Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = evacuation guidance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8730 KiB  
Article
Hazardous Chemical Accident Evacuation Simulation and Analysis of Results
by Yijie Song, Beibei Wang, Xiaolu Wang, Yichen Zhang, Jiquan Zhang and Yilin Wang
Sustainability 2025, 17(14), 6415; https://doi.org/10.3390/su17146415 - 13 Jul 2025
Viewed by 426
Abstract
Chemical leakage accidents in chemical industrial parks pose significant threats to personnel safety, particularly during evacuation processes, where individual behavior and evacuation strategies have a considerable impact on overall efficiency. This study takes a leakage incident at an alkylation unit as a case [...] Read more.
Chemical leakage accidents in chemical industrial parks pose significant threats to personnel safety, particularly during evacuation processes, where individual behavior and evacuation strategies have a considerable impact on overall efficiency. This study takes a leakage incident at an alkylation unit as a case study. First, ALOHA5.4.7 software was used to simulate the influence of meteorological conditions across different seasons on the dispersion range of toxic gases, thereby generating an annual comprehensive risk zone distribution map. Subsequently, different evacuation scenarios were constructed in Pathfinder2024.1.0605, with the integration of trigger mechanisms to simulate individual behaviors during evacuation, such as variations in risk perception and peer influence. Furthermore, this study expanded the conventional application scope of Pathfinder—typically limited to small-scale building evacuations—by successfully adapting it for large-scale evacuation simulations in chemical industrial parks. The feasibility of such simulations was thereby demonstrated, highlighting the software’s potential. According to the simulation results, exit configuration, shelter placement, and individual behavior modeling significantly affect the total evacuation time. This study provides both theoretical insights and practical guidance for emergency response planning in chemical industrial parks. Full article
Show Figures

Figure 1

26 pages, 6036 KiB  
Article
Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts
by Zhi Yue, Zhe Ma, Di Yao, Yue He, Linglong Gu and Shizhong Jing
Appl. Sci. 2025, 15(12), 6813; https://doi.org/10.3390/app15126813 - 17 Jun 2025
Viewed by 224
Abstract
Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to address these gaps in Dukezong Ancient [...] Read more.
Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to address these gaps in Dukezong Ancient Town, Yunnan Province, China, considering diverse ignition points, seasonal temperatures, and wind conditions. Dynamic simulations of 16 scenarios reveal critical spatial impacts: within 30 min, ≥28% of streets became impassable, with central ignition points causing faster obstructions. Static models underestimate evacuation durations by up to 135%, neglecting early stage congestions and detours caused by high-temperature zones. Congestions are concentrated along main east–west arterial roads, worsening with longer warning distances. A mismatch between evacuation flows and shelter capacity is found. Thus, a three-stage interaction simplification is derived: localized detours (0–10 min), congestion-driven delays on critical roads (11–30 min), and prolonged structural damage afterward. This study challenges static approaches by highlighting the “fast alert-fast congestion” paradox, where rapid alerts overwhelm narrow pathways. Solutions prioritize multi-route guidance systems, optimized shelter access points, and real-time information dissemination to reduce bottlenecks without costly infrastructure changes. This study advances disaster modeling by bridging disaster development with dynamic evacuation, offering a replicable framework for similar environments. Full article
Show Figures

Figure 1

22 pages, 3720 KiB  
Article
Impact of Underground Space Height and BMI on Children’s Fatigue During Ascending Evacuation: An Experimental Study and Intelligent Assistive Implications
by Ming Liu, Hu Zhang, Xin Guo, Yongbo Feng, Xiaochen Zhao, Changzheng Xuan and Xiaohu Jia
Buildings 2025, 15(12), 2017; https://doi.org/10.3390/buildings15122017 - 11 Jun 2025
Viewed by 556
Abstract
With the rapid expansion of urban underground spaces, safety concerns related to ascending evacuation have become increasingly critical, particularly for children, who are more susceptible to fatigue than adults. However, most existing research focuses on adults and overlooks the unique needs of children. [...] Read more.
With the rapid expansion of urban underground spaces, safety concerns related to ascending evacuation have become increasingly critical, particularly for children, who are more susceptible to fatigue than adults. However, most existing research focuses on adults and overlooks the unique needs of children. This study investigated two key fatigue-related factors, evacuation height and body mass index (BMI), to construct a predictive model of children’s fatigue levels and proposed a non-invasive, code-compliant assistive solution integrated into underground fire escape stairways. Data were collected from 41 child participants during an ascending evacuation under simulated emergency conditions using real-time heart rate monitoring and video analysis. Statistical correlation and regression modeling revealed a significant positive correlation between evacuation height and heart rate (p < 0.01). Female participants exhibited higher mean heart rates and greater variability, with a strong positive correlation between BMI and heart rate observed in females (p < 0.01). Regression analysis showed that heart rate increased with BMI but plateaued in the obese group. These findings demonstrate that evacuation height and BMI significantly influence children’s fatigue levels. Based on these physiological insights, this study proposes a non-invasive architectural intervention to enhance children’s evacuation performance, offering practical guidance for the design of intelligent evacuation systems. Furthermore, it provides theoretical support for child-centered assistive design and safety improvement within the boundaries of current fire protection codes. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

14 pages, 2449 KiB  
Article
Evacuation Route Determination in Indoor Architectural Environments Based on Dynamic Fire Risk Assessment
by Jiaojiao Bai, Xikui Lv, Liangtao Nie and Mingjing Fang
Buildings 2025, 15(10), 1715; https://doi.org/10.3390/buildings15101715 - 19 May 2025
Viewed by 494
Abstract
The enclosed nature of indoor building spaces during fires creates complex fire environments and restricted evacuation routes, substantially elevating the risk of mass casualties. Traditional static evacuation routes not only overlook the complexity of fire scenarios but also fail to satisfy safety requirements [...] Read more.
The enclosed nature of indoor building spaces during fires creates complex fire environments and restricted evacuation routes, substantially elevating the risk of mass casualties. Traditional static evacuation routes not only overlook the complexity of fire scenarios but also fail to satisfy safety requirements for evacuation. To address this issue, this study proposes an enhanced A* algorithm to determine evacuation paths based on dynamic fire risk assessment. A dynamic fire risk assessment model is established using key fire environment parameters (e.g., temperature, visibility, and toxic gas concentration) and their corresponding personnel harm thresholds. This model quantifies fire risks within a discrete space. The A* algorithm is improved by integrating fire risk values and initial direction constraints into its heuristic function and path update strategy, thereby increasing the algorithm’s accuracy and efficiency. Using a subway station fire as a case study, the simulation results indicate that the improved algorithm can update evacuation paths in line with the dynamic evolution of fire risks. It also identifies evacuation routes by balancing fire risk, distance, and initial direction. This approach maintains the original path direction while substantially reducing path risk, achieving an approximate 70% reduction in individual evacuation path risk. This method can guide building fire safety design and the formulation of emergency evacuation plans. It also serves as a reference for path guidance during emergencies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 9007 KiB  
Article
Middle Rock Pillar Stability Criteria for a Bifurcated Small Clear-Distance Tunnel
by Jianxiu Wang, Yanxia Long, Ansheng Cao, Tao Cui, Luyu Lin, Yuanbo Gao, Xuezeng Liu and Huboqiang Li
Appl. Sci. 2025, 15(10), 5634; https://doi.org/10.3390/app15105634 - 18 May 2025
Viewed by 417
Abstract
Middle rock pillars (MRPs) play a crucial role in the stability of bifurcated small clear-distance tunnels. Assessing the stability of the MRP is a key challenge in design and construction. This study focuses on the bifurcated small clear-distance section of the Xiamen Haicang [...] Read more.
Middle rock pillars (MRPs) play a crucial role in the stability of bifurcated small clear-distance tunnels. Assessing the stability of the MRP is a key challenge in design and construction. This study focuses on the bifurcated small clear-distance section of the Xiamen Haicang Shugang evacuation channel underground interchange tunnels. The stability criteria for the MRP during both the early design and later construction stages were analyzed by using the strength reduction method (SRM) via numerical simulations. In the design stage, the SRM was applied to determine the stability limit state of the MRP. Relationships between rock mass density, cohesion, and elastic modulus were identified, and these parameters were combined with basic cohesion values for an initial stability assessment. During the construction stage, the full excavation process was analyzed by examining the distribution and changes in the plastic zone of the rock mass. Two key construction stages, a 10 m excavation on the main line upper step and a 10 m excavation on the ramp upper step, were identified as points where the plastic zone of the MRP began to form on the sidewall and the center, respectively. Multiple linear regression was used to determine the displacement, stress, and plasticity criteria for MRP stability. A comprehensive criteria formula incorporating the width–span ratio, tunnel vault settlement, and horizontal clearance convergence was developed, providing technical guidance and a scientific basis for similar projects. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 7266 KiB  
Article
Simulation of Fire Smoke Diffusion and Personnel Evacuation in Large-Scale Complex Medical Buildings
by Jian Wang, Geng Chen, Yuyan Chen, Mingzhan Zhu, Jingyuan Zheng and Na Luo
Buildings 2025, 15(8), 1329; https://doi.org/10.3390/buildings15081329 - 17 Apr 2025
Viewed by 626
Abstract
To address the significant problems of high fire risk and low evacuation efficiency in large and complex medical buildings, this study uses Ezhou Hospital as the empirical object to construct a multi-dimensional threat and risk assessment and fire evacuation dynamic coupling model and [...] Read more.
To address the significant problems of high fire risk and low evacuation efficiency in large and complex medical buildings, this study uses Ezhou Hospital as the empirical object to construct a multi-dimensional threat and risk assessment and fire evacuation dynamic coupling model and proposes a systematic optimization scheme to improve personnel evacuation safety. This study proposes an innovative full-chain analysis framework of “threat and risk assessment-dynamic coupling-multi-strategy optimization”. The specific methods employed include the following: (1) Using the probabilistic threat and risk assessment (PRA) method and the risk index (RII) method to identify the most unfavorable scenarios where the fire source is located in the outpatient hall (risk value C2 = 9.86). (2) Combining PyroSim and Pathfinder to construct a dynamic coupling model of fire smoke diffusion and personnel evacuation. Multiple groups, such as patients with mobility problems and rescue personnel, are added to address the limitations of traditional single-factor simulations. (3) Considering the failure of fire shutters, a two-stage optimization strategy is proposed for when the number of personnel is at its peak: the evacuation time is shortened by 23% by using internal intelligent guidance to shunt the congestion node crowd, and the addition of external fire ladders forms a multi-channel coordinated evacuation that further reduces the total evacuation time from 1780 s to 1266 s and improves the efficiency by 29%. The results show that the coupled multi-path coordination strategy and three-dimensional rescue facilities can significantly reduce the bottleneck associated with a single channel. This study provides a multi-dimensional dynamic evaluation framework and comprehensive optimization paradigm for the design of the evacuation of high-rise medical buildings and has important theoretical and technical reference values for improving the fire safety performance of public buildings and the intelligence of emergency management. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 7102 KiB  
Article
Nudge-Based Intervention for Cognitive Enhancement of Elderly in Long-Term Care Facilities During Fire Evacuation According to Urgent-Level Circumstances
by Jihye Ryu, Sung-Kyung Kim, Hye-Kyoung Lee, Won-Hwa Hong and Young-Chan Kim
Buildings 2025, 15(8), 1269; https://doi.org/10.3390/buildings15081269 - 12 Apr 2025
Viewed by 497
Abstract
The cognitive ability of the elderly significantly influences evacuation performance in urgent situations. Despite its importance, many fire evacuation studies overlook the impact of cognitive ability on elderly evacuation performance. To address this gap, this study employs multicriteria decision-making to identify nudging factors [...] Read more.
The cognitive ability of the elderly significantly influences evacuation performance in urgent situations. Despite its importance, many fire evacuation studies overlook the impact of cognitive ability on elderly evacuation performance. To address this gap, this study employs multicriteria decision-making to identify nudging factors that enhance the cognitive abilities of the elderly during fire evacuations in long-term care facilities. Based on a literature review, key nudging factors include guidance lights, guide lines, handrails, and guidance equipment, with sub-criteria such as location, color, size, and intervals. Experts from academic and practical fields analyzed the nudging factors, followed by a hybrid analytic hierarchy process (AHP–TOPSIS) analysis. The findings emphasize the necessity of providing auditory information through guidance equipment (e.g., voice evacuation system) in high-level scenarios (practice experts AHP: 0.31) and visual information through the continuous installation of guide lines in strategic locations (academic experts AHP: 0.35) to facilitate efficient evacuation. As a result, this study confirms both the differing and concordant opinions among expert groups while recognizing the absolute necessity of elderly evacuation research and considering the unique challenges that prevent actual evacuation experiments with elderly individuals. By synthesizing these perspectives, the study derives the weights and ranks of nudging factors based on urgent-level circumstances, thereby conducting a quantitative assessment of factors that enhance cognitive ability during elderly evacuation. The findings of this study can serve as a basis for future evacuation policy formulation for elderly-related facilities and, as a derivative effect, contribute to ensuring the life safety of elderly individuals within the local community. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

21 pages, 4759 KiB  
Article
A Social Force-Based Model for Pedestrian Evacuation with Static Guidance in Emergency Situations
by Ping Zhang, Wenjun Liu, Lizhong Yang, Jinzhong Wu, Kaixuan Wang and Yujie Cui
Fire 2025, 8(1), 30; https://doi.org/10.3390/fire8010030 - 16 Jan 2025
Cited by 2 | Viewed by 1096
Abstract
With public safety receiving widespread attention from society, the question of how to effectively evacuate crowds has become a key issue. Leaders can provide pedestrians with clear and accurate route information and play an important role in daily crowd management and emergency safety [...] Read more.
With public safety receiving widespread attention from society, the question of how to effectively evacuate crowds has become a key issue. Leaders can provide pedestrians with clear and accurate route information and play an important role in daily crowd management and emergency safety evacuation. In this study, an evacuation model with static guidance considering the leader’s influence and the pedestrians’ decision-making behavior is proposed. The model is validated using experimental data, including evacuation behavior, evacuation time, and the percentage of the cumulative number of evacuees over time, and the simulation results match the experimental results well. Then, the model is applied to investigate the effect of different locations, numbers of static leaders, and different pedestrian distributions on evacuation efficiency in a room with unavailable exits. The results show that a leader located in the center of each potential exit can improve the overall evacuation efficiency, and the farther the guided pedestrian was from the correct exit, the better the overall evacuation performance of pedestrians. The distance parameter of multiple leaders is defined, and an optimal number of leaders exists in each specific scenario due to the overlap of leaders’ influencing areas. Furthermore, whether the pedestrians are uniformly or non-uniformly distributed, the evacuation time is shorter when the guided pedestrians are located farther from the correct exit. These findings can provide suggestions for crowd management and the arrangement of leaders in emergency evacuations. Full article
(This article belongs to the Special Issue Building Fire Dynamics and Fire Evacuation, 2nd Edition)
Show Figures

Figure 1

22 pages, 6268 KiB  
Article
Real-Time Deployment of Ultrasound Image Interpretation AI Models for Emergency Medicine Triage Using a Swine Model
by Sofia I. Hernandez Torres, Lawrence Holland, Theodore Winter, Ryan Ortiz, Krysta-Lynn Amezcua, Austin Ruiz, Catherine R. Thorpe and Eric J. Snider
Technologies 2025, 13(1), 29; https://doi.org/10.3390/technologies13010029 - 11 Jan 2025
Cited by 2 | Viewed by 2764
Abstract
Ultrasound imaging is commonly used for medical triage in both civilian and military emergency medicine sectors. One specific application is the eFAST, or the extended focused assessment with sonography in trauma exam, where pneumothorax, hemothorax, or abdominal hemorrhage injuries are identified. However, the [...] Read more.
Ultrasound imaging is commonly used for medical triage in both civilian and military emergency medicine sectors. One specific application is the eFAST, or the extended focused assessment with sonography in trauma exam, where pneumothorax, hemothorax, or abdominal hemorrhage injuries are identified. However, the diagnostic accuracy of an eFAST exam depends on obtaining proper scans and making quick interpretation decisions to evacuate casualties or administer necessary interventions. To improve ultrasound interpretation, we developed AI models to identify key anatomical structures at eFAST scan sites, simplifying image acquisition by assisting with proper probe placement. These models plus image interpretation diagnostic models were paired with two real-time eFAST implementations. The first implementation was a manual AI-driven ultrasound eFAST tool that used guidance models to select correct frames prior to making any diagnostic predictions. The second implementation was a robotic imaging platform capable of providing semi-autonomous image acquisition combined with diagnostic image interpretation. We highlight the use of both real-time approaches in a swine injury model and compare their performance of this emergency medicine application. In conclusion, AI can be deployed in real time to provide rapid triage decisions, lowering the skill threshold for ultrasound imaging at or near the point of injury. Full article
Show Figures

Figure 1

22 pages, 6069 KiB  
Article
Research on Power Efficiency of DC Microgrids Considering Fire Protection Systems
by Ju-Ho Park and Sang-Yong Park
Energies 2025, 18(2), 230; https://doi.org/10.3390/en18020230 - 7 Jan 2025
Viewed by 846
Abstract
Due to the development of power semiconductors and the increase in digital loads, DC microgrids are receiving attention, and their application scope is rapidly expanding. As the technological stability of high-voltage direct current (HVDC) continues to rise, the potential of low-voltage direct current [...] Read more.
Due to the development of power semiconductors and the increase in digital loads, DC microgrids are receiving attention, and their application scope is rapidly expanding. As the technological stability of high-voltage direct current (HVDC) continues to rise, the potential of low-voltage direct current (LVDC) distribution systems is becoming increasingly intriguing. Many researchers are actively conducting safety and efficiency research on DC distribution systems and power grids. In LVDC distribution systems, small-scale DC microgrids are formed by renewable energy sources supplying DC power. This paper analyzes the efficiency improvement that can be achieved by integrating a fire protection system into a DC microgrid. This research analyzed the changes when fire protection systems such as receivers, transmitters, fire alarms, emergency lighting, and evacuation guidance, which have traditionally used AC power, were converted to DC circuits. As a result, the power supply infrastructure within the DC microgrid can be simplified, energy loss can be reduced, and the stability of the power system can be improved. The research results of this paper suggest that DC circuit-based fire protection facilities can positively impact future smart grid and renewable energy goals. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 8335 KiB  
Article
Integrating Safety and Efficiency: Design and Evaluation of Dynamic Emergency Evacuation Sign System in Urban Rail Transit
by Yu Zhang, Yang Bian, Xiaohua Zhao and Xuena Zhao
Sustainability 2024, 16(24), 10921; https://doi.org/10.3390/su162410921 - 12 Dec 2024
Cited by 2 | Viewed by 1518
Abstract
The emergency evacuation sign system is crucial for the safety and sustainable development of urban rail transit. Dynamic emergency evacuation signs, which offer real-time guidance during emergencies, are gaining prominence. There is an urgent need to develop a dynamic system that balances perceptual [...] Read more.
The emergency evacuation sign system is crucial for the safety and sustainable development of urban rail transit. Dynamic emergency evacuation signs, which offer real-time guidance during emergencies, are gaining prominence. There is an urgent need to develop a dynamic system that balances perceptual and cognitive visibility. Against this backdrop, this study built a simulation experiment platform based on BIM, Unity, and VR. Eight experimental scenarios were created using the platform: two emergency events (fire/fire accompanied by power outage) × four emergency evacuation signage systems (static emergency signage system/dynamic dissuasion emergency signage system/dynamic dissuasion emergency signage system with flashing/dynamic dissuasion emergency signage system with flashing and auxiliary information), and experimental testing was completed. The evacuation behavior parameters of 39 passengers were extracted and used to construct a multidimensional indicator system. Subsequently, generalized estimation equations were applied to investigate the impact mechanism of signage systems on passengers’ evacuation behavior. Finally, the coupling coordination degree model was used to quantitatively evaluate the coupling coordination level of four emergency evacuation signage systems under different emergencies. Results indicate that compared to static signage system, the three sets of dynamic identification system schemes have a positive impact on passenger evacuation behavior and significantly reduce the number of decision-making errors. Particularly in high-risk scenarios involving fire accompanied by power outages, the dynamic dissuasion emergency signage system with flashing and auxiliary information outperforms others by achieving a better balance of reliability, efficiency, and safety. This study investigates the efficacy of various emergency evacuation signage systems across diverse emergency scenarios, offering insights for the enhanced design of such systems and thereby fostering the sustainable development of urban rail transit infrastructure. Full article
Show Figures

Figure 1

35 pages, 13487 KiB  
Article
Sensory Navigation System for Indoor Localization and Orientation of Users with Cognitive Disabilities in Daily Tasks and Emergency Situations
by María Teresa García-Catalá, Estefanía Martín-Barroso, María Cristina Rodríguez-Sánchez, Marcos Delgado-Álvaro and Robert Novak
Sensors 2024, 24(22), 7154; https://doi.org/10.3390/s24227154 - 7 Nov 2024
Viewed by 1731
Abstract
This article presents SmartRoutes, (version 1) a sensory navigation system designed for the localization and guidance of individuals with cognitive disabilities in both indoor and outdoor environments. The platform facilitates route generation in both contexts and provides detailed instructions, enabling effective task execution [...] Read more.
This article presents SmartRoutes, (version 1) a sensory navigation system designed for the localization and guidance of individuals with cognitive disabilities in both indoor and outdoor environments. The platform facilitates route generation in both contexts and provides detailed instructions, enabling effective task execution and seamless integration into daily activities or high-stress situations, such as emergency evacuations. SmartRoutes aims to enhance users’ independence and quality of life by offering comprehensive support for navigation across various settings. The platform is specifically designed to manage routes in both indoor and outdoor environments, targeting individuals with cognitive disabilities that affect orientation and the ability to follow instructions. This solution seeks to improve route learning and navigation, facilitating the completion of routine tasks in work and social contexts. Additionally, in exceptional situations such as emergencies, SmartRoutes ensures that users do not become disoriented or blocked. The application effectively guides users to the most appropriate exit or evacuation point. This combination of route generation and detailed instructions underscores the platform’s commitment to inclusion and accessibility, ultimately contributing to the well-being and autonomy of individuals with cognitive disabilities. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Sensors)
Show Figures

Figure 1

21 pages, 11936 KiB  
Article
A Study on the Cutting Characteristics of Bottom Abrasive Grains in Helical Grinding Tools
by Bochuan Chen, Xiaojin Shi and Songmei Yuan
Materials 2024, 17(19), 4814; https://doi.org/10.3390/ma17194814 - 30 Sep 2024
Viewed by 1028
Abstract
Helical grinding is crucial for manufacturing small holes in hard-to-machine composite ceramics. This study introduces a geometric model of undeformed chips to analyze the cutting characteristics of abrasive grains on both the bottom and side edges of the tool. It reveals for the [...] Read more.
Helical grinding is crucial for manufacturing small holes in hard-to-machine composite ceramics. This study introduces a geometric model of undeformed chips to analyze the cutting characteristics of abrasive grains on both the bottom and side edges of the tool. It reveals for the first time that the distribution of cutting grains—pure bottom-edge, pure side-edge, and mixed-edge—is influenced by the tool diameter and eccentricity. A novel calculation method for the distribution range (Dp) of pure bottom-edge grains is proposed, demonstrating that using a tool diameter at or below two-thirds of the target hole diameter effectively eliminates pure bottom-edge grains, improving chip evacuation, reducing chip adhesion, and optimizing cutting performance. Experimental validation on small holes in SiCp/Al composites (65% volume fraction) confirmed these findings and provides practical guidance for optimizing cutting parameters and tool design. Full article
Show Figures

Figure 1

22 pages, 9863 KiB  
Article
Smart Safety Design for Evacuation Signs in Large Space Buildings Based on Height Setting and Visual Range of Evacuation Signs
by Zhanzhi Wan, Tiejun Zhou, Jianwu Xiong and Gao Pan
Buildings 2024, 14(9), 2875; https://doi.org/10.3390/buildings14092875 - 11 Sep 2024
Cited by 2 | Viewed by 1650
Abstract
In case of emergency, evacuation signs play an important role in guiding people to evacuate safety exits in large space buildings. Large space buildings are characterized by high ceilings and large areas. In the existing legislation and standards, the height setting of evacuation [...] Read more.
In case of emergency, evacuation signs play an important role in guiding people to evacuate safety exits in large space buildings. Large space buildings are characterized by high ceilings and large areas. In the existing legislation and standards, the height setting of evacuation signs is fixed, but the influence of height changes on the visibility of evacuation signs is very important. This study fully considers the relationship between the height setting change of evacuation signs and the visual range and puts forward a smart safety design strategy for evacuation signs. The smart safety design consists of two parts, one is the mathematical relationship between the height change of evacuation signs and the visual range of personnel, and the other is the integration of the application process of smart devices. Firstly, the visual range of two different sizes of evacuation signs placed at the height of 1.7 to 6 m was measured experimentally in China. The results showed that: (1) with an increase in the height of the evacuation signs, their viewing distance gradually decreased and the visual range was reduced; (2) the mathematical model of the change between the height and the visual range of evacuation signs was established; (3) the height of evacuation signs between 3 to 5 m agreed more with the visual habits of the people. Then, on this basis, the smart safety design method can use related mathematical models to set the evacuation signs at the optimal height based on the actual distance between people and evacuation signs, ensuring that people can see the signs the first time, thus providing evacuation guidance for evacuees and improving the safety of large space buildings. Full article
(This article belongs to the Collection Buildings and Fire Safety)
Show Figures

Figure 1

33 pages, 11809 KiB  
Article
Research on Passenger Evacuation in Cruise Ship Theatres under the Dynamic Influence of Fire Products
by Tao Zhang, Wei Cai, Min Hu and Gaohan Xiong
Fire 2024, 7(9), 297; https://doi.org/10.3390/fire7090297 - 23 Aug 2024
Viewed by 1638
Abstract
The study of fire simulation and emergency evacuation in cruise ships is a challenging aspect of cruise safety research. Investigating the impact of fire byproducts on passenger evacuation is a critical issue that urgently needs to be addressed. This paper utilizes PyroSim 2022 [...] Read more.
The study of fire simulation and emergency evacuation in cruise ships is a challenging aspect of cruise safety research. Investigating the impact of fire byproducts on passenger evacuation is a critical issue that urgently needs to be addressed. This paper utilizes PyroSim 2022 software to establish five fire cases, analysing the fire products concentration under each case. The influence of fire products on passenger evacuation was analysed using PathFinder. The results showed that when the fire source is in the stage area, the impact of fire byproducts on passenger evacuation is relatively minor. However, when the fire source is near the exit, especially in cases 1 and 2, fire byproducts tend to accumulate in the right area of the second floor, significantly affecting passenger evacuation. Moreover, during the evacuation process, a large number of passengers exhibit herd behaviour, leading to some passengers being unable to evacuate safely. To address the congestion issue, an optimized evacuation guidance plan is proposed, that can effectively improve evacuation efficiency and reduce the average congestion time per person. This has a positive role in enhancing the safety level of cruise ship fires. Full article
(This article belongs to the Special Issue Protection of Ships against Fire and Personnel Evacuation)
Show Figures

Figure 1

Back to TopTop