Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = faba bean pollination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2588 KB  
Article
Composition of Proteins Associated with Red Clover (Trifolium pratense) and the Microbiota Identified in Honey
by Violeta Čeksterytė, Algirdas Kaupinis, Andrius Aleliūnas, Rūta Navakauskienė and Kristina Jaškūnė
Life 2024, 14(7), 862; https://doi.org/10.3390/life14070862 - 10 Jul 2024
Viewed by 1475
Abstract
The nutritional composition of honey is determined by environmental conditions, and botanical and geographical origin. In addition to carbohydrates, honey also contain pollen grains, proteins, free amino acids, and minerals. Although the content of proteins in honey is low, they are an important [...] Read more.
The nutritional composition of honey is determined by environmental conditions, and botanical and geographical origin. In addition to carbohydrates, honey also contain pollen grains, proteins, free amino acids, and minerals. Although the content of proteins in honey is low, they are an important component that confirms the authenticity and quality of honey; therefore, they became a popular study object. The aim of the study was to evaluate protein content and composition of monofloral red clover and rapeseed honey collected from five different districts of Lithuania. Forty-eight proteins were identified in five different origin honey samples by liquid chromatography. The number of red clover proteins identified in individual honey samples in monofloral red clover honey C3 was 39 in polyfloral honey S22–36, while in monofloral rapeseed honey S5, S15, and S23 there was 33, 32, and 40 respectively. Aphids’ proteins and lactic acid bacteria were identified in all honey samples tested. The linear relationship and the strongest correlation coefficient (r = 0.97) were determined between the content of Apilactobacillus kunkeei and Apilactobacillus apinorum, as well as between the number of faba bean (Vicia faba) pollen and lactic acid bacteria (r = 0.943). The data show a strong correlation coefficient between the amount of lactic acid and aphid protein number (r = 0.693). More studies are needed to evaluate the relationship between the pollination efficiency of red clover by bees and the multiplicity of red clover proteins in honey protein, as well as microbiota diversity and the influence of nature or plant diversity on the occurrence of microbiota in honey. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

17 pages, 1096 KB  
Article
Transcriptome Analysis of Stigmas of Vicia faba L. Flowers
by Inés Casimiro-Soriguer, David Aguilar-Benitez, Natalia Gutierrez and Ana M. Torres
Plants 2024, 13(11), 1443; https://doi.org/10.3390/plants13111443 - 23 May 2024
Cited by 2 | Viewed by 1578
Abstract
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of [...] Read more.
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization. Full article
(This article belongs to the Special Issue Advances in Legume Crops Research)
Show Figures

Figure 1

15 pages, 3215 KB  
Article
Frequency of Outcrossing and Isolation Distance in Faba Beans (Vicia faba L.)
by Kedar N. Adhikari, Lucy Burrows, Abdus Sadeque, Christopher Chung, Brian Cullis and Richard Trethowan
Agronomy 2023, 13(7), 1893; https://doi.org/10.3390/agronomy13071893 - 17 Jul 2023
Cited by 6 | Viewed by 2462
Abstract
Faba beans (Vicia faba L.) constitute a partially outcrossing species requiring an isolation distance to maintain genetic purity when more than one variety is grown in field conditions. This information is crucial for seed growers and faba bean breeders. A study was [...] Read more.
Faba beans (Vicia faba L.) constitute a partially outcrossing species requiring an isolation distance to maintain genetic purity when more than one variety is grown in field conditions. This information is crucial for seed growers and faba bean breeders. A study was conducted at the University of Sydney’s Plant Breeding Institute, Narrabri, over two years to examine the extent of natural outcrossing using a creamy white flower characteristic as a morphological marker, which is controlled by a single recessive gene. The white-flowered genotype (IX225c) was grown in paired rows of 150 m length in four directions from a central 480 m2 plot of the normal flowered genotype PBA Warda. A beehive was placed in the central plot at the flowering time and natural pollination was allowed. At maturity, seed samples were taken from the white-flowered genotype at designated intervals along each axis and 100 seeds from each sample were grown in the glasshouse/birdcage to the 4–5 leaf stage and the proportion of plants displaying a stipule spot pigmentation (normal flower color and spotted stipule are linked) was used to determine the percentage of outcrossing. Maximum outcrossing of 2.28% occurred where both genotypes were grown side by side (0 m) and the degree of outcrossing decreased as the distance along each axis from the central plot increased. At a 6 m distance, the outcrossing was less than 1%; however, on occasion, it increased to 1% beyond a distance of 100 m, indicating the volatile and unpredictable nature of bee flights. Distance had a major effect on outcrossing but the direction and its interaction had no effect. The results suggest that to limit outcrossing to below 0.5%, a distance of more than 150 m between plots of different faba beans cultivars would be required. It also indicated that Australian faba bean genotypes are mostly self-fertile and a relatively narrow isolation distance will ensure self-fertilization in seed production and breeding programs. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

22 pages, 5643 KB  
Article
Impacts of Semiochemical Traps Designed for Bruchus rufimanus Boheman 1833 (Coleoptera: Chrysomelidae) on Nontarget Beneficial Entomofauna in Field Bean Crops
by Arnaud Segers, Grégoire Noël, Louise Delanglez, Rudy Caparros Megido and Frédéric Francis
Insects 2023, 14(2), 153; https://doi.org/10.3390/insects14020153 - 2 Feb 2023
Cited by 5 | Viewed by 3877
Abstract
Broad bean weevils (BBWs–Coleoptera: Chrysomelidae) are serious pests of field bean seeds that hamper the promotion of this crop in the diversification of European cropping systems. Recent research has identified different semiochemical lures and trap devices for the development of semiochemical-based control strategies [...] Read more.
Broad bean weevils (BBWs–Coleoptera: Chrysomelidae) are serious pests of field bean seeds that hamper the promotion of this crop in the diversification of European cropping systems. Recent research has identified different semiochemical lures and trap devices for the development of semiochemical-based control strategies of BBWs. In this study, two field trials were carried out in order to provide necessary information supporting the implementation of sustainable field use of semiochemical traps against BBWs. More particularly, three principal objectives were followed including (i) the identification of the most efficient traps for BBWs capture and the influence of trapping modality on BBWs sex-ratio, (ii) the assessment of eventual collateral effects on crop benefits including aphidophagous and pollinator insects such as Apidae, Syrphidae and Coccinellidae, (iii) the assessment of the crop developmental stage influence on the capture by semiochemical traps. Three different semiochemical lures were tested in combination with two trapping devices across two field trials in early and late flowering field bean crops. The crop phenology and climate parameters were integrated into the analyses to interpret the spatiotemporal evolution of the captured insect populations. A total of 1380 BBWs and 1424 beneficials were captured. White pan traps combined with floral kairomones were the most efficient traps for the capture of BBWs. We demonstrated that the crop phenology (c.f., the flowering stage) exerted strong competition on the attractiveness of semiochemical traps. Community analysis revealed that only one species of BBWs was captured in field bean crops (i.e., Bruchus rufimanus), and no trend was highlighted concerning the sex ratios according to the trapping devices. The beneficial insect community included 67 different species belonging to bees, hoverflies and ladybeetles. Semiochemical traps manifested a strong impact on beneficial insect communities that included some species under extinction threats and need to be further adapted to minimize such collateral effects. Based on these results, recommendations are provided for the implementation of the most sustainable BBWs control method that minimizes the impact on the recruitment of beneficial insects, which is an important ecosystem service for faba bean crops. Full article
Show Figures

Figure 1

21 pages, 975 KB  
Review
Natural Pest Regulation and Its Compatibility with Other Crop Protection Practices in Smallholder Bean Farming Systems
by Baltazar J. Ndakidemi, Ernest R. Mbega, Patrick A. Ndakidemi, Philip C. Stevenson, Steven R. Belmain, Sarah E. J. Arnold and Victoria C. Woolley
Biology 2021, 10(8), 805; https://doi.org/10.3390/biology10080805 - 20 Aug 2021
Cited by 10 | Viewed by 5676
Abstract
Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically [...] Read more.
Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically relies on chemical pesticides, which have adverse effects on the wildlife, crop pollinators, natural enemies, mammals, and the development of resistance by pests. Nature-based solutions —in particular, using biological control agents with sustainable approaches that include biopesticides, resistant varieties, and cultural tools—are alternatives to chemical control. However, significant barriers to their adoption in SSA include a lack of field data and knowledge on the natural enemies of pests, safety, efficacy, the spectrum of activities, the availability and costs of biopesticides, the lack of sources of resistance for different cultivars, and spatial and temporal inconsistencies for cultural methods. Here, we critically review the control options for bean pests, particularly the black bean aphid (Aphis fabae) and pod borers (Maruca vitrata). We identified natural pest regulation as the option with the greatest potential for this farming system. We recommend that farmers adapt to using biological control due to its compatibility with other sustainable approaches, such as cultural tools, resistant varieties, and biopesticides for effective management, especially in SSA. Full article
(This article belongs to the Special Issue Biological Control in Agroecosystems)
Show Figures

Graphical abstract

17 pages, 515 KB  
Article
Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services
by Arran Greenop, Nevine Mica-Hawkyard, Sarah Walkington, Andrew Wilby, Samantha M Cook, Richard F Pywell and Ben A Woodcock
Insects 2020, 11(3), 191; https://doi.org/10.3390/insects11030191 - 18 Mar 2020
Cited by 19 | Viewed by 6300
Abstract
Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are [...] Read more.
Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields. Full article
(This article belongs to the Special Issue The Impacts of Pesticides on Pollinators)
Show Figures

Figure 1

35 pages, 303 KB  
Review
Impact of Molecular Technologies on Faba Bean (Vicia faba L.) Breeding Strategies
by Annathurai Gnanasambandam, Jeff Paull, Ana Torres, Sukhjiwan Kaur, Tony Leonforte, Haobing Li, Xuxiao Zong, Tao Yang and Michael Materne
Agronomy 2012, 2(3), 132-166; https://doi.org/10.3390/agronomy2030132 - 4 Jul 2012
Cited by 72 | Viewed by 15373
Abstract
Faba bean (Vicia faba L.) is a major food and feed legume because of the high nutritional value of its seeds. The main objectives of faba bean breeding are to improve yield, disease resistance, abiotic stress tolerance, seed quality and other agronomic [...] Read more.
Faba bean (Vicia faba L.) is a major food and feed legume because of the high nutritional value of its seeds. The main objectives of faba bean breeding are to improve yield, disease resistance, abiotic stress tolerance, seed quality and other agronomic traits. The partial cross-pollinated nature of faba bean introduces both challenges and opportunities for population development and breeding. Breeding methods that are applicable to self-pollinated crops or open-pollinated crops are not highly suitable for faba bean. However, traditional breeding methods such as recurrent mass selection have been established in faba bean and used successfully in breeding for resistance to diseases. Molecular breeding strategies that integrate the latest innovations in genetics and genomics with traditional breeding strategies have many potential applications for future faba bean cultivar development. Hence, considerable efforts have been undertaken in identifying molecular markers, enriching genetic and genomic resources using high-throughput sequencing technologies and improving genetic transformation techniques in faba bean. However, the impact of research on practical faba bean breeding and cultivar release to farmers has been limited due to disconnects between research and breeding objectives and the high costs of research and implementation. The situation with faba bean is similar to other small crops and highlights the need for coordinated, collaborative research programs that interact closely with commercially focused breeding programs to ensure that technologies are implemented effectively. Full article
(This article belongs to the Special Issue Impact of Genomics Technologies on Crop Breeding Strategies)
Show Figures

Figure 1

Back to TopTop