Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = ex vivo skin permeation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 306
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

39 pages, 1536 KiB  
Review
Transdermal Drug Delivery Systems: Methods for Enhancing Skin Permeability and Their Evaluation
by Elena O. Bakhrushina, Marina M. Shumkova, Yana V. Avdonina, Arsen A. Ananian, Mina Babazadeh, Ghazaleh Pouya, Viktoria V. Grikh, Irina M. Zubareva, Svetlana I. Kosenkova, Ivan I. Krasnyuk and Ivan I. Krasnyuk
Pharmaceutics 2025, 17(7), 936; https://doi.org/10.3390/pharmaceutics17070936 - 20 Jul 2025
Viewed by 927
Abstract
Transdermal drug delivery (TDD) is an increasingly important non-invasive method for administering active pharmaceutical ingredients (APIs) through the skin barrier, offering advantages such as improved therapeutic efficacy and reduced systemic side effects. As demand increases for patient-friendly and minimally invasive treatment options, TDD [...] Read more.
Transdermal drug delivery (TDD) is an increasingly important non-invasive method for administering active pharmaceutical ingredients (APIs) through the skin barrier, offering advantages such as improved therapeutic efficacy and reduced systemic side effects. As demand increases for patient-friendly and minimally invasive treatment options, TDD has attracted substantial attention in research and clinical practice. This review summarizes recent advances enhancing skin permeability through chemical enhancers (e.g., ethanol, fatty acids, terpenes), physical (e.g., iontophoresis, microneedles, sonophoresis), and nanotechnological methods (e.g., liposomes, ethosomes, solid lipid nanoparticles, and transferosomes). A comprehensive literature analysis, including scientific publications, regulatory guidelines, and patents, was conducted to identify innovative methods and materials used to overcome the barrier properties of the stratum corneum. Special emphasis was placed on in vitro, ex vivo, and in vivo evaluation techniques for such as Franz diffusion cells for assessing drug permeation and skin interactions. The findings highlight the importance of active physical methods, passive nanostructured systems, and chemical penetration enhancers. In conclusion, integrating multiple analytical techniques is essential for the rational design and optimization of effective transdermal drug delivery systems. Full article
(This article belongs to the Special Issue Dermal and Transdermal Drug Delivery Systems)
Show Figures

Graphical abstract

22 pages, 2224 KiB  
Article
Development and Evaluation of an Anti-Inflammatory Emulsion: Skin Penetration, Physicochemical Properties, and Fibroblast Viability Assessment
by Jolita Stabrauskiene, Agnė Mazurkevičiūtė, Daiva Majiene, Rima Balanaskiene and Jurga Bernatoniene
Pharmaceutics 2025, 17(7), 933; https://doi.org/10.3390/pharmaceutics17070933 - 19 Jul 2025
Viewed by 476
Abstract
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations [...] Read more.
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations were prepared: a control (E1), a partial (E2), and a comprehensive formulation (E3). Physicochemical analyses included texture profiling, rheological behavior, pH stability, moisture content, and particle size distribution. Results. E3 demonstrated superior colloidal stability, optimal pH (5.75–6.25), and homogenous droplet size (<1 µm), indicating favorable dermal delivery potential. Ex vivo permeation studies revealed effective skin penetration of menthol and amino acids, with boswellic acid remaining primarily in the epidermis, suggesting localized action. Under oxidative stress conditions, E3 significantly improved fibroblast viability, indicating synergistic cytoprotective effects of combined active ingredients. While individual compounds showed limited or dose-dependent efficacy, their combination restored cell viability to near-control levels. Conclusions. These findings support the potential of this multi-component emulsion as a promising candidate for the topical management of inflammatory skin conditions. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

30 pages, 5331 KiB  
Article
Development of a Novel Drug Delivery System “Nanoemulfoam” for Topical Delivery of Terbinafine Hydrochloride as a Repurposed Therapy in Skin Cancer: Formulation, Optimization, In Vitro Characterization, Ex Vivo Transdermal Permeability, Cytotoxicity Studies, and In Silico Assessment
by Abeer A. Musallam, Reem A. Aldeeb, Riham M. Mansour, Manar Abd El-karim Kassem, Doaa Fayez Saeed, Mahmoud A. Mahdy, Rana M. Abdelnaby, Hanan M. Elnahas and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(7), 972; https://doi.org/10.3390/ph18070972 - 27 Jun 2025
Viewed by 455
Abstract
Background: Skin cancer has become a global health issue because of increasing exposure to environmental contaminants and UV radiation. Terbinafine hydrochloride (TRB), a broad-spectrum antifungal medication, has demonstrated notable anti-tumor properties in previous studies; however, its repurposing for skin cancer therapy remains underexplored. [...] Read more.
Background: Skin cancer has become a global health issue because of increasing exposure to environmental contaminants and UV radiation. Terbinafine hydrochloride (TRB), a broad-spectrum antifungal medication, has demonstrated notable anti-tumor properties in previous studies; however, its repurposing for skin cancer therapy remains underexplored. Objective: This study reports for the first time, the development of a new delivery system: a nanoemulsion (NE)–foam hybrid system, i.e., “nanoemulfoam” (NEF), designed to enhance the topical TRB delivery to the skin. The study applied this new hybrid system on TRB for managing skin cancer. Method: The TRB-loaded NEF was produced by loading TRB into a liquid NE. then this was incorporated into a liquid foam base and actuated into foam using a non-propellant mechanism. The NE was developed utilizing peppermint oil as the oil phase and Tween-20/ethanol as the surfactant/co-surfactant combination (Smix). The formulation underwent optimization using the D-optimal design that enabled the simultaneous evaluation of the impact of oil concentration and Tween 20 concentration in the Smix on the particle size (PS), zeta potential (ZP), and dissolution efficiency percent (DE%). Results: The optimal NE formula displayed a small PS of 186.60 ± 2.84 nm, ZP of −13.90 ± 0.99 mV, and DE% of 68.50 ± 1.78% (mean ± SD, n = 3). After incorporation into the foam system, the produced TRB-loaded NEF demonstrated a 7.43-fold increase in the drug transdermal flux in comparison with plain drug foam (p < 0.05). The TRB-loaded NEF showed no signs of inflammation or irritation when applied to abdominal rabbit skin, indicating its safety. The optimum formula exhibited a statistically significant 10-fold increase in cytotoxicity against A-431 skin cancer cells compared to TRB alone, along with a 1.54-fold increase in apoptosis (p < 0.05). Molecular docking studies targeting CDK2, a key regulator of cell proliferation and a known TRB target, revealed that TRB displayed highly favorable binding scores compared to the reference drug. Conclusions: The TRB-loaded NEF represents a promising nanotechnology-based approach for the topical treatment of skin cancer, supporting further investigation toward clinical translation. Full article
Show Figures

Graphical abstract

25 pages, 3318 KiB  
Review
Solute–Vehicle–Skin Interactions and Their Contribution to Pharmacokinetics of Skin Delivery
by Pronalis Tapfumaneyi, Khanh Phan, Yicheng Huang, Kewaree Sodsri, Sarika Namjoshi, Howard Maibach and Yousuf Mohammed
Pharmaceutics 2025, 17(6), 764; https://doi.org/10.3390/pharmaceutics17060764 - 10 Jun 2025
Viewed by 3089
Abstract
Human skin provides an effective route of delivery for selected drugs. Topical penetration of molecules is largely attributed to passive diffusion, and the degree of penetration can be represented by in silico, in vitro, and ex vivo models. Percutaneous absorption of pharmaceutical ingredients [...] Read more.
Human skin provides an effective route of delivery for selected drugs. Topical penetration of molecules is largely attributed to passive diffusion, and the degree of penetration can be represented by in silico, in vitro, and ex vivo models. Percutaneous absorption of pharmaceutical ingredients is a delicate balance between the molecular properties of the drug, the skin properties of the patients, and the formulation properties. Understanding this interplay can aid in the development of products applied to the skin. The kinetics of percutaneous absorption and an understanding of the rate-limiting steps involved can facilitate the optimization of these systems and enhance the degree to which skin drug delivery can be achieved. Solute–vehicle, vehicle–skin, and solute–skin interactions contribute notably to product release as well as the rate of absorption and diffusion across skin layers. These interactions alter the degree of permeation by interfering with the skin barrier or solubility and thermodynamic activity of the active pharmaceutical ingredient. This article aims to provide a concise understanding of some of the factors involved in the skin absorption of topical products, i.e., the pharmacokinetics of percutaneous absorption as well as the solute–vehicle–skin interactions that determine the rate of release of products and the degree of drug diffusion across the skin. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

14 pages, 3077 KiB  
Article
An Assessment of the Antifungal Efficacy of a Novel Topical Onychomycosis Treatment Using Human Nail and Skin Infection Models
by Anthony Brown, Felipe Goñi-de-Cerio, Ainhoa Bilbao, Adrià Ribes, Antonio R. Fernández de Henestrosa, Ludmila Prudkin, Paola Perugini and Mónica Foyaca
J. Fungi 2025, 11(5), 345; https://doi.org/10.3390/jof11050345 - 29 Apr 2025
Viewed by 1556
Abstract
Onychomycosis, a fungal nail infection, affects about 4% of the global population. Current topical antifungals like ciclopirox and amorolfine have limited effectiveness, highlighting the need for better treatments. WSNS-PO is a novel water-soluble therapy designed to treat and prevent onychomycosis by enhancing nail [...] Read more.
Onychomycosis, a fungal nail infection, affects about 4% of the global population. Current topical antifungals like ciclopirox and amorolfine have limited effectiveness, highlighting the need for better treatments. WSNS-PO is a novel water-soluble therapy designed to treat and prevent onychomycosis by enhancing nail health. This study evaluated WSNS-PO’s ability to penetrate the nail plate and to treat and prevent infection by Trichophyton rubrum using bovine hoof membranes and human nail clippings. The anti-fungal efficacy of WSNS-PO was additionally evaluated against other dermatophytes, non-dermatophyte fungi, and yeast. The results showed that WSNS-PO effectively permeated nails and reduced and prevented the colonization of human nail fragments by T. rubrum ex vivo, demonstrating an efficacy comparable to ciclopirox and amorolfine. WSNS-PO also prevented the transfer of T. rubrum infection between nails and inhibited the fungal colonization of human skin by dermatophyte and non-dermatophyte fungi and yeast. Together, these results indicate that WSNS-PO possesses fungistatic, barrier-forming, and anti-adhesive properties, suggesting that it holds promise as an onychomycosis treatment against dermatophytes, yeast, and molds. Full article
Show Figures

Figure 1

20 pages, 6962 KiB  
Article
Topical Delivery of Ceramide by Oil-in-Water Nanoemulsion to Retain Epidermal Moisture Content in Dermatitis
by Yu Zhou, Lichun Wu, Yi Zhang, Jia Hu, Jannatul Fardous, Yasuhiro Ikegami and Hiroyuki Ijima
Biomolecules 2025, 15(5), 608; https://doi.org/10.3390/biom15050608 - 22 Apr 2025
Viewed by 1142
Abstract
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation [...] Read more.
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation is effective for barrier repair, its clinical application is limited by poor solubility and low skin permeability. To overcome these challenges, this study developed an oil-in-water nanoemulsion (O/W-NE) using ultrasonic emulsification for the efficient transdermal delivery of ceramide C2. Octyldodecanol was selected as the oil phase to enhance ceramide solubility, while glycerin was incorporated to increase aqueous phase viscosity, reduce particle size, and function as a biocompatible penetration enhancer. The optimized nanoemulsion achieved a particle size of 112.5 nm and an encapsulation efficiency of 85%. Its performance was evaluated via in vitro release, ex vivo skin permeation, and in vivo biocompatibility studies. Mechanistic investigations revealed that both particle size and glycerin concentration significantly influenced ceramide penetration into the epidermis and dermis. Additionally, the nanoemulsion exhibited moisturizing and barrier-repair effects in a damaged skin model. Overall, this O/W-NE offers a stable, non-invasive strategy for enhancing ceramide delivery and restoring skin barrier function. Full article
(This article belongs to the Special Issue Molecular Advances in Wound Healing and Skin Regeneration)
Show Figures

Graphical abstract

20 pages, 9461 KiB  
Article
Enhanced Topical Delivery of Methotrexate via Transferosome-Loaded Microneedle Array Patch: Formulation, Optimization, and In Vitro–In Vivo Assessment
by Snehal Shinde, Anil Kumar Singh, Vijay R. Chidrawar, Amarjitsing Rajput and Sudarshan Singh
Pharmaceuticals 2025, 18(4), 594; https://doi.org/10.3390/ph18040594 - 18 Apr 2025
Cited by 1 | Viewed by 947
Abstract
Background: Conventional approaches in treating psoriasis demonstrate several complications. methotrexate (MTX) has been frequently used for its efficacy in managing moderate to severe psoriasis. However, MTX acts as an antagonist in regular dosage, which creates a patient compliance issue with undesirable consequences for [...] Read more.
Background: Conventional approaches in treating psoriasis demonstrate several complications. methotrexate (MTX) has been frequently used for its efficacy in managing moderate to severe psoriasis. However, MTX acts as an antagonist in regular dosage, which creates a patient compliance issue with undesirable consequences for patients, which necessitates development of an innovative approach to enhance skin permeation. Therefore, this study examines the improved topical administration of MTX utilizing a transferosome-loaded microneedle (MNs) array patch for the management of psoriasis. Methods: A design of experiment was used assess the effect of phospholipid content and edge activator type on vesicle size and entrapment efficiency (EE) to fabricate and optimize transferosome-loaded MTX. Furthermore, the MTX was incorporated within MNs and assessed for in vitro-ex vivo-in vivo parameters. Results: The morphology result revealed vesicles mean diameter of 169.4 ± 0.40 nm and EE of 69 ± 0.48 (%). Compared to traditional formulations (MTX patch and gel), the optimized transferosome-loaded dissolving MN array patch showed a substantial increase in diffusion of MTX tested over rat skin. Furthermore, an enhanced therapeutic benefit at the application site through cumulative drug release profiles suggested sustained release of MTX over 24 h. Moreover, in vivo experiments showed that the MN array patch exhibited higher accumulation, compared to conventional formulation tested. In addition, the plasma concentration measurements demonstrated a reduction in systemic exposure to MTX, diminishing the possibility of intricacy while preserving localized therapeutic efficacy. The capability of the MN array patch to lance the epidermal layers was proven by histological assessments. Conclusions: Thus, transferosome-loaded MNs is a viable method of delivering MTX topically with prolonged drug release and reduced systemic toxicity. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

19 pages, 4151 KiB  
Article
Evaluation of Olive Oil-Based Formulations Loaded with Baricitinib for Topical Treatment of Alopecia Areata
by Negar Beirampour, Mireia Mallandrich, Paola Bustos-Salgado, Valeri Domínguez-Villegas, Núria Garrós, Roya Mohammadi-Meyabadi, Beatriz Clares-Naveros, Maria Nuria Romero-Olid, Francisco J. Pérez-Cano, Marina Girbal, Maria José Rodríguez-Lagunas, Joaquim Suñer-Carbó and Ana Cristina Calpena
Pharmaceutics 2025, 17(4), 475; https://doi.org/10.3390/pharmaceutics17040475 - 5 Apr 2025
Viewed by 1657
Abstract
Background: Alopecia areata is an autoimmune disorder that causes hair loss in clumps about the size and shape of a quarter. The estimated prevalence of the disorder is approximately 1 in 1000 people, with a lifetime risk of approximately 2 percent. One of [...] Read more.
Background: Alopecia areata is an autoimmune disorder that causes hair loss in clumps about the size and shape of a quarter. The estimated prevalence of the disorder is approximately 1 in 1000 people, with a lifetime risk of approximately 2 percent. One of the systemic therapies for alopecia areata consists of the use of glucocorticoids or immunosuppressants. Methods: Baricitinib (BCT) is a Janus kinase (JAK) 1 and 2 selective inhibitor used as an immunosuppressant drug. In this study, three olive oil BCT formulations (Oil A, Oil B, and Oil C, which differ in their content in squalene, tocopherol, tyrosol, and hydroxytyrosol) have been developed for topical delivery. The formulations were physicochemically characterized and the in vitro drug release and ex vivo permeation through human skin tissues were assessed. Results: The results showed nearly identical viscosity across all three formulations, exhibiting Newtonian behavior. The mathematical modeling used to describe the drug release profiles was the one-site binding hyperbola for all formulations. Oil-based formulations showed a slow BCT penetration into human skin. Skin integrity remained intact during the experiments, with no signs of irritation or alterations observed. In addition, all the formulations proved their efficacy in vivo. Conclusions: Among the formulations, Oil A demonstrated the highest ability retention capacity (Qr = 1875 ± 124.32 ng/cm2) in the skin, making it an excellent candidate for further investigation in the treatment of alopecia areata. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

22 pages, 12170 KiB  
Article
Evaluation of Preclinical Efficacy of Curcumin-Loaded Bicosome Systems in Amelioration of Oral Mucositis
by Daniela Vergara, Claudia Sanhueza, Susana Méndez, Mariela Bustamante, Benjamín Vega, Francisca Acevedo and Olga López
Pharmaceutics 2025, 17(2), 181; https://doi.org/10.3390/pharmaceutics17020181 - 1 Feb 2025
Viewed by 1200
Abstract
Background/Objectives: Oral mucositis (OM) is a common and debilitating side effect of cancer therapy, characterized by ulceration or inflammation of the oral mucosa. This study evaluates the preclinical efficacy of curcumin-loaded bicosome systems (cur-BS) in mitigating chemotherapy-induced OM in mice. Methods: BS were [...] Read more.
Background/Objectives: Oral mucositis (OM) is a common and debilitating side effect of cancer therapy, characterized by ulceration or inflammation of the oral mucosa. This study evaluates the preclinical efficacy of curcumin-loaded bicosome systems (cur-BS) in mitigating chemotherapy-induced OM in mice. Methods: BS were prepared using a combination of 1,2-di-palmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), α-tocopherol, and curcumin, encapsulated within liposomal vesicles. Three formulations with different curcumin concentrations (180, 540, and 900 μM) were characterized by particle size, polydispersity index (PDI), encapsulation efficiency (EE), appearance, and morphology. The formulation with the highest concentration (cur-BS 5×) was selected for ex vivo permeability studies, release profile analysis, and in vitro anti-inflammatory efficacy. OM was induced in mice using 5-fluorouracil (5-FU) and acetic acid. Cur-BS 5× was compared to the commercial product Dentoxol®. Results: The results showed that cur-BS 5× provided sustained release through a mechanism involving both diffusion and matrix relaxation, enhancing curcumin retention in deeper skin layers. Treatment with cur-BS 5× downregulated the expression of inflammatory markers (IL-1β and TNF-α). Macroscopic assessments demonstrated that both cur-BS 5× and Dentoxol® reduced OM severity, with the greatest improvement observed between days 6 and 9. By day 24, OM scores were 1.25 ± 0.5 for cur-BS 5× and 1.0 ± 0.0 for Dentoxol®, indicating effectiveness in both treatments. However, histological analysis revealed superior tissue recovery with cur-BS 5×, showing better epithelial structure and reduced inflammation. Cur-BS 5×-treated mice also exhibited greater weight recovery and higher survival rates compared to the Dentoxol® group. Conclusions: These findings suggest that cur-BS 5× may enhance OM treatment, offering outcomes comparable to or better than those of Dentoxol®. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

51 pages, 2274 KiB  
Review
Evaluation of Drug Permeation Enhancement by Using In Vitro and Ex Vivo Models
by Johan D. Steyn, Anja Haasbroek-Pheiffer, Wihan Pheiffer, Morné Weyers, Suzanne E. van Niekerk, Josias H. Hamman and Daniélle van Staden
Pharmaceuticals 2025, 18(2), 195; https://doi.org/10.3390/ph18020195 - 31 Jan 2025
Cited by 3 | Viewed by 3142
Abstract
Drugs administered by means of extravascular routes of drug administration must be absorbed into the systemic circulation, which involves the movement of the drug molecules across biological barriers such as epithelial cells that cover mucosal surfaces or the stratum corneum that covers the [...] Read more.
Drugs administered by means of extravascular routes of drug administration must be absorbed into the systemic circulation, which involves the movement of the drug molecules across biological barriers such as epithelial cells that cover mucosal surfaces or the stratum corneum that covers the skin. Some drugs exhibit poor permeation across biological membranes or may experience excessive degradation during first-pass metabolism, which tends to limit their bioavailability. Various strategies have been used to improve drug bioavailability. Absorption enhancement strategies include the co-administration of chemical permeation enhancers, enzymes, and/or efflux transporter inhibitors, chemical changes, and specialized dosage form designs. Models with physiological relevance are needed to evaluate the efficacy of drug absorption enhancement techniques. Various in vitro cell culture models and ex vivo tissue models have been explored to evaluate and quantify the effectiveness of drug permeation enhancement strategies. This review deliberates on the use of in vitro and ex vivo models for the evaluation of drug permeation enhancement strategies for selected extravascular drug administration routes including the nasal, oromucosal, pulmonary, oral, rectal, and transdermal routes of drug administration. Full article
Show Figures

Figure 1

31 pages, 4890 KiB  
Article
Characteristics of Hydrogels as a Coating for Microneedle Transdermal Delivery Systems with Agomelatine
by Monika Wojtyłko, Ariadna B. Nowicka, Anna Froelich, Mirosław Szybowicz, Tobiasz Banaszek, Dorota Tomczak, Wiesław Kuczko, Radosław Wichniarek, Irena Budnik, Barbara Jadach, Oliwia Kordyl, Antoni Białek, Julia Krysztofiak, Tomasz Osmałek and Dimitrios A. Lamprou
Molecules 2025, 30(2), 322; https://doi.org/10.3390/molecules30020322 - 15 Jan 2025
Cited by 1 | Viewed by 2074
Abstract
Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the stratum corneum barrier. For this purpose, [...] Read more.
Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the stratum corneum barrier. For this purpose, the use of microneedles may increase the efficiency of administration. The aim of this study was to prepare an agomelatine-loaded hydrogel suitable for coating microneedles for the transdermal drug delivery of AGM. The optimized formulations were subjected to spectroscopic and rheological characterization and mechanical tests, as well as tested for release through an artificial membrane and permeation through human skin ex vivo. Both hydrogels were found to have suitable parameters for coating microneedles using the dip-coating method, including the stability of the substance at the process temperature, shear-thinning behavior, and appropriate textural parameters such as adhesion or hardness. Additionally, two formulations were tested for potential application to the skin alone because the gels showed suitable mechanical properties for the skin application. In this case, the ethanol gel was characterized by higher skin permeability and better spreadability. The information obtained in this study will allow the preparation of coated microneedles for the transdermal administration of agomelatine. Full article
(This article belongs to the Special Issue Hydrogels: Preparation, Characterization, and Applications)
Show Figures

Figure 1

23 pages, 2532 KiB  
Article
Fabrication of Thymoquinone and Ascorbic Acid-Loaded Spanlastics Gel for Hyperpigmentation: In Vitro Release, Cytotoxicity, and Skin Permeation Studies
by Ahlam Zaid Alkilani, Rua’a Alkhaldi, Haneen A. Basheer, Bassam I. Amro and Maram A. Alhusban
Pharmaceutics 2025, 17(1), 48; https://doi.org/10.3390/pharmaceutics17010048 - 2 Jan 2025
Cited by 2 | Viewed by 1657
Abstract
Background/Objectives: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics [...] Read more.
Background/Objectives: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation. Methods: Several spanlastics formulations were successfully fabricated and characterized in terms of morphology, vesicle size, zeta potential, and release. Results: The optimized TQ-loaded spanlastic formulation showed an average size of 223.40 ± 3.50 nm, and 133.00 ± 2.80 nm for AA-loaded spanlastic formulation. The optimized spanlastics formulation showed the highest entrapment efficiency (EE%) of 97.18 ± 2.02% and 93.08 ± 1.95%, for TQ and AA, respectively. Additionally, the edge activator concentration had a significant effect (p < 0.05) on EE%; it was found that by increasing the amount of EA, the EE% increases. Following that, the optimal spanlastics fomulation loaded with TQ and AA were incorporated into gel and explored for appearance, pH, spreadability, stability, rheology, in vitro release, ex vivo permeation study, and MTT cytotoxicity. The formulated spanlastics gel (R-1) has a pH of 5.53. Additionally, R-1 gel was significantly (p < 0.05) more spreadable than control gel, and exhibited a shear thinning behavior. Most importantly, ex vivo skin deposition studies confirmed superior skin deposition of TQ and AA from spanlastic gels. Additionally, results indicated that tyrosinase inhibition was primarily due to TQ. When comparing TQ alone with the TQ-AA combination, inhibition ranged from 18.35 to 42.73% and 24.28 to 42.53%, respectively. Both TQ spanlastics and the TQ-AA combination showed a concentration-dependent inhibition of tyrosinase. Conclusions: Spanlastic gel might represent a promising carrier for the dermal delivery of TQ and AA for the management of hyperpigmentation conditions. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 4721 KiB  
Article
Antiaging Properties of Kalanchoe blossfeldiana Ethanol Extract—Ex Vivo and In Vitro Studies
by Justyna Stefanowicz-Hajduk, Anna Nowak, Anna Hering, Łukasz Kucharski, Piotr Graczyk, Mariusz Kowalczyk, Tadeusz Sulikowski and Anna Muzykiewicz-Szymańska
Molecules 2024, 29(23), 5548; https://doi.org/10.3390/molecules29235548 - 24 Nov 2024
Cited by 1 | Viewed by 1773
Abstract
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about [...] Read more.
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about its therapeutic effects on the skin. In this study, the antioxidant properties of K. blossfeldiana ethanol extracts and the skin permeation of a topical hydrogel containing the extract (HKB) were assessed. Additionally, the content of active compounds in the K. blossfeldiana extract was evaluated by UHPLC-MS and HPLC-UV. The extract was analyzed with three antioxidant assays: ABTS, DPPH, and FRAP. Furthermore, the antielastase and antihialuronidase properties of the tested extract were assessed. Ex vivo penetration studies were performed using the Franz diffusion cells. The estimation of the cytotoxicity of HKB was performed by using an MTT assay ((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) on the human fibroblasts HFF-1. The results obtained show that the antioxidant properties of K. blossfeldiana extract were similar to those of ascorbic acid, while antielastase and antihialuronidase tests indicated the strong antiaging and anti-inflammatory activity of the extract (IC50 was 26.8 ± 0.13 and 77.31 ± 2.44 µg/mL, respectively). Moreover, active ingredients contained in K. blossfeldiana extract penetrated through the human skin and accumulated in it. The cytotoxicity test showed that HKB had no significant effect on human fibroblasts at a concentration up to 0.5%. In conclusion, the hydrogel containing the K. blossfeldiana extract can be considered as an interesting and new alternative to dermatologic and cosmetic preparations. Full article
Show Figures

Figure 1

18 pages, 4004 KiB  
Article
Toxicity and Dermatokinetic Analysis of Ibrutinib in Human Skin Models
by Maria Victória Souto-Silva, Elizabete C. I. Bispo, Lucas F. F. Albuquerque, Stefhani Barcelos, Emãnuella M. Garcez, Luana S. Quilici, Florêncio Figueiredo Cavalcanti Neto, Eliza Carla Barroso Duarte, Jankerle N. Boeloni, Felipe Saldanha-Araujo, Guilherme M. Gelfuso and Juliana Lott Carvalho
Pharmaceutics 2024, 16(11), 1377; https://doi.org/10.3390/pharmaceutics16111377 - 26 Oct 2024
Viewed by 1349
Abstract
Background/Objectives: Ibrutinib (IBR) is a tyrosine kinase inhibitor under investigation in preclinical and clinical settings as an alternative treatment for melanoma. Nevertheless, the limited oral bioavailability of IBR and the need for high doses of the drug to kill melanoma cells are major [...] Read more.
Background/Objectives: Ibrutinib (IBR) is a tyrosine kinase inhibitor under investigation in preclinical and clinical settings as an alternative treatment for melanoma. Nevertheless, the limited oral bioavailability of IBR and the need for high doses of the drug to kill melanoma cells are major drawbacks for this purpose. Considering that melanoma is restricted to the skin at early stages, the topical application of IBR might constitute an effective and safer administration route. In this study, we determined IBR’s toxicity and dermatokinetics using human primary cells and human organotypic skin explant cultures (hOSECs). Methods: After demonstrating that human primary fibroblasts and keratinocytes present IBR target genes, the cytotoxicity of the drug was determined using the MTT and annexin V/PI staining assays. IBR toxicity in the skin was assessed using the TTC assay, and the irritation potential was established using histological assessment. Finally, IBR cutaneous permeation was assessed ex vivo to determine the drug dermatokinetics. Results: Our findings reveal that IBR exerts dose-dependent toxicity towards skin cells, presenting an IC50 in the same range as melanoma cells. The topical application of the drug successfully reduced irritation and toxicity in the skin, and the drug was shown to successfully permeate the stratum corneum and reach the viable skin layers in therapeutic concentrations. Conclusions: Overall, our data encourage the topical application of IBR to treat melanoma, paving the way for future studies in this theme. Full article
Show Figures

Graphical abstract

Back to TopTop