chemical extraction methods. This study investigates the impact of long-term land use patterns on organic carbon dynamics, organic carbon pools, KOS, and CPMI in mollisols across five treatments: SC (continuous soybean cultivation), MC (continuous maize cultivation), MSR (maize–soybean rotation), GB (grass belt), and FB (forest belt). It also selects three soil depths (0–20 cm, 20–40 cm, and 40–60 cm) over an 11-year period for analysis. The results indicate that soil organic carbon, labile organic carbon fractions (EOC, POC, DOC, and MBC), and CPMI decrease with soil depth, while KOS increases. Non-tillage treatments enhance SOC accumulation in the humus layers, with FB exhibiting the highest organic carbon content, surpassing GB, MC, SC, and MSR by 22.88%, 52.35%, 60.64%, and 80.12%, respectively. Non-tillage treatments can enhance the accumulation of labile organic carbon fractions, aligning with the observed trends in soil organic carbon, with the FB treatment identified as optimal. Additionally, these treatments can increase labile organic carbon fractions and CPMI, thereby improving soil stability. To minimize SOC loss, land use patterns should encourage the conversion of farmland to grassland and forest, with the FB treatment recommended as the optimal strategy for the protection of mollisols and the sustainable development of these soils over the long term. This approach is significant for understanding the soil carbon cycle, rationally planning land use strategies, and providing a reference for enhancing soil quality and ecosystem carbon sinks. Full article
Show Figures

Figure 1

28 pages, 55723 KiB  
Article
Spatiotemporal Changes and Trade-Offs/Synergies of Ecosystem Services in the Qin-Mang River Basin
by Jiwei Zhao, Luyao Wang, Dong Jia and Yaowen Wang
ISPRS Int. J. Geo-Inf. 2025, 14(1), 37; https://doi.org/10.3390/ijgi14010037 - 19 Jan 2025
Viewed by 1099
Abstract
The Qin-Mang River Basin is an important biodiversity conservation area in the Yellow River Basin. Studying the spatiotemporal changes in its ecosystem services (ESs) and the trade-offs and synergies (TOSs) between them is crucial for regional ecological protection and high-quality development. This study, [...] Read more.
The Qin-Mang River Basin is an important biodiversity conservation area in the Yellow River Basin. Studying the spatiotemporal changes in its ecosystem services (ESs) and the trade-offs and synergies (TOSs) between them is crucial for regional ecological protection and high-quality development. This study, based on land use type (LUT), and meteorological and soil data from 1992 to 2022, combined with the InVEST model, correlation analysis, and spatial autocorrelation analysis, explores the impacts of land use/land cover changes (LUCCs) on ESs. The results show that: (1) driven by urbanization and economic development, the expansion of built-up areas has replaced cultivated land and forests, with 35,000 hectares of farmland lost, thereby increasing pressure on ESs; (2) ESs show an overall downward trend, habitat quality (HQ) has deteriorated, carbon storage (CS) remains stable but the area of low CS has expanded, and sediment delivery ratio (SDR) and water yield (WY) fluctuate due to human activities and climate influence; (3) the TOSs of ESs change dynamically, with strong synergies among HQ, CS, and SDR. However, in areas with water scarcity, the negative correlation between HQ and WY has strengthened; (4) spatial autocorrelation analysis reveals that in 1992, significant positive synergies existed between ESs in the northern and northwestern regions, with WY negatively correlated with other services. By 2022, accelerated urbanization has intensified trade-off effects in the southern and eastern regions, leading to significant ecological degradation. This study provides scientific support for the sustainable management and policymaking of watershed ecosystems. Full article
Show Figures

Figure 1

Back to TopTop