Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = exaptation/adaptation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7932 KiB  
Article
Exaptation in Transitional Urban Morphologies: First Notes on the Dynamics of Urban Form Read through the Theories of Natural Evolution
by Marco Trisciuoglio
Land 2024, 13(1), 74; https://doi.org/10.3390/land13010074 - 8 Jan 2024
Viewed by 1675
Abstract
Studying the dynamics of urban form means questioning the processes of evolution of the form in general. The current discussion on the architecture of buildings and urban spaces has drawn the concept of adaptation from theories of natural evolution. These notes propose a [...] Read more.
Studying the dynamics of urban form means questioning the processes of evolution of the form in general. The current discussion on the architecture of buildings and urban spaces has drawn the concept of adaptation from theories of natural evolution. These notes propose a reflection on the opposite and controverse concept of exaptation as it was proposed by the biologist and paleontologist Stephen Jay Gould in 1982. Through some examples (the different transformations of some Roman amphitheaters of the imperial age and the metamorphoses that occurred in the 20th century to some Chinese urban fabrics, originally made by courtyard houses), it is possible to extend to urban forms the idea of the casual co-optation for new uses of organs and anatomical parts developed for other reasons. This kind of reflection opens up innovative considerations on the potential of transitional urban analysis and its repercussions on evolutive urban transformation processes. Full article
(This article belongs to the Special Issue Urban Morphology: A Perspective from Space)
Show Figures

Figure 1

15 pages, 1741 KiB  
Review
Acquisition and Exaptation of Endogenous Retroviruses in Mammalian Placenta
by Sayumi Shimode
Biomolecules 2023, 13(10), 1482; https://doi.org/10.3390/biom13101482 - 4 Oct 2023
Cited by 5 | Viewed by 5580
Abstract
Endogenous retroviruses (ERVs) are retrovirus-like sequences that were previously integrated into the host genome. Although most ERVs are inactivated by mutations, deletions, or epigenetic regulation, some remain transcriptionally active and impact host physiology. Several ERV-encoded proteins, such as Syncytins and Suppressyn, contribute to [...] Read more.
Endogenous retroviruses (ERVs) are retrovirus-like sequences that were previously integrated into the host genome. Although most ERVs are inactivated by mutations, deletions, or epigenetic regulation, some remain transcriptionally active and impact host physiology. Several ERV-encoded proteins, such as Syncytins and Suppressyn, contribute to placenta acquisition, a crucial adaptation in mammals that protects the fetus from external threats and other risks while enabling the maternal supply of oxygen, nutrients, and antibodies. In primates, Syncytin-1 and Syncytin-2 facilitate cell–cell fusion for placental formation. Suppressyn is the first ERV-derived protein that inhibits cell fusion by binding to ASCT2, the receptor for Syncytin-1. Furthermore, Syncytin-2 likely inserted into the genome of the common ancestor of Anthropoidea, whereas Syncytin-1 and Suppressyn likely inserted into the ancestor of catarrhines; however, they were inactivated in some lineages, suggesting that multiple exaptation events had occurred. This review discusses the role of ERV-encoded proteins, particularly Syncytins and Suppressyn, in placental development and function, focusing on the integration of ERVs into the host genome and their contribution to the genetic mechanisms underlying placentogenesis. This review provides valuable insights into the molecular and genetic aspects of placentation, potentially shedding light on broader evolutionary and physiological processes in mammals. Full article
Show Figures

Figure 1

18 pages, 5162 KiB  
Article
Multiple Instances of Adaptive Evolution in Aquaporins of Amphibious Fishes
by Héctor Lorente-Martínez, Ainhoa Agorreta, Iker Irisarri, Rafael Zardoya, Scott V. Edwards and Diego San Mauro
Biology 2023, 12(6), 846; https://doi.org/10.3390/biology12060846 - 12 Jun 2023
Cited by 3 | Viewed by 2569
Abstract
Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in osmotic regulation that played an important role in the conquest of land by tetrapods. However, little is known about their possible implication in the acquisition of an amphibious lifestyle in actinopterygian [...] Read more.
Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in osmotic regulation that played an important role in the conquest of land by tetrapods. However, little is known about their possible implication in the acquisition of an amphibious lifestyle in actinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibious actinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQP paralog members and classes; (2) determine the gene family birth and death process; (3) test for positive selection in a phylogenetic framework; and (4) reconstruct structural protein models. We found evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of the tree branches and protein sites that were under positive selection were found in the AQP11 class. The detected sequence changes indicate modifications in molecular function and/or structure, which could be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the most promising candidates to have facilitated the processes of the water-to-land transition in amphibious fishes. Additionally, the signature of positive selection found in the AQP11b stem branch of the Gobiidae clade suggests a possible case of exaptation in this clade. Full article
(This article belongs to the Special Issue Evolution and Ecology of Phenotypes in Nature)
Show Figures

Figure 1

20 pages, 4119 KiB  
Review
Evolutionary and Biogeographical History of Penguins (Sphenisciformes): Review of the Dispersal Patterns and Adaptations in a Geologic and Paleoecological Context
by Jonathan S. Pelegrín and Carolina Acosta Hospitaleche
Diversity 2022, 14(4), 255; https://doi.org/10.3390/d14040255 - 30 Mar 2022
Cited by 5 | Viewed by 16778
Abstract
Despite its current low diversity, the penguin clade (Sphenisciformes) is one of the groups of birds with the most complete fossil record. Likewise, from the evolutionary point of view, it is an interesting group given the adaptations developed for marine life and the [...] Read more.
Despite its current low diversity, the penguin clade (Sphenisciformes) is one of the groups of birds with the most complete fossil record. Likewise, from the evolutionary point of view, it is an interesting group given the adaptations developed for marine life and the extreme climatic occupation capacity that some species have shown. In the present contribution, we reviewed and integrated all of the geographical and phylogenetic information available, together with an exhaustive and updated review of the fossil record, to establish and propose a biogeographic scenario that allows the spatial-temporal reconstruction of the evolutionary history of the Sphenisciformes, discussing our results and those obtained by other authors. This allowed us to understand how some abiotic processes are responsible for the patterns of diversity evidenced both in modern and past lineages. Thus, using the BioGeoBEARS methodology for biogeographic estimation, we were able to reconstruct the biogeographical patterns for the entire group based on the most complete Bayesian phylogeny of the total evidence. As a result, a New Zealand origin for the Sphenisciformes during the late Cretaceous and early Paleocene is indicated, with subsequent dispersal and expansion across Antarctica and southern South America. During the Eocene, there was a remarkable diversification of species and ecological niches in Antarctica, probably associated with the more temperate climatic conditions in the Southern Hemisphere. A wide morphological variability might have developed at the beginning of the Paleogene diversification. During the Oligocene, with the trends towards the freezing of Antarctica and the generalized cooling of the Neogene, there was a turnover that led to the survival (in New Zealand) of the ancestors of the crown Sphenisciform lineages. Later these expanded and diversified across the Southern Hemisphere, strongly linked to the climatic and oceanographic processes of the Miocene. Finally, it should be noted that the Antarctic recolonization and its hostile climatic conditions occurred in some modern lineages during the Pleistocene, possibly due to exaptations that made possible the repeated dispersion through cold waters during the Cenozoic, also allowing the necessary adaptations to live in the tundra during the glaciations. Full article
Show Figures

Figure 1

19 pages, 13462 KiB  
Review
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes
by Pierre Capy
Cells 2021, 10(12), 3590; https://doi.org/10.3390/cells10123590 - 20 Dec 2021
Cited by 16 | Viewed by 5622
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may [...] Read more.
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third. Full article
Show Figures

Figure 1

35 pages, 3024 KiB  
Review
The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation
by Melody Nicolau, Nathalie Picault and Guillaume Moissiard
Cells 2021, 10(11), 2952; https://doi.org/10.3390/cells10112952 - 29 Oct 2021
Cited by 20 | Viewed by 6959
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA [...] Read more.
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events. Full article
Show Figures

Figure 1

59 pages, 3927 KiB  
Hypothesis
Unveiling Human Non-Random Genome Editing Mechanisms Activated in Response to Chronic Environmental Changes: I. Where Might These Mechanisms Come from and What Might They Have Led To?
by Loris Zamai
Cells 2020, 9(11), 2362; https://doi.org/10.3390/cells9112362 - 27 Oct 2020
Cited by 10 | Viewed by 5356
Abstract
This article challenges the notion of the randomness of mutations in eukaryotic cells by unveiling stress-induced human non-random genome editing mechanisms. To account for the existence of such mechanisms, I have developed molecular concepts of the cell environment and cell environmental stressors and, [...] Read more.
This article challenges the notion of the randomness of mutations in eukaryotic cells by unveiling stress-induced human non-random genome editing mechanisms. To account for the existence of such mechanisms, I have developed molecular concepts of the cell environment and cell environmental stressors and, making use of a large quantity of published data, hypothesised the origin of some crucial biological leaps along the evolutionary path of life on Earth under the pressure of natural selection, in particular, (1) virus–cell mating as a primordial form of sexual recombination and symbiosis; (2) Lamarckian CRISPR-Cas systems; (3) eukaryotic gene development; (4) antiviral activity of retrotransposon-guided mutagenic enzymes; and finally, (5) the exaptation of antiviral mutagenic mechanisms to stress-induced genome editing mechanisms directed at “hyper-transcribed” endogenous genes. Genes transcribed at their maximum rate (hyper-transcribed), yet still unable to meet new chronic environmental demands generated by “pollution”, are inadequate and generate more and more intronic retrotransposon transcripts. In this scenario, RNA-guided mutagenic enzymes (e.g., Apolipoprotein B mRNA editing catalytic polypeptide-like enzymes, APOBECs), which have been shown to bind to retrotransposon RNA-repetitive sequences, would be surgically targeted by intronic retrotransposons on opened chromatin regions of the same “hyper-transcribed” genes. RNA-guided mutagenic enzymes may therefore “Lamarkianly” generate single nucleotide polymorphisms (SNP) and gene copy number variations (CNV), as well as transposon transposition and chromosomal translocations in the restricted areas of hyper-functional and inadequate genes, leaving intact the rest of the genome. CNV and SNP of hyper-transcribed genes may allow cells to surgically explore a new fitness scenario, which increases their adaptability to stressful environmental conditions. Like the mechanisms of immunoglobulin somatic hypermutation, non-random genome editing mechanisms may generate several cell mutants, and those codifying for the most environmentally adequate proteins would have a survival advantage and would therefore be Darwinianly selected. Non-random genome editing mechanisms represent tools of evolvability leading to organismal adaptation including transgenerational non-Mendelian gene transmission or to death of environmentally inadequate genomes. They are a link between environmental changes and biological novelty and plasticity, finally providing a molecular basis to reconcile gene-centred and “ecological” views of evolution. Full article
Show Figures

Figure 1

18 pages, 1863 KiB  
Review
The Essential Co-Option of Uracil-DNA Glycosylases by Herpesviruses Invites Novel Antiviral Design
by Renos Savva
Microorganisms 2020, 8(3), 461; https://doi.org/10.3390/microorganisms8030461 - 24 Mar 2020
Cited by 7 | Viewed by 4747
Abstract
Vast evolutionary distances separate the known herpesviruses, adapted to colonise specialised cells in predominantly vertebrate hosts. Nevertheless, the distinct herpesvirus families share recognisably related genomic attributes. The taxonomic Family Herpesviridae includes many important human and animal pathogens. Successful antiviral drugs targeting Herpesviridae are [...] Read more.
Vast evolutionary distances separate the known herpesviruses, adapted to colonise specialised cells in predominantly vertebrate hosts. Nevertheless, the distinct herpesvirus families share recognisably related genomic attributes. The taxonomic Family Herpesviridae includes many important human and animal pathogens. Successful antiviral drugs targeting Herpesviridae are available, but the need for reduced toxicity and improved efficacy in critical healthcare interventions invites novel solutions: immunocompromised patients presenting particular challenges. A conserved enzyme required for viral fitness is Ung, a uracil-DNA glycosylase, which is encoded ubiquitously in Herpesviridae genomes and also host cells. Research investigating Ung in Herpesviridae dynamics has uncovered an unexpected combination of viral co-option of host Ung, along with remarkable Subfamily-specific exaptation of the virus-encoded Ung. These enzymes apparently play essential roles, both in the maintenance of viral latency and during initiation of lytic replication. The ubiquitously conserved Ung active site has previously been explored as a therapeutic target. However, exquisite selectivity and better drug-like characteristics might instead be obtained via targeting structural variations within another motif of catalytic importance in Ung. The motif structure is unique within each Subfamily and essential for viral survival. This unique signature in highly conserved Ung constitutes an attractive exploratory target for the development of novel beneficial therapeutics. Full article
(This article belongs to the Special Issue Herpesviruses: Virus-Host Interaction)
Show Figures

Figure 1

10 pages, 857 KiB  
Review
The Functional Impact of Transposable Elements on the Diversity of Plant Genomes
by Dariusz Grzebelus
Diversity 2018, 10(2), 18; https://doi.org/10.3390/d10020018 - 22 Mar 2018
Cited by 13 | Viewed by 6815
Abstract
Transposable elements (TEs) are self-mobilized DNA sequences that constitute a large portion of plant genomes. Being selfish DNA, they utilize different mobilization mechanisms to persist and proliferate in host genomes. It is important that new TE insertions generate de novo variability, most of [...] Read more.
Transposable elements (TEs) are self-mobilized DNA sequences that constitute a large portion of plant genomes. Being selfish DNA, they utilize different mobilization mechanisms to persist and proliferate in host genomes. It is important that new TE insertions generate de novo variability, most of which is likely to be deleterious, but some can be advantageous. Also, a growing body of evidence shows that TEs were continually recruited by their hosts to provide additional functionality. Here, we review potential ways in which transposable elements can provide novel functions to host genomes, from simple gene knock-outs to complex rewiring of gene expression networks. We discuss possible implications of TE presence and activity in crop genomes for agricultural production. Full article
(This article belongs to the Special Issue Feature Papers for Celebrating the tenth Founding Year of Diversity)
Show Figures

Figure 1

6 pages, 525 KiB  
Commentary
The Cell as the First Niche Construction
by John S. Torday
Biology 2016, 5(2), 19; https://doi.org/10.3390/biology5020019 - 28 Apr 2016
Cited by 34 | Viewed by 6163
Abstract
Niche construction nominally describes how organisms can form their own environments, increasing their capacity to adapt to their surroundings. It is hypothesized that the formation of the first cell as ‘internal’ Niche Construction was the foundation for life, and that subsequent niche constructions [...] Read more.
Niche construction nominally describes how organisms can form their own environments, increasing their capacity to adapt to their surroundings. It is hypothesized that the formation of the first cell as ‘internal’ Niche Construction was the foundation for life, and that subsequent niche constructions were iterative exaptations of that event. The first instantation of niche construction has been faithfully adhered to by returning to the unicellular state, suggesting that the life cycle is zygote to zygote, not adult to adult as is commonly held. The consequent interactions between niche construction and epigenetic inheritance provide a highly robust, interactive, mechanistic way of thinking about evolution being determined by initial conditions rather than merely by chance mutation and selection. This novel perspective offers an opportunity to reappraise the processes involved in evolution mechanistically, allowing for scientifically testable hypotheses rather than relying on metaphors, dogma, teleology and tautology. Full article
(This article belongs to the Special Issue Beyond the Modern Evolutionary Synthesis- what have we missed?)
Show Figures

Scheme 1

Back to TopTop