Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = exfoliative toxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 298 KiB  
Article
Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy
by Fabrizio Bertelloni, Francesca Pauselli, Giulia Cagnoli, Roberto Biscontri, Renato Ceccherelli and Valentina Virginia Ebani
Antibiotics 2025, 14(7), 725; https://doi.org/10.3390/antibiotics14070725 - 18 Jul 2025
Viewed by 258
Abstract
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were [...] Read more.
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were typed and analyzed for exfoliative toxins genes and the phenotypic and genotypic characteristics of antimicrobial resistance. Results: A total of 54 strains were isolated and typed as S. aureus, S. xylosus, S. sciuri, S. pseudintermedius, S. simulans, S. chromogenes, S. epidermidis, S. hyicus, and S. lentus. No strains had the eta and etb genes coding for exfoliative toxins. Overall, 39/54 (72.20%) isolates showed phenotypic resistance to at least one antimicrobial and 21/54 (38.80%) showed more than one resistance. The lowest efficacy was observed for erythromycin, with 40/54 (74.08%) strains classified as intermediate and 6/54 (11.11%) classified as resistant. Among the 29 isolates shown to be penicillin-resistant, 11 (37.93%) were oxacillin-resistant, with a minimum inhibitory concentration (MIC). Among the 54 staphylococcal strains, 2 (3.70%) were resistant to vancomycin, both with an MIC value equal to the maximum concentration of the antibiotic tested (256 μg/mL) and 2 (3.70%) had an intermediate resistance profile with an 8 μg/mL MIC value. No strains had the genes vanA and vanB. Two of the 29 (6.90%) penicillin-resistant strains had the blaZ gene; 8 (27.13%) strains had the mecA gene. Overall, 2/54 (3.70%) isolates were classified as extensively drug-resistant (XDR) and 9/54 (16.66%) were classified as multidrug-resistant (MDR). Conclusions: Hedgehogs can harbor antimicrobial-resistant staphylococci and can be sources of these bacteria for other animals and humans. They can also serve as bioindicators of the pathogens and antimicrobial-resistant bacteria circulating in a given habitat. Full article
8 pages, 688 KiB  
Case Report
Case Report: Fatal Necrotizing Pneumonia by Exfoliative Toxin etE2-Producing Staphylococcus aureus Belonging to MLST ST152 in The Netherlands
by Wouter J. van Steen, Monika A. Fliss, Ethel Metz, Klaus Filoda, Charlotte H. S. B. van den Berg, Bhanu Sinha and Erik Bathoorn
Microorganisms 2025, 13(7), 1618; https://doi.org/10.3390/microorganisms13071618 - 9 Jul 2025
Viewed by 275
Abstract
We present a case of fatal necrotizing Staphylococcus aureus pneumonia with underlying influenza A (H3) infection. Next-generation-sequencing-based analysis revealed that the S. aureus isolate harbored the newly recognized exfoliative toxin etE2 gene. Molecular epidemiologic analysis showed that the isolate belonged to the MSSA [...] Read more.
We present a case of fatal necrotizing Staphylococcus aureus pneumonia with underlying influenza A (H3) infection. Next-generation-sequencing-based analysis revealed that the S. aureus isolate harbored the newly recognized exfoliative toxin etE2 gene. Molecular epidemiologic analysis showed that the isolate belonged to the MSSA ST152 lineage, harboring PVL genes and edinB co-located to etE2 as distinctive virulence factors. The etE2 gene is present in all isolates of this lineage co-located to the exotoxin gene edinB, both implicated in the destruction of tissue integrity. We alert as to the global emergence of this lineage causing serious infections in patients. Full article
Show Figures

Figure 1

13 pages, 784 KiB  
Article
Bacteriophage Resistance, Adhesin’s and Toxin’s Genes Profile of Staphylococcus aureus Causing Infections in Children and Adolescents
by Nikolaos Giormezis, Assimina Rechenioti, Konstantinos Doumanas, Christos Sotiropoulos, Fotini Paliogianni and Fevronia Kolonitsiou
Microorganisms 2025, 13(3), 484; https://doi.org/10.3390/microorganisms13030484 - 21 Feb 2025
Viewed by 702
Abstract
Staphylococcus aureus is a common pathogen, often recovered from children’s infections. Βiofilm formation, antimicrobial resistance and production of adhesins and toxins contribute to its virulence. As resistance to antimicrobials rises worldwide, alternative therapies like bacteriophages (among them the well-studied Bacteriophage K) can be [...] Read more.
Staphylococcus aureus is a common pathogen, often recovered from children’s infections. Βiofilm formation, antimicrobial resistance and production of adhesins and toxins contribute to its virulence. As resistance to antimicrobials rises worldwide, alternative therapies like bacteriophages (among them the well-studied Bacteriophage K) can be helpful. The aim of this study was to determine the bacteriophage and antimicrobial susceptibility and the presence of virulence genes among S. aureus from infections in children and adolescents. Eighty S. aureus isolates were tested for biofilm formation and antimicrobial susceptibility. The presence of two genes of the ica operon (icaA, icaD), adhesin’s (fnbA, fnbB, sasG) and toxin’s genes (PVL, tst, eta, etb) was tested by PCRs. Susceptibility to Bacteriophage K was determined using a spot assay. Thirteen isolates were methicillin-resistant (MRSA) and 41 were multi-resistant. Twenty-five S. aureus (31.3%) were resistant to Bacteriophage K, mostly from ocular and ear infections. Twelve S. aureus (15%) were PVL-positive, seven (8.8%) positive for tst, 18 (22.5%) were eta-positive and 46 were (57.5%) etb-positive. A total of 66 (82.5%) isolates carried fnbA, 16 (20%) fnbB and 26 (32.5%) sasG. PVL, tst and sasG carriage were more frequent in MRSA. Bacteriophage-susceptible isolates carried more frequently eta (32.7%) and etb (69.1%) compared to phage-resistant S. aureus (0% and 32%, respectively). Although mainly methicillin-sensitive, S. aureus from pediatric infections exhibited high antimicrobial resistance and carriage of virulence genes (especially for exfoliative toxins and fnbA). MRSA was associated with PVL, tst and sasG carriage, whereas Bacteriophage susceptibility was associated with eta and etb. The high level of Bacteriophage K susceptibility highlights its potential use against staphylococcal infections. Full article
(This article belongs to the Special Issue Combating Antimicrobial Resistance: Innovations and Strategies)
Show Figures

Figure 1

15 pages, 2988 KiB  
Article
Insights into the Virulence and Antimicrobial Resistance of Staphylococcus hyicus Isolates from Spanish Swine Farms
by Oscar Mencía-Ares, Eva Ramos-Calvo, Alba González-Fernández, Álvaro Aguarón-Turrientes, Ana Isabel Pastor-Calonge, Rubén Miguélez-Pérez, César B. Gutiérrez-Martín and Sonia Martínez-Martínez
Antibiotics 2024, 13(9), 871; https://doi.org/10.3390/antibiotics13090871 - 11 Sep 2024
Cited by 1 | Viewed by 1558
Abstract
Staphylococcus hyicus is a significant pathogen in swine, primarily causing exudative epidermitis. Addressing S. hyicus infections requires both the characterization of virulence and antimicrobial resistance (AMR) in farm-recovered isolates. This study aimed to characterize the virulence, AMR, and biofilm formation of S. hyicus [...] Read more.
Staphylococcus hyicus is a significant pathogen in swine, primarily causing exudative epidermitis. Addressing S. hyicus infections requires both the characterization of virulence and antimicrobial resistance (AMR) in farm-recovered isolates. This study aimed to characterize the virulence, AMR, and biofilm formation of S. hyicus isolates from Spanish swine farms. A total of 49 isolates were analyzed, originating from animals with cutaneous, reproductive, and systemic clinical signs. Half of the isolates (49.0%) were positive for at least one virulence factor (VF) gene, with SHETA being the most frequent (28.6%). A high frequency of multidrug resistant (MDR) isolates was observed (83.7%), with significant resistance to commonly used antimicrobials, including lincosamides (83.7%), pleuromutilins (81.6%), penicillins (75.5%), and tetracyclines (73.5%). All isolates exhibited robust in vitro biofilm formation capacity (DC = 15.6 ± 7.0). Significant associations were found between VFs, biofilm formation, and AMR patterns, highlighting the link between the resistance to lincosamides and pleuromutilins (p < 0.001; Φ = 0.57) and macrolides (p < 0.001; Φ = 0.48), and the association of AMR with the ExhC and ExhD VF genes. These findings underscore the need for targeted diagnostics to improve management and therapeutic strategies to mitigate the impact of S. hyicus on swine production. Full article
Show Figures

Figure 1

12 pages, 1147 KiB  
Article
Identification of the Enterotoxigenic Potential of Staphylococcus spp. from Raw Milk and Raw Milk Cheeses
by Patryk Wiśniewski, Joanna Gajewska, Anna Zadernowska and Wioleta Chajęcka-Wierzchowska
Toxins 2024, 16(1), 17; https://doi.org/10.3390/toxins16010017 - 28 Dec 2023
Cited by 7 | Viewed by 2600
Abstract
This study aimed to genotypic and phenotypic analyses of the enterotoxigenic potential of Staphylococcus spp. isolated from raw milk and raw milk cheeses. The presence of genes encoding staphylococcal enterotoxins (SEs), including the classical enterotoxins (sea-see), non-classical enterotoxins (seg-seu), [...] Read more.
This study aimed to genotypic and phenotypic analyses of the enterotoxigenic potential of Staphylococcus spp. isolated from raw milk and raw milk cheeses. The presence of genes encoding staphylococcal enterotoxins (SEs), including the classical enterotoxins (sea-see), non-classical enterotoxins (seg-seu), exfoliative toxins (eta-etd) and toxic shock syndrome toxin-1 (tst-1) were investigated. Isolates positive for classical enterotoxin genes were then tested by SET-RPLA methods for toxin expression. Out of 75 Staphylococcus spp. (19 Staphylococcus aureus and 56 CoNS) isolates from raw milk (49/65.3%) and raw milk cheese samples (26/34.7%), the presence of enterotoxin genes was confirmed in 73 (97.3%) of them. Only one isolate from cheese sample (1.3%) was able to produce enterotoxin (SED). The presence of up to eight different genes encoding enterotoxins was determined simultaneously in the staphylococcal genome. The most common toxin gene combination was sek, eta present in fourteen isolates (18.7%). The tst-1 gene was present in each of the analyzed isolates from cheese samples (26/34.7%). Non-classical enterotoxins were much more frequently identified in the genome of staphylococcal isolates than classical SEs. The current research also showed that genes tagged in S. aureus were also identified in CoNS, and the total number of different genes detected in CoNS was seven times higher than in S. aureus. The obtained results indicate that, in many cases, the presence of a gene in Staphylococcus spp. is not synonymous with the ability of enterotoxins production. The differences in the number of isolates with genes encoding SEs and enterotoxin production may be mainly due to the limit of detection of the toxin production method used. This indicates the need to use high specificity and sensitivity methods for detecting enterotoxin in future studies. Full article
(This article belongs to the Special Issue Staphylococcus aureus Toxins and Prevalence of Enterotoxins)
Show Figures

Graphical abstract

25 pages, 4142 KiB  
Review
Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins
by Zhihao Zhu, Zuo Hu, Shaowen Li, Rendong Fang, Hisaya K. Ono and Dong-Liang Hu
Int. J. Mol. Sci. 2024, 25(1), 395; https://doi.org/10.3390/ijms25010395 - 28 Dec 2023
Cited by 37 | Viewed by 10971
Abstract
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. [...] Read more.
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton–Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 2074 KiB  
Article
Molecular Characteristics of Methicillin-Resistant and Susceptible Staphylococcus aureus from Pediatric Patients in Eastern China
by Yuxuan Zhou, Shuyang Yu, Chenjun Su, Shengqi Gao, Guilai Jiang, Zhemin Zhou and Heng Li
Pathogens 2023, 12(4), 549; https://doi.org/10.3390/pathogens12040549 - 2 Apr 2023
Cited by 6 | Viewed by 2751
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes invasive infections in humans. In recent years, increasing studies have focused on the prevalence of S. aureus infections in adults; however, the epidemiology and molecular characteristics of S. aureus from Chinese pediatric patients remain unknown. [...] Read more.
Staphylococcus aureus is an opportunistic pathogen that causes invasive infections in humans. In recent years, increasing studies have focused on the prevalence of S. aureus infections in adults; however, the epidemiology and molecular characteristics of S. aureus from Chinese pediatric patients remain unknown. The present study examined the population structure, antimicrobial resistance, and virulent factors of methicillin-resistant and -susceptible S. aureus isolated from Chinese pediatric patients from one medical center in eastern China. A total of 81 cases were screened with positive S. aureus infections among 864 pediatric patients between 2016 and 2022 in eastern China. Molecular analysis showed that ST22 (28.4%) and ST59 (13.6%) were the most typical strains, and associations between different clonal complex (CC) types/serotype types (ST) and the age of pediatric patients were observed in this study. CC398 was the predominant type in neonates under 1 month of age, while CC22 was mainly found in term-infant (under 1 year of age) and toddlers (over 1 year of age). Additionally, 17 S. aureus isolates were resistant to at least three antimicrobials and majority of them belonged to CC59. The blaZ gene was found in 59 isolates and mecA gene was present in 26 strains identified as methicillin-resistant. Numerous virulent factors were detected in S. aureus isolated from present pediatric patients. Remarkably, lukF-PV and lukS-PV were dominantly carried by CC22, tsst-1 genes were detected in CC188, CC7, and CC15, while exfoliative toxin genes were found only in CC121. Only 41.98% of the S. aureus isolates possessed scn gene, indicating that the sources of infections in pediatric patients may include both human-to-human transmissions as well as environmental and nosocomial infections. Together, the present study provided a phylogenetic and genotypic comparison of S. aureus from Chinese pediatric patients in Suzhou city. Our results suggested that the colonization of multi-drug resistant isolates of S. aureus may raise concern among pediatric patients, at least from the present medical center in eastern China. Full article
(This article belongs to the Special Issue Staphylococcus Infections in Humans and Animals)
Show Figures

Figure 1

12 pages, 289 KiB  
Article
Antimicrobial Resistance, SCCmec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology
by Junyan Liu, Tengyi Huang, Thanapop Soteyome, Jian Miao, Guangchao Yu, Dingqiang Chen, Congxiu Ye, Ling Yang and Zhenbo Xu
Antibiotics 2023, 12(2), 368; https://doi.org/10.3390/antibiotics12020368 - 10 Feb 2023
Cited by 13 | Viewed by 2990
Abstract
As the prevalence of Staphylococcus aureus infections is of worldwide concern, phenotype and genotype in prevalent MRSA strains require longitudinal investigation. In this study, the antibiotic resistance, virulence gene acquisition, and molecular type were determined on a large scale of nosocomial S. aureus [...] Read more.
As the prevalence of Staphylococcus aureus infections is of worldwide concern, phenotype and genotype in prevalent MRSA strains require longitudinal investigation. In this study, the antibiotic resistance, virulence gene acquisition, and molecular type were determined on a large scale of nosocomial S. aureus strains in Southern China during 2009–2015. Bacterial identification and antimicrobial susceptibility to 10 antibiotics were tested by Vitek-2. Virulence genes encoding staphylococcal enterotoxins (SEA, SEB, SEC, SED, and SEE), exfoliative toxins (ETA and ETB), Panton–Valentine leukocidin (PVL), and toxic shock syndrome toxin (TSST) were detected by PCR, with SCCmec typing also conducted by multiplex PCR strategy. Genotypes were discriminated by MLST and spaA typing. MLST was performed by amplification of the internal region of seven housekeeping genes. PCR amplification targeting the spa gene was performed for spa typing. No resistance to vancomycin, linezolid, or quinupristin and increase in the resistance to trimethoprim/sulfamethoxazole (55.5%) were identified. A total of nine SCCmec types and subtypes, thirteen STs clustered into thirteen spa types were identified, with ST239-SCCmec III-t037 presenting the predominant methicillin-resistant S. aureus (MRSA) clone. Typically, SCCmec type IX and ST546 were emergent types in China. Isolates positive for both pvl and tsst genes and for both eta and etb genes were also identified. Important findings in this study include: firstly, we have provided comprehensive knowledge on the molecular epidemiology of MRSA in Southern China which fills the gap since 2006 or 2010 from previous studies. Secondly, we have presented the correlation between virulence factors (four major groups) and genotypes (SCCmec, ST and spa types). Thirdly, we have shown evidence for earliest emergence of type I SCCmec from 2012, type VI from 2009 and type XI from 2012 in MRSA from Southern China. Full article
18 pages, 1452 KiB  
Article
Local Epidemiology of Nosocomial Staphylococcus aureus Infection in a Nigerian University Teaching Hospital
by Adeniran Adeyanju, Frieder Schaumburg, Adedeji Onayade, Akinyele Akinyoola, Taofeeq Adeyemi, Osaretin Ugbo, Robin Köck, Yemisi Amusa, Oladejo Lawal, Temilade Adeyanju, Nkem Torimiro, David Akinpelu, Deboye Kolawole, Christian Kohler and Karsten Becker
Antibiotics 2022, 11(10), 1372; https://doi.org/10.3390/antibiotics11101372 - 7 Oct 2022
Cited by 5 | Viewed by 3347
Abstract
Population-based studies of Staphylococcus aureus contribute to understanding the epidemiology of S. aureus infection. We enrolled surgical inpatients admitted to an African tertiary-care hospital in order to prospectively analyze the nosocomial impact of S. aureus. Data collection included an active sampling of [...] Read more.
Population-based studies of Staphylococcus aureus contribute to understanding the epidemiology of S. aureus infection. We enrolled surgical inpatients admitted to an African tertiary-care hospital in order to prospectively analyze the nosocomial impact of S. aureus. Data collection included an active sampling of the anterior nares and infectious foci within 48 h after admission and subsequently when clinically indicated. All S. aureus isolates were spa and agr genotyped. Possession of Panton-Valentine leukocidin (PVL) and other toxin genes was determined. We analyzed antibiotic susceptibility profiles by VITEK 2 systems and verified methicillin-resistant S. aureus (MRSA) by mecA/C PCR. Among 325 patients, 15.4% carried methicillin-susceptible S. aureus (MSSA) at admission, while 3.7% carried MRSA. The incidence densities of nosocomial infections due to MSSA and MRSA were 35.4 and 6.2 infections per 10,000 patient-days, respectively. Among all 47 nosocomial infections, skin and soft-tissue (40.4%) and bones or joints’ (25.5%) infections predominated. Six (12.7%) infection-related S. aureus isolates harbored PVL genes including two (4.2%) MRSA: overall, seventeen (36.2%) isolates carried pyrogenic toxin superantigens or other toxin genes. This study illustrates the considerable nosocomial impact of S. aureus in a Nigerian University hospital. Furthermore, they indicate a need for effective approaches to curtail nosocomial acquisition of multidrug-resistant S. aureus. Full article
Show Figures

Figure 1

20 pages, 3366 KiB  
Article
Staphylococcus aureus Exfoliative Toxin E, Oligomeric State and Flip of P186: Implications for Its Action Mechanism
by Carolina Gismene, Jorge Enrique Hernández González, Angela Rocio Niño Santisteban, Andrey Fabricio Ziem Nascimento, Lucas dos Santos Cunha, Fábio Rogério de Moraes, Cristiano Luis Pinto de Oliveira, Caio C. Oliveira, Paola Jocelan Scarin Provazzi, Pedro Geraldo Pascutti, Raghuvir Krishnaswamy Arni and Ricardo Barros Mariutti
Int. J. Mol. Sci. 2022, 23(17), 9857; https://doi.org/10.3390/ijms23179857 - 30 Aug 2022
Cited by 5 | Viewed by 3279
Abstract
Staphylococcal exfoliative toxins (ETs) are glutamyl endopeptidases that specifically cleave the Glu381-Gly382 bond in the ectodomains of desmoglein 1 (Dsg1) via complex action mechanisms. To date, four ETs have been identified in different Staphylococcus aureus strains and ETE is the most recently characterized. [...] Read more.
Staphylococcal exfoliative toxins (ETs) are glutamyl endopeptidases that specifically cleave the Glu381-Gly382 bond in the ectodomains of desmoglein 1 (Dsg1) via complex action mechanisms. To date, four ETs have been identified in different Staphylococcus aureus strains and ETE is the most recently characterized. The unusual properties of ETs have been attributed to a unique structural feature, i.e., the 180° flip of the carbonyl oxygen (O) of the nonconserved residue 192/186 (ETA/ETE numbering), not conducive to the oxyanion hole formation. We report the crystal structure of ETE determined at 1.61 Å resolution, in which P186(O) adopts two conformations displaying a 180° rotation. This finding, together with free energy calculations, supports the existence of a dynamic transition between the conformations under the tested conditions. Moreover, enzymatic assays showed no significant differences in the esterolytic efficiency of ETE and ETE/P186G, a mutant predicted to possess a functional oxyanion hole, thus downplaying the influence of the flip on the activity. Finally, we observed the formation of ETE homodimers in solution and the predicted homodimeric structure revealed the participation of a characteristic nonconserved loop in the interface and the partial occlusion of the protein active site, suggesting that monomerization is required for enzymatic activity. Full article
(This article belongs to the Special Issue Protein Structure Research)
Show Figures

Graphical abstract

17 pages, 1607 KiB  
Article
Identification, Superantigen Toxin Gene Profile and Antimicrobial Resistance of Staphylococci Isolated from Polish Primitive Sheep Breeds
by Jolanta Karakulska, Marta Woroszyło, Małgorzata Szewczuk and Karol Fijałkowski
Animals 2022, 12(16), 2139; https://doi.org/10.3390/ani12162139 - 20 Aug 2022
Cited by 4 | Viewed by 2654
Abstract
The study aimed to analyze staphylococcal microbiota of the nasal cavity of the primitive sheep breeds Polish Świniarka and Wrzosówka kept on the same ecological farm. The research included the identification of staphylococcal species, evaluation of the prevalence of genes encoding enterotoxins, staphylococcal [...] Read more.
The study aimed to analyze staphylococcal microbiota of the nasal cavity of the primitive sheep breeds Polish Świniarka and Wrzosówka kept on the same ecological farm. The research included the identification of staphylococcal species, evaluation of the prevalence of genes encoding enterotoxins, staphylococcal enterotoxin-like proteins, exfoliative toxins, toxic shock syndrome toxin 1, and detection of antimicrobial resistance. From 61 swab samples gathered from Świniarka (33) and Wrzosówka (28) healthy sheep, 127 coagulase-negative staphylococci (CoNS) were isolated. Based on PCR-RFLP analysis of the gap gene using AluI and HpyCH4V enzymes, the isolates were identified as: Staphylococcus xylosus (33.9%), S. equorum (29.1%), S. arlettae (15%), S. warneri (9.4%), S. lentus (7.9%), S. succinus (3.9%) and S. sciuri (0.8%). Three of these species, S. lentus, S. succinus, and S. sciuri, were detected only from the Świniarka breed. It was found that 77.2% of isolates harbored from 1 to 7 out of 21 analyzed genes for superantigenic toxins. The greatest diversity of toxin genes was recorded for S. equorum (16 different genes). The most prevalent gene was ser (40.2%). The incidence and number of resistances to antimicrobials were found to be bacterial species but not sheep breed dependent. The highest percentage of resistance was found for S. sciuri. The most frequent resistance was observed to clindamycin (45.7%). The findings of this study prove that toxigenic and antimicrobial resistant CoNS can colonize the nasal cavity of healthy sheep. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

12 pages, 2203 KiB  
Article
Antimicrobial Resistance Profile of Staphylococcus hyicus Strains Isolated from Brazilian Swine Herds
by Andrea Micke Moreno, Luisa Zanolli Moreno, André Pegoraro Poor, Carlos Emilio Cabrera Matajira, Marina Moreno, Vasco Túlio de Moura Gomes, Givago Faria Ribeiro da Silva, Karine Ludwig Takeuti and David Emilio Barcellos
Antibiotics 2022, 11(2), 205; https://doi.org/10.3390/antibiotics11020205 - 6 Feb 2022
Cited by 8 | Viewed by 3150
Abstract
Staphylococcus hyicus is the causative agent of porcine exudative epidermitis. This disorder affects animals in all producing countries and presents a widespread occurrence in Brazil. This study evaluated strains from a historical collection in order to detect the presence of exfoliative-toxin-encoding genes (SHETB, [...] Read more.
Staphylococcus hyicus is the causative agent of porcine exudative epidermitis. This disorder affects animals in all producing countries and presents a widespread occurrence in Brazil. This study evaluated strains from a historical collection in order to detect the presence of exfoliative-toxin-encoding genes (SHETB, ExhA, ExhB, ExhC, ExhD), characterize the strains using PFGE, and determine their respective antimicrobial resistance profiles. The results obtained from the evaluation of 77 strains from 1982 to 1987 and 103 strains from 2012 reveal a significant change in resistance profiles between the two periods, especially regarding the antimicrobial classes of fluoroquinolones, amphenicols, lincosamides, and pleuromutilins. The levels of multidrug resistance observed in 2012 were significantly higher than those detected in the 1980s. It was not possible to correlate the resistance profiles and presence of genes encoding toxins with the groups obtained via PFGE. Only 10.5% of the strains were negative for exfoliative toxins, and different combinations of toxins genes were identified. The changes observed in the resistance pattern of this bacterial species over the 30-year period analyzed indicate that S. hyicus could be a useful indicator in resistance monitoring programs in swine production. In a country with animal protein production such as Brazil, the results of this study reinforce the need to establish consistent monitoring programs of antimicrobial resistance in animals, as already implemented in various countries of the world. Full article
Show Figures

Figure 1

13 pages, 683 KiB  
Article
Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment
by Bing-Mu Hsu, Jung-Sheng Chen, Gwo-Jong Hsu, Suprokash Koner, Viji Nagarajan and Hsin-Chi Tsai
Antibiotics 2022, 11(1), 81; https://doi.org/10.3390/antibiotics11010081 - 10 Jan 2022
Cited by 6 | Viewed by 2881
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a dynamic and tenacious pathogenic bacterium which is prevalent in livestock farming environments. This study investigated the possibility of MRSA spread via bioaerosol transmission from an indoor chicken farm environment to outdoors downwind (up to 50 m). The [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is a dynamic and tenacious pathogenic bacterium which is prevalent in livestock farming environments. This study investigated the possibility of MRSA spread via bioaerosol transmission from an indoor chicken farm environment to outdoors downwind (up to 50 m). The concentration of total airborne bacteria colony formation units (CFUs) was decreased with increasing sampling distance ranging from 9.18 × 101 to 3.67 × 103 per air volume (m3). Among the 21 MRSA isolates, 15 were isolated from indoor chicken sheds and exposure square areas, whereas 6 were isolated from downwind bioaerosol samples. Molecular characterization revealed that all of them carried the staphylococcal cassette chromosome mec (SCCmec) VIII, and they were remarkably linked with the hospital-associated MRSA group. Spa typing analysis determined that all MRSA isolates belonged to spa type t002. Virulence analysis showed that 100% of total isolates possessed exfoliative toxin A (eta), whereas 38.09% and 23.80% strains carried exfoliative toxin B (etb) and enterotoxin A (entA). Additionally, all of these MRSA isolates carried multidrug resistance properties and showed their resistance against chloramphenicol, ciprofloxacin, clindamycin, tetracycline, and erythromycin. In addition, chi-squared statistical analysis displayed a significant distributional relationship of gene phenotypes between MRSA isolates from chicken farm indoor and downwind bioaerosol samples. The results of this study revealed that chicken farm indoor air might act as a hotspot of MRSA local community-level outbreak, wherein the short-distance dispersal of MRSA could be supported by bioaerosols. Full article
Show Figures

Figure 1

13 pages, 14001 KiB  
Article
Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding
by Chi-Wei Tao, Jung-Sheng Chen, Bing-Mu Hsu, Suprokash Koner, Tung-Che Hung, Han-Ming Wu and Jagat Rathod
Antibiotics 2021, 10(8), 917; https://doi.org/10.3390/antibiotics10080917 - 28 Jul 2021
Cited by 11 | Viewed by 3568
Abstract
The outbreak of airborne pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) through bioaerosol, and their molecular characterization around domestic poultry farming areas, was not completely understood. This imposes risk of a MRSA-associated health threat for the relevant livestock food production units. To address [...] Read more.
The outbreak of airborne pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) through bioaerosol, and their molecular characterization around domestic poultry farming areas, was not completely understood. This imposes risk of a MRSA-associated health threat for the relevant livestock food production units. To address this issue, the present study investigated the role of bioaerosol in transmitting MRSA strains in poultry house settings by combining molecular typing, phylogenetic classification, antibiotic susceptibility, and virulence gene distribution patterns. The present study highlights that all 18 bioaerosol and stool samples collected were MRSA positive, with a unique set of virulence factors. Out of 57 isolated MRSA isolates, 68.4% and 19.3% consisted of SCCmec I and IV elements, respectively, which are commonly linked with hospital-acquired and livestock-associated MRSA strains. It is worth noting that the exfoliative toxin eta and etb genes were carried by 100% and 70.2% of all isolates, respectively. Only 17.5% of strains showed the presence of enterotoxin entC. These MRSA isolates were resistant to chloramphenicol (C), ciprofloxacin (CIP), clindamycin (DA), erythromycin (E), and tetracycline (T), signifying their multi-drug resistance traits. A cluster of phylogenetic analysis described that 80.7% and 15.8% of total isolates belonged to Staphylococcus aureus protein A (spa) type t002 and t548. Whereas 3.5% were reflected as a new spa type. Additionally, as per the chi-squared test score value, these two spa types (t002 and t548) have a distribution correlation with HA-MRSA and LA-MRSA in all the samples (p < 0.005, chi-squared test; degree of freedom = 1). Ultimately, this study highlights the prevalence of MRSA colonization in the conventional poultry farm environment, showing the risk of bioaerosol transmission, which needs epidemiological attention and prevention strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Antibiotic Alternatives in Livestock)
Show Figures

Figure 1

13 pages, 328 KiB  
Article
Virulence Factor Genes and Antimicrobial Susceptibility of Staphylococcus aureus Strains Isolated from Blood and Chronic Wounds
by Anna Budzyńska, Krzysztof Skowron, Agnieszka Kaczmarek, Magdalena Wietlicka-Piszcz and Eugenia Gospodarek-Komkowska
Toxins 2021, 13(7), 491; https://doi.org/10.3390/toxins13070491 - 14 Jul 2021
Cited by 16 | Viewed by 4400
Abstract
Staphylococcus aureus is one of the predominant bacteria isolated from skin and soft tissue infections and a common cause of bloodstream infections. The aim of this study was to compare the rate of resistance to various antimicrobial agents and virulence patterns in a [...] Read more.
Staphylococcus aureus is one of the predominant bacteria isolated from skin and soft tissue infections and a common cause of bloodstream infections. The aim of this study was to compare the rate of resistance to various antimicrobial agents and virulence patterns in a total of 200 S. aureus strains isolated from patients with bacteremia and chronic wounds. Disk diffusion assay and in the case of vancomycin and teicoplanin-microdilution assay, were performed to study the antimicrobial susceptibility of the isolates. The prevalence of genes encoding six enterotoxins, two exfoliative toxins, the Panton–Valentine leukocidin and the toxic shock syndrome toxin was determined by PCR. Of the 100 blood strains tested, the highest percentage (85.0%, 31.0%, and 29.0%) were resistant to benzylpenicillin, erythromycin and clindamycin, respectively. Out of the 100 chronic wound strains, the highest percentage (86.0%, 32.0%, 31.0%, 31.0%, 30.0%, and 29.0%) were confirmed as resistant to benzylpenicillin, tobramycin, amikacin, norfloxacin, erythromycin, and clindamycin, respectively. A significantly higher prevalence of resistance to amikacin, gentamicin, and tobramycin was noted in strains obtained from chronic wounds. Moreover, a significant difference in the distribution of sea and sei genes was found. These genes were detected in 6.0%, 46.0% of blood strains and in 19.0%, and 61.0% of wound strains, respectively. Our results suggest that S. aureus strains obtained from chronic wounds seem to be more often resistant to antibiotics and harbor more virulence genes compared to strains isolated from blood. Full article
(This article belongs to the Section Bacterial Toxins)
Back to TopTop