Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment
Abstract
:1. Introduction
2. Results
2.1. Odor Compounds and Airborne Bacteria Load in Chicken Farm Ambient Air
2.2. Occurrence of SCCmec Bearing MRSA Clone Bearing and Their Spa Typing in Bioaerosol Samples
2.3. The Profiling of Virulence Factor Encoding Genes for Isolated MRSA Clones
2.4. Antimicrobial Property and Multidrug Resistance Pattern of Isolated MRSA Clones
3. Discussion
4. Materials and Methods
4.1. Sampling Information and Site Description
4.2. Bacterial Colony Capturing Method from Air and Environmental Parameters Analysis
4.3. Isolation and Culture of MRSA Isolates from Bioaerosol Samples
4.4. Molecular Typing of MRSA Isolates
4.5. Anti-Microbial Susceptibility Test
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Zhou, R.; Chen, B.; Zhang, T.; Hu, L.; Zou, S. Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach. Chemosphere 2018, 213, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.-M.; Chen, J.-S.; Lin, I.-C.; Hsu, G.-J.; Koner, S.; Hussain, B.; Huang, S.-W.; Tsai, H.-C. Molecular and Anti-Microbial Resistance (AMR) Profiling of Methicillin-Resistant Staphylococcus aureus (MRSA) from Hospital and Long-Term Care Facilities (LTCF) Environment. Antibiotics 2021, 10, 748. [Google Scholar] [CrossRef]
- Stetzenbach, L.D. Airborne Infectious Microorganisms. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 175–182. [Google Scholar] [CrossRef]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and Health Outcomes in Relation to Bioaerosol Emissions from Composting Facilities: A Systematic Review of Occupational and Community Studies. J. Toxicol. Environ. Health Part B 2015, 18, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hildemann, L.M. The Effects of Human Activities on Exposure to Particulate Matter and Bioaerosols in Residential Homes. Environ. Sci. Technol. 2009, 43, 4641–4646. [Google Scholar] [CrossRef] [PubMed]
- Kabelitz, T.; Biniasch, O.; Ammon, C.; Nübel, U.; Thiel, N.; Janke, D.; Swaminathan, S.; Funk, R.; Münch, S.; Rösler, U. Particulate matter emissions during field application of poultry manure-The influence of moisture content and treatment. Sci. Total Environ. 2021, 780, 146652. [Google Scholar] [CrossRef]
- Mubareka, S.; Groulx, N.; Savory, E.; Cutts, T.; Theriault, S.; Scott, J.A.; Roy, C.J.; Turgeon, N.; Bryce, E.; Astrakianakis, G.; et al. Bioaerosols and Transmission, a Diverse and Growing Community of Practice. Front. Public Health 2019, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef]
- Liu, D.; Chai, T.; Xia, X.; Gao, Y.; Cai, Y.; Li, X.; Miao, Z.; Sun, L.; Hao, H.; Roesler, U.; et al. Formation and transmission of Staphylococcus aureus (including MRSA) aerosols carrying antibiotic-resistant genes in a poultry farming environment. Sci. Total Environ. 2012, 426, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Kozajda, A.; Jeżak, K.; Kapsa, A. Airborne Staphylococcus aureus in different environments—A review. Environ. Sci. Pollut. Res. 2019, 26, 34741–34753. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.-W.; Chen, J.-S.; Hsu, B.-M.; Koner, S.; Hung, T.-C.; Wu, H.-M.; Rathod, J. Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding. Antibiotics 2021, 10, 917. [Google Scholar] [CrossRef]
- Kumar, P.; Goel, A.K. Prevalence of Methicillin Resistant Staphylococcal Bioaerosols in and around Residential Houses in an Urban Area in Central India. J. Pathog. 2016, 2016, 7163615. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.F.; Marco-Jimenez, F.; Duncan, D.; Marín, C.; Smith, R.P.; Evans, S.J. Livestock-Associated Methicillin-Resistant Staphylococcus aureus from Animals and Animal Products in the UK. Front. Microbiol. 2019, 10, 2136. [Google Scholar] [CrossRef] [Green Version]
- Chongtrakool, P.; Ito, T.; Ma, X.X.; Kondo, Y.; Trakulsomboon, S.; Tiensasitorn, C.; Jamklang, M.; Chavalit, T.; Song, J.-H.; Hiramatsu, K. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: A proposal for a new nomenclature for SCCmec elements. Antimicrob. Agents Chemother. 2006, 50, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Hashemizadeh, Z.; Hadi, N.; Mohebi, S.; Kalantar-Neyestanaki, D.; Bazargani, A. Characterization of SCCmec, spa types and Multi Drug Resistant of methicillin-resistant Staphylococcus aureus isolates among inpatients and outpatients in a referral hospital in Shiraz, Iran. BMC Res. Notes 2019, 12, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkharsah, K.R.; Rehman, S.; Alnimr, A.; Diab, A.; Hawwari, A.; Tokajian, S. Molecular typing of MRSA isolates by spa and PFGE. J. King Saud Univ. Sci. 2019, 31, 999–1004. [Google Scholar] [CrossRef]
- Xie, Y.; He, Y.; Gehring, A.; Hu, Y.; Li, Q.; Tu, S.-I.; Shi, X. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS ONE 2011, 6, e28276. [Google Scholar] [CrossRef] [PubMed]
- Zomer, T.P.; Wielders, C.C.H.; Veenman, C.; Hengeveld, P.; van der Hoek, W.; de Greeff, S.C.; Smit, L.A.M.; Heederik, D.J.; Yzermans, C.J.; Bosch, T.; et al. MRSA in persons not living or working on a farm in a livestock-dense area: Prevalence and risk factors. J. Antimicrob. Chemother. 2016, 72, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Fertner, M.; Pedersen, K.; Jensen, V.F.; Larsen, G.; Lindegaard, M.; Hansen, J.E.; Chriél, M. Within-farm prevalence and environmental distribution of livestock-associated methicillin-resistant Staphylococcus aureus in farmed mink (Neovison vison). Vet. Microbiol. 2019, 231, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, R.S.; Duim, B.; Verstappen, K.M.; Gamage, C.D.; Dissanayake, N.; Ranatunga, L.; Graveland, H.; Wagenaar, J.A. MRSA in Pigs and the Environment as a Risk for Employees in Pig-Dense Areas of Sri Lanka. Front. Sustain. Food Syst. 2019, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Lu, Q.; Cheng, Y.; Wen, G.; Luo, Q.; Shao, H.; Zhang, T. High concentration of coagulase-negative staphylococci carriage among bioaerosols of henhouses in Central China. BMC Microbiol. 2020, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Friese, A.; Schulz, J.; Zimmermann, K.; Tenhagen, B.-A.; Fetsch, A.; Hartung, J.; Rösler, U. Occurrence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Turkey and Broiler Barns and Contamination of Air and Soil Surfaces in Their Vicinity. Appl. Environ. Microbiol. 2013, 79, 2759–2766. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.D.; Lednicky, J.A.; Torremorell, M.; Gray, G.C. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review. Front. Vet. Sci. 2017, 4, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butaye, P.; Argudín, M.A.; Smith, T.C. Livestock-Associated MRSA and Its Current Evolution. Curr. Clin. Microbiol. Rep. 2016, 3, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, S.G.; Green, C.F.; Tarwater, P.M.; Mota, L.C.; Mena, K.D.; Scarpino, P.V. Isolation of Antibiotic-Resistant Bacteria from the Air Plume Downwind of a Swine Confined or Concentrated Animal Feeding Operation. Environ. Health Perspect. 2006, 114, 1032–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-L.; Lee, M.-K.; Shih, H.-W. Assessment of Indoor Bioaerosols in Public Spaces by Real-Time Measured Airborne Particles. Aerosol Air Qual. Res. 2017, 17, 2276–2288. [Google Scholar] [CrossRef]
- Homidan, A.A.; Robertson, J.F.; Petchey, A.M. Review of the effect of ammonia and dust concentrations on broiler performance. World’s Poult. Sci. J. 2007, 59, 340–349. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, D.; Ma, H.; Liu, K.; Atilgan, A.; Xin, H. Environmental assessment of three egg production systems—Part III: Airborne bacteria concentrations and emissions. Poult. Sci. 2016, 95, 1473–1481. [Google Scholar] [CrossRef]
- Funaki, T.; Yasuhara, T.; Kugawa, S.; Yamazaki, Y.; Sugano, E.; Nagakura, Y.; Yoshida, K.; Fukuchi, K. SCCmec typing of PVL-positive community-acquired Staphylococcus aureus (CA-MRSA) at a Japanese hospital. Heliyon 2019, 5, e01415. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Huang, Y.C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; McClure, J.-A.; Elsayed, S.; Conly, J.M. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class A mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Mediavilla, J.R.; Oliveira, D.C.; Willey, B.M.; De Lencastre, H.; Kreiswirth, B.N. Multiplex real-time PCR for rapid staphylococcal cassette chromosome mec typing. J. Clin. Microbiol. 2009, 47, 3692–3706. [Google Scholar] [CrossRef] [Green Version]
- Asadollahi, P.; Farahani, N.N.; Mirzaii, M.; Khoramrooz, S.S.; van Belkum, A.; Asadollahi, K.; Dadashi, M.; Darban-Sarokhalil, D. Distribution of the Most Prevalent Spa Types among Clinical Isolates of Methicillin-Resistant and -Susceptible Staphylococcus aureus around the World: A Review. Front. Microbiol. 2018, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Frana, T.S.; Beahm, A.R.; Hanson, B.M.; Kinyon, J.M.; Layman, L.L.; Karriker, L.A.; Ramirez, A.; Smith, T.C. Isolation and Characterization of Methicillin-Resistant Staphylococcus aureus from Pork Farms and Visiting Veterinary Students. PLoS ONE 2013, 8, e53738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szafraniec, G.M.; Szeleszczuk, P.; Dolka, B. A Review of Current Knowledge on Staphylococcus agnetis in Poultry. Animals 2020, 10, 1421. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, M.; Wladyka, B.; Dubin, G. Exfoliative Toxins of Staphylococcus aureus. Toxins 2010, 2, 1148–1165. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Friedrich Alexander, W.; Lubritz, G.; Weilert, M.; Peters, G.; von Eiff, C. Prevalence of Genes Encoding Pyrogenic Toxin Superantigens and Exfoliative Toxins among Strains of Staphylococcus aureus Isolated from Blood and Nasal Specimens. J. Clin. Microbiol. 2003, 41, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins 2018, 10, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Fernandez-Perez, R.; Aspiroz, C.; Ruiz-Larrea, F.; Zarazaga, M. Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Foodborne Pathog. Dis. 2010, 7, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Ortega, E.; Abriouel, H.; Lucas, R.; Gálvez, A. Multiple Roles of Staphylococcus aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance. Toxins 2010, 2, 2117–2131. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Gao, Y.; Zhao, H.; Li, J.; Cheng, X.; Meng, L.; Dong, P.; Yang, H.; Chen, S.; Zhu, J. Revealing the distribution characteristics of antibiotic resistance genes and bacterial communities in animal-aerosol-human in a chicken farm: From One-Health perspective. Ecotoxicol. Environ. Saf. 2021, 224, 112687. [Google Scholar] [CrossRef]
- Chen, M.; Qiu, T.; Sun, Y.; Song, Y.; Wang, X.; Gao, M. Diversity of tetracycline- and erythromycin-resistant bacteria in aerosols and manures from four types of animal farms in China. Environ. Sci. Pollut. Res. 2019, 26, 24213–24222. [Google Scholar] [CrossRef]
- Huang, P.-Y.; Shi, Z.-Y.; Chen, C.-H.; Den, W.; Huang, H.-M.; Tsai, J.-J. Airborne and Surface-Bound Microbial Contamination in Two Intensive Care Units of a Medical Center in Central Taiwan. Aerosol Air Qual. Res. 2013, 13, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, J.H.; Hindler, J.F.; Reller, L.B.; Weinstein, M.P. New Consensus Guidelines from the Clinical and Laboratory Standards Institute for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. Clin. Infect. Dis. 2007, 44, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. S. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Sakoulas, G.; Gold, H.S.; Venkataraman, L.; DeGirolami, P.C.; Eliopoulos, G.M.; Qian, Q. Methicillin-resistant Staphylococcus aureus: Comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. Journal of clinical microbiology 2001, 39, 3946–3951. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; McClure, J.-A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, D.; Das, B.J.; Pandey, P.; Chetri, S.; Chanda, D.D.; Bhattacharjee, A. An array of multiplex PCR assays for detection of staphylococcal chromosomal cassette mec (SCCmec) types among staphylococcal isolates. J. Microbiol. Methods 2019, 166, 105733. [Google Scholar] [CrossRef] [PubMed]
- Asghar, A.H. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from tertiary care hospitals. Pak. J. Med. Sci. 2014, 30, 698. [Google Scholar] [CrossRef]
- Fooladi, A.A.I.; Ashrafi, E.; Tazandareh, S.G.; Koosha, R.Z.; Rad, H.S.; Amin, M.; Soori, M.; Larki, R.A.; Choopani, A.; Hosseini, H.M. The distribution of pathogenic and toxigenic genes among MRSA and MSSA clinical isolates. Microb. Pathog. 2015, 81, 60–66. [Google Scholar] [CrossRef] [PubMed]
Sampling Point | Concentration of Odor Pollutants (ppm) | Wind Direction | Wind Speed (m/s) | Total Bacteria Count | MRSA Prevalence | |||
---|---|---|---|---|---|---|---|---|
Ammonia | Methylamine | Hydrogen Sulfide | Mercaptan | CFU/m3 (by Biostage) | ||||
1st chicken shed | 3 | 2.5 | <LOD | <LOD | North-east | 0.4–0.5 | 3.67 × 103 | 5 |
2nd chicken shed | 4.5 | 2.5 | <LOD | <LOD | North-west | 0.5–1.2 | 3.33 × 103 | 5 |
Exposure square | 1.5 | 0.5 | <LOD | <LOD | South-east | 0–0.4 | 5.75 × 102 | 5 |
3 m Downwind | <LOD | <LOD | <LOD | <LOD | North-east | 0.9–1.5 | 1.40 × 103 | 3 |
5 m Downwind | <LOD | <LOD | <LOD | <LOD | North-east | 0.6–1.0 | 9.75 × 102 | 2 |
20 m Downwind | <LOD | <LOD | <LOD | <LOD | South-west | 1.4–1.6 | 3.03 × 102 | ND |
50 m Downwind | <LOD | <LOD | <LOD | <LOD | South-east | 0.6–1.4 | 2.89 × 102 | 1 |
50 m Upwind | <LOD | <LOD | <LOD | <LOD | North-west | 2.4–3 | 9.18 × 101 | ND |
Sampling Point | MRSA Isolates Number | MRSA Isolates ID | SCCmec Typing | Spa Typing | ||
---|---|---|---|---|---|---|
SCCmec | PVL | HA, CA, LA | ||||
1st chicken shed | 1 | JCYB101 | VIII | - | HA | t002 |
2 | JCYB102 | VIII | - | HA | t002 | |
3 | JCYB103 | VIII | - | HA | t002 | |
4 | JCYB104 | VIII | - | HA | t002 | |
5 | JCYB105 | VIII | - | HA | t002 | |
2nd chicken shed | 6 | JCYB201 | VIII | - | HA | t002 |
7 | JCYB202 | VIII | - | HA | t002 | |
8 | JCYB203 | VIII | - | HA | t002 | |
9 | JCYB204 | VIII | - | HA | t002 | |
10 | JCYB205 | VIII | - | HA | t002 | |
Exposure square | 11 | JCYB301 | VIII | - | HA | t002 |
12 | JCYB302 | VIII | - | HA | t002 | |
13 | JCYB303 | VIII | - | HA | t002 | |
14 | JCYB304 | VIII | - | HA | t002 | |
15 | JCYB305 | VIII | - | HA | t002 | |
3 m Downwind | 16 | JCYB401 | VIII | - | HA | t002 |
17 | JCYB402 | VIII | - | HA | t002 | |
18 | JCYB403 | VIII | - | HA | t002 | |
5 m Downwind | 19 | JCYB501 | VIII | - | HA | t002 |
20 | JCYB502 | VIII | - | HA | t002 | |
20 m Downwind | ND | ND | ND | ND | ND | ND |
50 m Downwind | 21 | JCYB701 | VIII | - | HA | t002 |
50 m Upwind | ND | ND | ND | ND | ND | ND |
Virulence Factors | 1st Chicken Shed | 2nd Chicken Shed | Exposure Square | 3m Downwind | 5m Downwind | 20m Downwind | 50m Downwind | 50m Upwind | Overall Detection Rate (%) |
---|---|---|---|---|---|---|---|---|---|
MRSA Isolates (n = 5) | MRSA Isolates (n = 5) | MRSA Isolates (n = 5) | MRSA Isolates (n = 3) | MRSA Isolates (n = 2) | MRSA Isolates (n = 0) | MRSA Isolates (n = 1) | MRSA Isolates (n = 0) | Total MRSA Isolates (n = 21) | |
entA | (0\5) | (0\5) | (1\5) | (2\3) | (2\2) | ND | (1\1) | ND | 23.80% |
entB | (0\5) | (0\5) | (0\5) | (0\3) | (0\2) | ND | (0\1) | ND | 0% |
entC | (0\5) | (0\5) | (0\5) | (0\3) | (0\2) | ND | (0\1) | ND | 0% |
entD | (0\5) | (0\5) | (0\5) | (0\3) | (0\2) | ND | (0\1) | ND | 0% |
entE | (0\5) | (0\5) | (0\5) | (0\3) | (0\2) | ND | (0\1) | ND | 0% |
eta | (5\5) | (5\5) | (5\5) | (3\3) | (2\2) | ND | (1\1) | ND | 100% |
etb | (0\5) | (4\5) | (4\5) | (0\3) | (0\2) | ND | (0\1) | ND | 38.09% |
tsst-1 | (0\5) | (0\5) | (0\5) | (0\3) | (0\2) | ND | (0\1) | ND | 0% |
Sampling Point | Numbers of MRSA Isolates | Detection of Virulence Genes | Antibiotic Resistance |
---|---|---|---|
First chicken shed | 1 | eta | C-CIP-CC-E-T |
2 | eta | C-CIP-CC-E-T | |
3 | eta | C-CIP-CC-E-T | |
4 | eta | C-CIP-CC-E-T | |
5 | eta | C-CIP-CC-E-T | |
Second chicken shed | 6 | eta, etb | C-CIP-CC-E-T |
7 | eta, etb | C-CIP-CC-E-T | |
8 | eta, etb | C-CIP-CC-E-T | |
9 | eta, etb | C-CIP-CC-T | |
10 | eta | C-CIP-CC-E-T | |
Exposure square | 11 | eta, etb | C-CIP-CC-E-T |
12 | eta, etb | C-CIP-CC-E-T | |
13 | eta, etb | C-CIP-CC-E-T | |
14 | eta, etb | C-CIP-CC-E-T | |
15 | entA, eta | C-CIP-CC-E-T | |
3 m Downwind | 16 | eta | C-CIP-CC-E-T |
17 | entA, eta | C-CIP-CC-E-T | |
18 | entA, eta | C-CIP-CC-E-T | |
5 m Downwind | 19 | entA, eta | C-CIP-CC-E-T |
20 | entA, eta | C-CIP-CC-E-T | |
20 m Downwind | ND | ND | ND |
50 m Downwind | 21 | entA, eta | C-CIP-CC-E-T |
50 m Upwind | ND | ND | ND |
Chloramphenicol | Ciprofloxacin | Clindamycin | Erythromycin | Gentamicin | Rifampicin | Tetracycline | Sulfamethoxazole-Trimethoprim | Multiple Drug Resistance | |
---|---|---|---|---|---|---|---|---|---|
C | CIP | CC | E | GM | RA | T | S/T | (MDR) | |
First chicken shed (n = 5) | R | R | R | R | S | S | R | I | C-CIP-CC-E-T |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
Second chicken shed (n = 5) | R | R | R | R | S | S | R | I | C-CIP-CC-E-T |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
R | R | R | S | S | S | R | S | C-CIP-CC-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
Exposure square (n = 5) | R | R | R | R | S | S | R | S | C-CIP-CC-E-T |
R | R | R | R | S | S | R | S | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | S | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
3 m Downwind (n = 3) | R | R | R | R | S | S | R | I | C-CIP-CC-E-T |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
5 m Downwind (n = 2) | R | R | R | R | S | S | R | I | C-CIP-CC-E-T |
R | R | R | R | S | S | R | I | C-CIP-CC-E-T | |
20 m Downwind (n = 0) | ND | ND | ND | ND | ND | ND | ND | ND | ND |
50 m Downwind (n = 5) | R | R | R | R | S | S | R | I | C-CIP-CC-E-T |
50m Upwind (n = 0) | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Total percentage (n = 21) | 21 (100%) | 21 (100%) | 21 (100%) | 20 (95.23%) | 0 (0%) | 0 (0%) | 21 (100%) | 0 (0%) | 21 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, B.-M.; Chen, J.-S.; Hsu, G.-J.; Koner, S.; Nagarajan, V.; Tsai, H.-C. Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment. Antibiotics 2022, 11, 81. https://doi.org/10.3390/antibiotics11010081
Hsu B-M, Chen J-S, Hsu G-J, Koner S, Nagarajan V, Tsai H-C. Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment. Antibiotics. 2022; 11(1):81. https://doi.org/10.3390/antibiotics11010081
Chicago/Turabian StyleHsu, Bing-Mu, Jung-Sheng Chen, Gwo-Jong Hsu, Suprokash Koner, Viji Nagarajan, and Hsin-Chi Tsai. 2022. "Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment" Antibiotics 11, no. 1: 81. https://doi.org/10.3390/antibiotics11010081
APA StyleHsu, B. -M., Chen, J. -S., Hsu, G. -J., Koner, S., Nagarajan, V., & Tsai, H. -C. (2022). Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment. Antibiotics, 11(1), 81. https://doi.org/10.3390/antibiotics11010081