Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,996)

Search Parameters:
Keywords = evolving data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1388 KB  
Article
Human–Robot Collaborative U-Shaped Disassembly Line Balancing Using Dynamic CRITIC–Entropy and Improved Honey Badger Optimization
by Xiangwei Gao, Wenjie Wang, Yangkun Liu, Xiwang Guo, Xuesong Zhang, Bin Hu and Zhiwu Li
Symmetry 2026, 18(1), 144; https://doi.org/10.3390/sym18010144 - 12 Jan 2026
Abstract
This paper tackles the challenge of disassembly sequence planning (DSP) in energy-efficient remanufacturing by introducing an innovative hybrid optimization framework. The proposed model integrates a Dynamic Time-Varying CRITIC–Entropy (DTVCE) decision-making framework with an Improved Honey Badger Algorithm (IHBA) to optimize disassembly sequences under [...] Read more.
This paper tackles the challenge of disassembly sequence planning (DSP) in energy-efficient remanufacturing by introducing an innovative hybrid optimization framework. The proposed model integrates a Dynamic Time-Varying CRITIC–Entropy (DTVCE) decision-making framework with an Improved Honey Badger Algorithm (IHBA) to optimize disassembly sequences under key operational criteria, including idle rate, line smoothness, and energy consumption. The DTVCE framework constructs a dynamic composite score by normalizing evaluation criteria across time slices and incorporating temporal discounting to capture the evolving importance of each factor. Meanwhile, by establishing a symmetric disassembly constraint matrix to restrict the disassembly sequence and integrating exploration and exploitation mechanisms to enhance the IHBA, the solution process is empowered to efficiently generate feasible disassembly sequences and fulfill task allocation across workstations while satisfying takt time constraints. Experimental validation demonstrates that the proposed framework significantly outperforms traditional disassembly optimization approaches in both energy efficiency and line balance performance. In a case study involving an automotive drive axle, the method achieved a near-optimal configuration using only eight workstations, leading to a marked reduction in both energy consumption and idle times. Sensitivity analysis further verifies the model’s robustness, showing stable convergence and consistent performance under varying takt times and energy parameters. Overall, this study contributes to the advancement of green remanufacturing by offering a scalable, data-driven, and adaptive solution to disassembly optimization—paving the way toward sustainable and energy-aware production environments. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Optimization Algorithms and System Control)
22 pages, 2412 KB  
Article
Delineating the Central Anatolia Transition Zone (CATZ): Constraints from Integrated Geodetic (GNSS/InSAR) and Seismic Data
by Şenol Hakan Kutoğlu, Elif Akgün and Mustafa Softa
Sensors 2026, 26(2), 505; https://doi.org/10.3390/s26020505 - 12 Jan 2026
Abstract
Understanding how strain is transferred across the interior of tectonic plates is fundamental to quantifying lithospheric deformation. The Central Anatolia Transition Zone (CATZ), situated between the North and East Anatolian fault systems, provides a unique natural laboratory for investigating how continental deformation evolves [...] Read more.
Understanding how strain is transferred across the interior of tectonic plates is fundamental to quantifying lithospheric deformation. The Central Anatolia Transition Zone (CATZ), situated between the North and East Anatolian fault systems, provides a unique natural laboratory for investigating how continental deformation evolves from localized faulting to distributed shear. In this study, we integrate InSAR analysis with Global Navigation Satellite System (GNSS) velocity data, and stress tensor inversion with supporting gravity and seismic datasets to characterize the geometry, kinematics, and geodynamic significance of the CATZ. The combined geodetic and geophysical observations reveal that the CATZ is a persistent, left-lateral deformation corridor (i.e., elongated zone of Earth’s crust that accommodates movement where the landmass on the opposite side of a fault system moves to the left relative to an observer) accommodating ~4 mm/yr of shear between the oppositely moving eastern and western sectors of the Anatolian Plate. Spatial coherence among LiCSAR-derived shear patterns, GNSS velocity gradients, and regional stress-field rotations defines the CATZ as a crustal- to lithospheric-scale transition zone linking the strike-slip domains of central Anatolia with the subduction zones of the Hellenic and Cyprus arcs. Stress inversion analyses delineate four subzones with systematic kinematic transitions: compressional regimes in the north, extensional fields in the central domain, and complex compressional–transtensional deformation toward the south. The CATZ coincides with zones of variable Moho depth, crustal thickness, and inferred lithospheric tearing within the retreating African slab, indicating a deep-seated origin. Its S-shaped curvature and long-term evolution since the late Miocene reflect progressive coupling between upper-crustal faulting and deeper lithospheric reorganization. Recognition of the CATZ as a lithospheric-scale transition zone, rather than a discrete active fault, refines the current understanding of Anatolia’s kinematic framework. This study demonstrates the capability of integrated satellite geodesy and stress modeling to resolve diffuse intra-plate deformation, offering a transferable approach for delineating similar transition zones in other continental regions. Full article
(This article belongs to the Special Issue Sensing Technologies for Geophysical Monitoring)
31 pages, 12358 KB  
Article
Cluster-Oriented Resilience and Functional Reorganisation in the Global Port Network During the Red Sea Crisis
by Yan Li, Jiafei Yue and Qingbo Huang
J. Mar. Sci. Eng. 2026, 14(2), 161; https://doi.org/10.3390/jmse14020161 - 12 Jan 2026
Abstract
In this study, using global liner shipping schedules, UNCTAD’s Port Liner Shipping Connectivity Index and Liner Shipping Bilateral Connectivity Index, together with bilateral trade-value data for 2022–2024, we construct a multilayer weighted port-to-port network that explicitly embeds port-level cargo-handling and service organisation capabilities, [...] Read more.
In this study, using global liner shipping schedules, UNCTAD’s Port Liner Shipping Connectivity Index and Liner Shipping Bilateral Connectivity Index, together with bilateral trade-value data for 2022–2024, we construct a multilayer weighted port-to-port network that explicitly embeds port-level cargo-handling and service organisation capabilities, as well as demand-side routing pressure, into node and edge weights. Building on this network, we apply CONCOR-based structural-equivalence analysis to delineate functionally homogeneous port clusters, and adopt a structural role identification framework that combines multi-indicator connectivity metrics with Rank-Sum Ratio–entropy weighting and Probit-based binning to classify ports into high-efficiency core, bridge-control, and free-form bridge roles, thereby tracing the reconfiguration of cluster-level functional structures before and after the Red Sea crisis. Empirically, the clustering identifies four persistent communities—the Intertropical Maritime Hub Corridor (IMHC), Pacific Rim Mega-Port Agglomeration (PRMPA), Southern Commodity Export Gateway (SCEG), and Euro-Asian Intermodal Chokepoints (EAIC)—and reveals a marked spatial and functional reorganisation between 2022 and 2024. IMHC expands from 96 to 113 ports and SCEG from 33 to 56, whereas EAIC contracts from 27 to 10 nodes as gateway functions are reallocated across clusters, and the combined share of bridge-control and free-form bridge ports increases from 9.6% to 15.5% of all nodes, demonstrating a thicker functional backbone under rerouting pressures. Spatially, IMHC extends from a Mediterranean-centred configuration into tropical, trans-equatorial routes; PRMPA consolidates its role as the densest trans-Pacific belt; SCEG evolves from a commodity-based export gateway into a cross-regional Southern Hemisphere hub; and EAIC reorients from an Atlantic-dominated structure towards Eurasian corridors and emerging bypass routes. Functionally, Singapore, Rotterdam, and Shanghai remain dominant high-efficiency cores, while several Mediterranean and Red Sea ports (e.g., Jeddah, Alexandria) lose centrality as East and Southeast Asian nodes gain prominence; bridge-control functions are increasingly taken up by European and East Asian hubs (e.g., Antwerp, Hamburg, Busan, Kobe), acting as secondary transshipment buffers; and free-form bridge ports such as Manila, Haiphong, and Genoa strengthen their roles as elastic connectors that enhance intra-cluster cohesion and provide redundancy for inter-cluster rerouting. Overall, these patterns show that resilience under the Red Sea crisis is expressed through the cluster-level rebalancing of core–control–bridge roles, suggesting that port managers should prioritise parallel gateways, short-sea and coastal buffers, and sea–land intermodality within clusters when designing capacity expansion, hinterland access, and rerouting strategies. Full article
Show Figures

Figure 1

27 pages, 9008 KB  
Article
Assessing Ecosystem Health in Qinling Region: A Spatiotemporal Analysis Using an Improved Pressure–State–Response Framework and Monte Carlo Simulations
by Hanwen Tian, Yiping Chen, Yan Zhao, Jiahong Guo and Yao Jiang
Sustainability 2026, 18(2), 760; https://doi.org/10.3390/su18020760 - 12 Jan 2026
Abstract
Ecosystem health assessment is essential for informing ecological protection and sustainable management, yet current evaluation frameworks often overlook the foundational role of natural background conditions and struggle with methodological uncertainties in indicator weighting, particularly in ecologically fragile regions. To address these dual challenges, [...] Read more.
Ecosystem health assessment is essential for informing ecological protection and sustainable management, yet current evaluation frameworks often overlook the foundational role of natural background conditions and struggle with methodological uncertainties in indicator weighting, particularly in ecologically fragile regions. To address these dual challenges, this study proposes a novel Base–Pressure–State–Response (BPSR) framework that systematically integrates key natural background factors as a fundamental “Base” layer. Focusing on the Qinling Mountains—a critical ecological barrier in China—we implemented this framework at the county scale using multi-source data (2000–2023) and introduced a Monte Carlo simulation with triangular probability distributions to quantify and synthesize weight uncertainties from multiple methods, thereby enhancing assessment robustness. Furthermore, the Geodetector method was employed to quantitatively identify the driving forces behind the spatiotemporal heterogeneity of ecosystem health. Supported by 3S technology, our analysis demonstrates a sustained improvement in ecosystem health: the composite index rose from 0.723 to 0.916, healthy areas expanded from 60.17% to 68.48%, and nearly half of the region achieved a higher health grade. Spatially, a persistent “low–south, high–north” pattern was observed, shaped by human disturbance gradients, while temporally, the region evolved from localized improvement (2000–2010) to broad-scale recovery (2010–2023), despite lingering degradation in human-dominated zones. Driving force analysis revealed a shift from early dominance by natural and land use factors to a later complex interplay where urbanization pressure and climatic conditions jointly shaped the health pattern. The BPSR framework, combined with probabilistic weight optimization and driving force quantification, offers a methodologically robust and spatially explicit tool that advances ecosystem health evaluation and supports targeted ecological governance, policy formulation, and sustainable management in fragile mountain ecosystems, with transferable insights for similar regions globally. Full article
Show Figures

Figure 1

38 pages, 1391 KB  
Article
Trustworthy AI-IoT for Citizen-Centric Smart Cities: The IMTPS Framework for Intelligent Multimodal Crowd Sensing
by Wei Li, Ke Li, Zixuan Xu, Mengjie Wu, Yang Wu, Yang Xiong, Shijie Huang, Yijie Yin, Yiping Ma and Haitao Zhang
Sensors 2026, 26(2), 500; https://doi.org/10.3390/s26020500 - 12 Jan 2026
Abstract
The fusion of Artificial Intelligence and the Internet of Things (AI-IoT, also widely referred to as AIoT) offers transformative potential for smart cities, yet presents a critical challenge: how to process heterogeneous data streams from intelligent sensing—particularly crowd sensing data derived from citizen [...] Read more.
The fusion of Artificial Intelligence and the Internet of Things (AI-IoT, also widely referred to as AIoT) offers transformative potential for smart cities, yet presents a critical challenge: how to process heterogeneous data streams from intelligent sensing—particularly crowd sensing data derived from citizen interactions like text, voice, and system logs—into reliable intelligence for sustainable urban governance. To address this challenge, we introduce the Intelligent Multimodal Ticket Processing System (IMTPS), a novel AI-IoT smart system. Unlike ad hoc solutions, the novelty of IMTPS resides in its theoretically grounded architecture, which orchestrates Information Theory and Game Theory for efficient, verifiable extraction, and employs Causal Inference and Meta-Learning for robust reasoning, thereby synergistically converting noisy, heterogeneous data streams into reliable governance intelligence. This principled design endows IMTPS with four foundational capabilities essential for modern smart city applications: Sustainable and Efficient AI-IoT Operations: Guided by Information Theory, the IMTPS compression module achieves provably efficient semantic-preserving compression, drastically reducing data storage and energy costs. Trustworthy Data Extraction: A Game Theory-based adversarial verification network ensures high reliability in extracting critical information, mitigating the risk of model hallucination in high-stakes citizen services. Robust Multimodal Fusion: The fusion engine leverages Causal Inference to distinguish true causality from spurious correlations, enabling trustworthy integration of complex, multi-source urban data. Adaptive Intelligent System: A Meta-Learning-based retrieval mechanism allows the system to rapidly adapt to new and evolving query patterns, ensuring long-term effectiveness in dynamic urban environments. We validate IMTPS on a large-scale, publicly released benchmark dataset of 14,230 multimodal records. IMTPS demonstrates state-of-the-art performance, achieving a 96.9% reduction in storage footprint and a 47% decrease in critical data extraction errors. By open-sourcing our implementation, we aim to provide a replicable blueprint for building the next generation of trustworthy and sustainable AI-IoT systems for citizen-centric smart cities. Full article
(This article belongs to the Special Issue AI-IoT for New Challenges in Smart Cities)
20 pages, 282 KB  
Article
Educating Aspiring Teachers with AI by Strengthening Sustainable Pedagogical Competence in Changing Educational Landscapes
by Aydoğan Erkan, İslam Suiçmez, Sezer Kanbul and Mehmet Öznacar
Sustainability 2026, 18(2), 757; https://doi.org/10.3390/su18020757 - 12 Jan 2026
Abstract
This study examines the effectiveness of an eight-week AI training program aimed at enhancing teacher candidates’ pedagogical competence and AI literacy in rapidly changing and evolving educational environments. As the modern world continues to change and develop, the transformation of education, which is [...] Read more.
This study examines the effectiveness of an eight-week AI training program aimed at enhancing teacher candidates’ pedagogical competence and AI literacy in rapidly changing and evolving educational environments. As the modern world continues to change and develop, the transformation of education, which is one of the most important elements of our lives, cannot be ignored. Accordingly, the integration of teacher candidates, who constitute key education stakeholders, into technological developments is very important in terms of both efficiency and sustainability. The “parallel–simultaneous design”, one of the mixed research methods in which quantitative and qualitative research methods are used together, was employed. In line with the stated purpose, the study started with a needs analysis conducted with 33 teacher candidates studying in different branches at the faculty of education. As a result of the needs analysis, knowledge gaps, digital skill levels and readiness for integration of artificial intelligence tools in future classrooms were determined. Its application to teacher candidates, instead of teachers in the profession, was determined by the needs analysis. The results indicate that it would be more beneficial to apply the education of the future to the teachers of the future and that they will find it easier to adapt to such training. Accordingly, a pre-test–post-test design was applied to observe how the participants changed, and an artificial intelligence literacy scale was also used. QDA Miner Lite was used for the analysis of the qualitative data, and SPSS 29.0 was used for the analysis of the quantitative data. During the eight-week training, Gamma programs were used for the presentation, Suno for audio, Midjourney for visuals and ChatGPT-4 for a descriptive search in order to provide better quality education to the participants. While practicing with these applications, the aim is to provide more up-to-date education that reveals problem-solving skills that include critical thinking exercises. According to the results, the teacher candidates who expressed that they were undecided or had insufficient knowledge reached a sufficient level in the post-test. In the light of these results, it can be stated that artificial-intelligence-oriented education is effective in developing sustainable pedagogical skills, digital literacy, readiness and professional self-confidence. The study also offers evidence-based recommendations for the design of future teacher training programs. Full article
27 pages, 1843 KB  
Article
AI-Driven Modeling of Near-Mid-Air Collisions Using Machine Learning and Natural Language Processing Techniques
by Dothang Truong
Aerospace 2026, 13(1), 80; https://doi.org/10.3390/aerospace13010080 - 12 Jan 2026
Abstract
As global airspace operations grow increasingly complex, the risk of near-mid-air collisions (NMACs) poses a persistent and critical challenge to aviation safety. Traditional collision-avoidance systems, while effective in many scenarios, are limited by rule-based logic and reliance on transponder data, particularly in environments [...] Read more.
As global airspace operations grow increasingly complex, the risk of near-mid-air collisions (NMACs) poses a persistent and critical challenge to aviation safety. Traditional collision-avoidance systems, while effective in many scenarios, are limited by rule-based logic and reliance on transponder data, particularly in environments featuring diverse aircraft types, unmanned aerial systems (UAS), and evolving urban air mobility platforms. This paper introduces a novel, integrative machine learning framework designed to analyze NMAC incidents using the rich, contextual information contained within the NASA Aviation Safety Reporting System (ASRS) database. The methodology is structured around three pillars: (1) natural language processing (NLP) techniques are applied to extract latent topics and semantic features from pilot and crew incident narratives; (2) cluster analysis is conducted on both textual and structured incident features to empirically define distinct typologies of NMAC events; and (3) supervised machine learning models are developed to predict pilot decision outcomes (evasive action vs. no action) based on integrated data sources. The analysis reveals seven operationally coherent topics that reflect communication demands, pattern geometry, visibility challenges, airspace transitions, and advisory-driven interactions. A four-cluster solution further distinguishes incident contexts ranging from tower-directed approaches to general aviation pattern and cruise operations. The Random Forest model produces the strongest predictive performance, with topic-based indicators, miss distance, altitude, and operating rule emerging as influential features. The results show that narrative semantics provide measurable signals of coordination load and acquisition difficulty, and that integrating text with structured variables enhances the prediction of maneuvering decisions in NMAC situations. These findings highlight opportunities to strengthen radio practice, manage pattern spacing, improve mixed equipage awareness, and refine alerting in short-range airport area encounters. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

18 pages, 2138 KB  
Review
Integrating Ophthalmology, Endocrinology, and Digital Health: A Bibliometric Analysis of Telemedicine for Diabetic Retinopathy
by Theofilos Kanavos and Effrosyni Birbas
Healthcare 2026, 14(2), 183; https://doi.org/10.3390/healthcare14020183 - 12 Jan 2026
Abstract
Background/Objectives: Telemedicine has emerged as a pivotal approach to improving access to diabetic retinopathy (DR) screening, diagnosis, management, and monitoring. Over the past two decades, rapid advancements in digital imaging, mobile health technologies, and artificial intelligence have substantially expanded the role of teleophthalmology [...] Read more.
Background/Objectives: Telemedicine has emerged as a pivotal approach to improving access to diabetic retinopathy (DR) screening, diagnosis, management, and monitoring. Over the past two decades, rapid advancements in digital imaging, mobile health technologies, and artificial intelligence have substantially expanded the role of teleophthalmology in DR, resulting in a large volume of pertinent publications. This study aimed to provide a scientific overview of telemedicine applied to DR through bibliometric analysis. Methods: A search of the Web of Science Core Collection was conducted on 15 November 2025 to identify English-language original research and review articles regarding telemedicine for DR. Bibliographic data from relevant publications were extracted and underwent quantitative analysis and visualization using the tools Bibliometrix and VOSviewer. Results: A total of 515 articles published between 1998 and 2025 were included in our analysis. During this period, the research field of telemedicine for DR exhibited an annual growth rate of 13.14%, with publication activity markedly increasing after 2010 and peaking in 2020–2021. Based on the number of publications, United States, China, and Australia were the most productive countries, while Telemedicine and e-Health, Journal of Telemedicine and Telecare, and British Journal of Ophthalmology were the most relevant journals in the field. Keyword co-occurrence analysis revealed three major thematic clusters within the broader topic of telemedicine and DR, namely, public health-oriented work, telehealth service models, and applications of artificial intelligence technologies. Conclusions: The role of telemedicine in DR detection and care represents an expanding multidisciplinary field of research supported by contributions from multiple authors and institutions worldwide. As technological capabilities continue to evolve, ongoing innovation and cross-domain collaboration could further advance the applications of teleophthalmology for DR, promoting more accessible, efficient, and equitable identification and management of this condition. Full article
Show Figures

Figure 1

64 pages, 13395 KB  
Review
Low-Cost Malware Detection with Artificial Intelligence on Single Board Computers
by Phil Steadman, Paul Jenkins, Rajkumar Singh Rathore and Chaminda Hewage
Future Internet 2026, 18(1), 46; https://doi.org/10.3390/fi18010046 - 12 Jan 2026
Abstract
The proliferation of Internet of Things (IoT) devices has significantly expanded the threat landscape for malicious software (malware), rendering traditional signature-based detection methods increasingly ineffective in coping with the volume and evolving nature of modern threats. In response, researchers are utilising artificial intelligence [...] Read more.
The proliferation of Internet of Things (IoT) devices has significantly expanded the threat landscape for malicious software (malware), rendering traditional signature-based detection methods increasingly ineffective in coping with the volume and evolving nature of modern threats. In response, researchers are utilising artificial intelligence (AI) for a more dynamic and robust malware detection solution. An innovative approach utilising AI is focusing on image classification techniques to detect malware on resource-constrained Single-Board Computers (SBCs) such as the Raspberry Pi. In this method the conversion of malware binaries into 2D images is examined, which can be analysed by deep learning models such as convolutional neural networks (CNNs) to classify them as benign or malicious. The results show that the image-based approach demonstrates high efficacy, with many studies reporting detection accuracy rates exceeding 98%. That said, there is a significant challenge in deploying these demanding models on devices with limited processing power and memory, in particular those involving of both calculation and time complexity. Overcoming this issue requires critical model optimisation strategies. Successful approaches include the use of a lightweight CNN architecture and federated learning, which may be used to preserve privacy while training models with decentralised data are processed. This hybrid workflow in which models are trained on powerful servers before the learnt algorithms are deployed on SBCs is an emerging field attacting significant interest in the field of cybersecurity. This paper synthesises the current state of the art, performance compromises, and optimisation techniques contributing to the understanding of how AI and image representation can enable effective low-cost malware detection on resource-constrained systems. Full article
Show Figures

Graphical abstract

29 pages, 18465 KB  
Review
Optimizing Urban Green Space Ecosystem Services for Resilient and Sustainable Cities: Research Landscape, Evolutionary Trajectories, and Future Directions
by Junhui Sun, Jun Xia and Luling Qu
Forests 2026, 17(1), 97; https://doi.org/10.3390/f17010097 - 11 Jan 2026
Abstract
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this [...] Read more.
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this study systematically analyzes 861 relevant publications indexed in the Web of Science Core Collection from 2005 to 2025. Using bibliometric analysis and scientific knowledge mapping methods, the research examines publication characteristics, spatial distribution patterns, collaboration networks, knowledge bases, research hotspots, and thematic evolution trajectories. The results reveal a rapid upward trend in this field over the past two decades, with the gradual formation of a multidisciplinary knowledge system centered on environmental science and urban research. China, the United States, and several European countries have emerged as key nodes in global knowledge production and collaboration networks. Keyword co-occurrence and cluster analyses indicate that research themes are mainly concentrated in four clusters: (1) ecological foundations and green process orientation, (2) nature-based solutions and blue–green infrastructure configuration, (3) social needs and environmental justice, and (4) macro-level policies and the sustainable development agenda. Overall, the field has evolved from a focus on ecological processes and individual service functions toward a comprehensive transition emphasizing climate resilience, human well-being, and multi-actor governance. Based on these findings, this study constructs a knowledge ecosystem framework encompassing knowledge base, knowledge structure, research hotspots, frontier trends, and future pathways. It further identifies prospective research directions, including climate change adaptation, integrated planning of blue–green infrastructure, refined monitoring driven by remote sensing and spatial big data, and the embedding of urban green space ecosystem services into the Sustainable Development Goals and multi-level governance systems. These insights provide data support and decision-making references for deepening theoretical understanding of Urban Green Space Ecosystem Services (UGSES), improving urban green infrastructure planning, and enhancing urban resilience governance capacity. Full article
(This article belongs to the Special Issue Sustainable Urban Forests and Green Environments in a Changing World)
45 pages, 4289 KB  
Article
CrossPhire: Benefiting Multimodality for Robust Phishing Web Page Identification
by Ahmad Hani Abdalla Almakhamreh and Ahmet Selman Bozkir
Appl. Sci. 2026, 16(2), 751; https://doi.org/10.3390/app16020751 - 11 Jan 2026
Abstract
Phishing attacks continue to evolve and exploit fundamental human impulses, such as trust and the need for a rapid response, as well as emotional triggers. This makes the human mind both a valuable asset and a significant vulnerability. The proliferation of zero-day vulnerabilities [...] Read more.
Phishing attacks continue to evolve and exploit fundamental human impulses, such as trust and the need for a rapid response, as well as emotional triggers. This makes the human mind both a valuable asset and a significant vulnerability. The proliferation of zero-day vulnerabilities has been identified as a significant exacerbating factor in this threat landscape. To address these evolving challenges, we introduce CrossPhire: a multimodal deep learning framework with an end-to-end architecture that captures semantic and visual cues from multiple data modalities, while also providing methodological insights for anti-phishing multimodal learning. First, we demonstrate that markup-free semantic text encoding captures linguistic deception patterns more effectively than DOM-based approaches, achieving 96–97% accuracy using textual content alone and providing the strongest single-modality signal through sentence transformers applied to HTML text stripped of structural markup. Second, through controlled comparison of fusion strategies, we show that simple concatenation outperforms a sophisticated gating mechanism so-called Mixture-of-Experts by 0.5–10% when modalities provide complementary, non-redundant security evidence. We validate these insights through rigorous experimentation on five datasets, achieving competitive same-dataset performance (97.96–100%) while demonstrating promising cross-dataset generalization (85–96% accuracy under distribution shift). Additionally, we contribute Phish360, a rigorously curated multimodal benchmark with 10,748 samples addressing quality issues in existing datasets (96.63% unique phishing HTML vs. 16–61% in prior benchmarks), and provide LIME-based explainability tools that decompose predictions into modality-specific contributions. The rapid inference time (0.08 s) and high accuracy results position CrossPhire as a promising solution in the fight against phishing attacks. Full article
(This article belongs to the Special Issue AI-Driven Image and Signal Processing)
28 pages, 33005 KB  
Article
Innovative Extraction and Design Application of Architectural Memes in Ganxi Former Residence, Nanjing, China, Based on Online Reviews
by Yingxun Li and Anhua Zhang
Buildings 2026, 16(2), 305; https://doi.org/10.3390/buildings16020305 - 11 Jan 2026
Abstract
With the acceleration of modernization, historical residences are facing increasingly prominent conflicts between cultural inheritance and contemporary visitor experiences. However, existing research on the revitalization of architectural heritage predominantly focuses on spatial functional replacement and value assessment, with insufficient attention paid to user-perceived [...] Read more.
With the acceleration of modernization, historical residences are facing increasingly prominent conflicts between cultural inheritance and contemporary visitor experiences. However, existing research on the revitalization of architectural heritage predominantly focuses on spatial functional replacement and value assessment, with insufficient attention paid to user-perceived issues and the transformation of architectural features into specific design practices. To address these gaps, this study takes the Ganxi Former Residence as an example and proposes an innovative pathway that integrates online review data, architectural meme theory, eye-tracking experiments, shape grammar, and design application, aiming to explore the contemporary transformation of architectural heritage in a user-demand-oriented manner. Based on 2845 valid online reviews, the study identified an imperfect signage system as the primary existing problem of the Ganxi Former Residence. Subsequently, comprehensive architectural meme maps encompassing architectural form memes, spatial memes, and cognitive memes were constructed based on architectural meme theory; high-visual-attention architectural factors were objectively screened through eye-tracking experiments; and these factors were innovatively evolved using shape grammar and applied to signage board design. Evaluation results indicate that the design proposal yielded positive effects in wayfinding clarity, aesthetic appeal, cultural fit, and overall satisfaction. This study not only accomplishes the cross-media transformation of traditional architecture from its physical form to visual signage boards but also provides a replicable and verifiable methodological paradigm for the creative transformation and innovative development of other architectural cultural heritage sites worldwide. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 6249 KB  
Article
Refining Open-Source Asset Management Tools: AI-Driven Innovations for Enhanced Reliability and Resilience of Power Systems
by Gopal Lal Rajora, Miguel A. Sanz-Bobi, Lina Bertling Tjernberg and Pablo Calvo-Bascones
Technologies 2026, 14(1), 57; https://doi.org/10.3390/technologies14010057 - 11 Jan 2026
Abstract
Traditional methods of asset management in electric power systems rely upon fixed schedules and reactive measurements, leading to challenges in the transparent prioritization of maintenance under evolving operating conditions and incomplete data. In this paper, we introduce a new, fully integrated artificial intelligence [...] Read more.
Traditional methods of asset management in electric power systems rely upon fixed schedules and reactive measurements, leading to challenges in the transparent prioritization of maintenance under evolving operating conditions and incomplete data. In this paper, we introduce a new, fully integrated artificial intelligence (AI)-driven approach for enhancing the resilience and reliability of open-source asset management tools to support improved performance and decisions in electric power system operations. This methodology addresses and overcomes several significant challenges, including data heterogeneity, algorithmic limitations, and inflexible decision-making, through a three-module workflow. The data fidelity module provides a domain-aware pipeline for identifying structural (missing) values from explicit missingness using sophisticated imputation methods, including Multiple Imputation Chain Equations (MICE) and Generative Adversarial Network (GAN)-based hybrids. The characterization module employs seven complementary weighting strategies, including PCA, Autoencoder, GA-based optimization, SHAP, Decision-Tree Importance, and Entropy Weighting, to achieve objective feature weight assignment, thereby eliminating the need for subjective manual rules. The optimization module enhanced the action space through multi-objective optimization, balancing reliability maximization and cost minimization. A synthetic dataset of 100 power transformers was used to validate that the MICE achieved better imputation than other methods. The optimized weighting framework successfully categorizes Health Index values into five condition levels, while the multi-objective maintenance policy optimization generates decisions that align with real-world asset management practices. The proposed framework provides the Transmission and Distribution System Operators (TSOs/DSOs) with an adaptable, industry-oriented decision-support workflow system for enhancing reliability, optimizing maintenance expenses, and improving asset management policies for critical power infrastructure. Full article
(This article belongs to the Special Issue AI for Smart Engineering Systems)
36 pages, 881 KB  
Article
Digital Transformation, Strategic Alignment Capability, and Sustainable Competitive Advantage: The Case of the UAE
by Madhad Ali Said Al Jabri and Abdelmounaim Lahrech
Systems 2026, 14(1), 73; https://doi.org/10.3390/systems14010073 - 10 Jan 2026
Viewed by 129
Abstract
Firms globally are transforming digitally to enhance performance through building differentiated organizational capabilities within their digital ecosystem to maximize value. Drawing from the dynamic capability theory, this study aims to investigate the sources of sustainable competitive advantage, based on data from the UAE, [...] Read more.
Firms globally are transforming digitally to enhance performance through building differentiated organizational capabilities within their digital ecosystem to maximize value. Drawing from the dynamic capability theory, this study aims to investigate the sources of sustainable competitive advantage, based on data from the UAE, by examining the impact of strategic orientations on firms’ survival through integrated strategic capabilities, adaptive marketing capability, and market ambidexterity. The choice of the UAE was based on two rational reasons. First, the adoption of new technologies is excelling in the UAE’s competitive environment especially AI, cloud, and data solutions across services industries, e.g., ICT, Telecom, Aviation, etc. Second, the government drives the digital economy to enhance the country’s positioning globally. Following a quantitative approach with a sample size of 185 service firms operating in the UAE, the study identifies how strategic orientations enable service firms’ long-term survival. Moreover, it assesses the moderating role of digital transformation between strategic orientations and sustainable competitive advantage through integrated strategic capabilities. Thus, it provides a better understanding of the dynamic capabilities of firms transforming digitally. The study revealed that strategic orientations positively enable the development of integrated strategic capabilities. The latter mediate significantly between strategic orientations and sustainable competitive advantage. It confirms that digital transformation is strengthening the relationship between strategic orientations and sustainable competitive advantage through the integrated strategic capabilities. The study contributes to evolving new forms of integrated strategic capabilities as sources for sustainable competitive advantage. It confirms the adaptive marketing capability and market ambidexterity integration and thus enriches the dynamic capability theory and ambidexterity theory body of knowledge. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

26 pages, 3400 KB  
Article
Adaptive Data Prefetching for File Storage Systems Using Online Machine Learning
by George Savva and Herodotos Herodotou
Big Data Cogn. Comput. 2026, 10(1), 28; https://doi.org/10.3390/bdcc10010028 - 10 Jan 2026
Viewed by 37
Abstract
Data prefetching is essential for modern file storage systems operating in large-scale cloud and data-intensive environments, where high performance increasingly depends on intelligent, adaptive mechanisms. Traditional rule-based methods and recently proposed machine learning-based techniques often struggle to cope with the complex and rapidly [...] Read more.
Data prefetching is essential for modern file storage systems operating in large-scale cloud and data-intensive environments, where high performance increasingly depends on intelligent, adaptive mechanisms. Traditional rule-based methods and recently proposed machine learning-based techniques often struggle to cope with the complex and rapidly evolving data access patterns characteristic of big-data workloads. In this paper, we introduce an online, streaming machine learning (SML) approach for predictive data prefetching that retrieves useful data into the cache ahead of time. We present a novel online training framework that extracts features in real time and continuously updates streaming ML models to learn and adapt from large and dynamic access streams. Building on this framework, we design new SML-driven prefetching algorithms that decide when, how, and what data to prefetch into the cache with minimal overhead. Extensive experiments using production traces from Huawei Technologies Inc. and Google workloads from the SNIA IOTTA repository demonstrate that our intelligent policies consistently deliver the highest byte hits among competing approaches, achieving 97% prefetch byte precision and reducing data access latency by up to 2.8 times. These results show that streaming ML can deliver immediate performance gains and offers a scalable foundation for future adaptive storage systems. Full article
Back to TopTop